819
Views
13
CrossRef citations to date
0
Altmetric
Review

Pharmacogenomics And Hypertension: Current Insights

, ORCID Icon, & ORCID Icon
Pages 341-359 | Published online: 22 Nov 2019

References

  • Pagidipati NJ, Gaziano TA. Estimating deaths from cardiovascular disease: a review of global methodologies of mortality measurement. Circulation. 2013;127(6):749–756. doi:10.1161/CIRCULATIONAHA.112.12841323401116
  • James PA, Oparil S, Carter BL, et al. evidence-based guideline for the management of high blood pressure in adults: report from the panel members appointed to the eighth Joint National Committee (JNC 8). JAMA. 2014;311(5):507–520. doi:10.1001/jama.2013.28442724352797
  • Kearney PM, Whelton M, Reynolds K, Muntner P, Whelton PK, He J. Global burden of hypertension: analysis of worldwide data. Lancet. 2005;365(9455):217–223. doi:10.1016/S0140-6736(05)17741-115652604
  • Chobanian AV; Shattuck Lecture. The hypertension paradox–more uncontrolled disease despite improved therapy. N Engl J Med. 2009;361(9):878–887. doi:10.1056/NEJMsa090382919710486
  • Johnson JA. Advancing management of hypertension through pharmacogenomics. Ann Med. 2012;44(Suppl 1):S17–22. doi:10.3109/07853890.2011.65339922713143
  • Menni C, Mangino M, Zhang F, et al. Heritability analyses show visit-to-visit blood pressure variability reflects different pathological phenotypes in younger and older adults: evidence from UK twins. J Hypertens. 2013;31(12):2356–2361. doi:10.1097/HJH.0b013e32836523c124029873
  • Dominiczak AF, Negrin DC, Clark JS, Brosnan MJ, McBride MW, Alexander MY. Genes and hypertension: from gene mapping in experimental models to vascular gene transfer strategies. Hypertension. 2000;35(1 Pt 2):164–172. doi:10.1161/01.HYP.35.1.16410642293
  • Tabara Y, Kohara K, Miki T; Millennium Genome Project for H. Hunting for genes for hypertension: the millennium genome project for hypertension. Hypertens Res. 2012;35(6):567–573. doi:10.1038/hr.2012.4122476231
  • Cooper-Dehoff RM, Johnson JA. Hypertension pharmacogenomics: in search of personalized treatment approaches. Nat Rev Nephrol. 2016;12(2):110–122. doi:10.1038/nrneph.2015.17626592190
  • Lee WK, Padmanabhan S, Dominiczak AF. Genetics of hypertension: from experimental models to clinical applications. J Hum Hypertens. 2000;14(10–11):631–647. doi:10.1038/sj.jhh.100104311095156
  • Padmanabhan S, Paul L, Dominczak AF. The pharmacogenomics of anti-hypertensive therapy. Pharmaceuticals (Basel). 2010;3(6):1779–1791. doi:10.3390/ph306177927713329
  • Kamide K, Kawano Y, Rakugi H. Pharmacogenomic approaches to study the effects of antihypertensive drugs. Hypertens Res. 2012;35(8):796–799. doi:10.1038/hr.2012.8222739423
  • Manunta P, Ferrandi M, Cusi D, Ferrari P, Staessen J, Bianchi G. Personalized therapy of hypertension: the past and the future. Curr Hypertens Rep. 2016;18(3):24. doi:10.1007/s11906-016-0632-y26915067
  • Luizon MR, Pereira DA, Sandrim VC. Pharmacogenomics of hypertension and preeclampsia: focus on gene-gene interactions. Front Pharmacol. 2018;9:168. doi:10.3389/fphar.2018.0016829541029
  • Motsinger AA, Ritchie MD, Reif DM. Novel methods for detecting epistasis in pharmacogenomics studies. Pharmacogenomics. 2007;8(9):1229–1241. doi:10.2217/14622416.8.9.122917924838
  • Arnett DK, Claas SA, Glasser SP. Pharmacogenetics of antihypertensive treatment. Vascul Pharmacol. 2006;44(2):107–118. doi:10.1016/j.vph.2005.09.01016356784
  • Duarte JD, Cooper-Dehoff RM. Mechanisms for blood pressure lowering and metabolic effects of thiazide and thiazide-like diuretics. Expert Rev Cardiovasc Ther. 2010;8(6):793–802. doi:10.1586/erc.10.2720528637
  • Glorioso N, Manunta P, Filigheddu F, et al. The role of alpha-adducin polymorphism in blood pressure and sodium handling regulation may not be excluded by a negative association study. Hypertension. 1999;34(4 Pt 1):649–654. doi:10.1161/01.HYP.34.4.64910523341
  • Cusi D, Barlassina C, Azzani T, et al. Polymorphisms of alpha-adducin and salt sensitivity in patients with essential hypertension. Lancet. 1997;349(9062):1353–1357. doi:10.1016/S0140-6736(97)01029-59149697
  • Matsuoka Y, Li X, Bennett V. Adducin: structure, function and regulation. Cell Mol Life Sci. 2000;57(6):884–895. doi:10.1007/PL0000073110950304
  • Glorioso N, Filigheddu F, Cusi D, et al. alpha-adducin 460Trp allele is associated with erythrocyte Na transport rate in North Sardinian primary hypertensives. Hypertension. 2002;39(2 Pt 2):357–362. doi:10.1161/hy0202.10306511882573
  • Sciarrone MT, Stella P, Barlassina C, et al. ACE and alpha-adducin polymorphism as markers of individual response to diuretic therapy. Hypertension. 2003;41(3):398–403. doi:10.1161/01.HYP.0000057010.27011.2C12623934
  • Turner ST, Boerwinkle E, O’Connell JR, et al. Genomic association analysis of common variants influencing antihypertensive response to hydrochlorothiazide. Hypertension. 2013;62(2):391–397. doi:10.1161/HYPERTENSIONAHA.111.0043623753411
  • Schelleman H, Klungel OH, Witteman JC, et al. The influence of the alpha-adducin G460W polymorphism and angiotensinogen M235T polymorphism on antihypertensive medication and blood pressure. Eur J Hum Genet. 2006;14(7):860–866. doi:10.1038/sj.ejhg.520163216724011
  • Klenke S, Siffert W. SNPs in genes encoding G proteins in pharmacogenetics. Pharmacogenomics. 2011;12(5):633–654. doi:10.2217/pgs.10.20321619427
  • Siffert W, Rosskopf D, Siffert G, et al. Association of a human G-protein beta3 subunit variant with hypertension. Nat Genet. 1998;18(1):45–48. doi:10.1038/ng0198-459425898
  • Turner ST, Schwartz GL, Chapman AB, Boerwinkle E. C825T polymorphism of the G protein beta(3)-subunit and antihypertensive response to a thiazide diuretic. Hypertension. 2001;37(2 Pt 2):739–743. doi:10.1161/01.HYP.37.2.73911230366
  • Schelleman H, Stricker BH, Verschuren WM, et al. Interactions between five candidate genes and antihypertensive drug therapy on blood pressure. Pharmacogenomics J. 2006;6(1):22–26. doi:10.1038/sj.tpj.650033916314886
  • Turner ST, Chapman AB, Schwartz GL, Boerwinkle E. Effects of endothelial nitric oxide synthase, alpha-adducin, and other candidate gene polymorphisms on blood pressure response to hydrochlorothiazide. Am J Hypertens. 2003;16(10):834–839. doi:10.1016/S0895-7061(03)01011-214553962
  • Li Y, Yang P, Wu S, et al. Gender-specific association between ACE gene I/D polymorphism and blood pressure response to hydrochlorothiazide in Han Chinese hypertensive patients. Biochem Genet. 2011;49(11–12):704–714. doi:10.1007/s10528-011-9444-621647824
  • Suonsyrja T, Hannila-Handelberg T, Fodstad H, Donner K, Kontula K, Hiltunen TP. Renin-angiotensin system and alpha-adducin gene polymorphisms and their relation to responses to antihypertensive drugs: results from the GENRES study. Am J Hypertens. 2009;22(2):169–175. doi:10.1038/ajh.2008.34319057513
  • Rotin D, Schild L. ENaC and its regulatory proteins as drug targets for blood pressure control. Curr Drug Targets. 2008;9(8):709–716. doi:10.2174/13894500878513236718691017
  • Luo F, Wang Y, Wang X, Sun K, Zhou X, Hui R. A functional variant of NEDD4L is associated with hypertension, antihypertensive response, and orthostatic hypotension. Hypertension. 2009;54(4):796–801. doi:10.1161/HYPERTENSIONAHA.109.13510319635985
  • Russo CJ, Melista E, Cui J, et al. Association of NEDD4L ubiquitin ligase with essential hypertension. Hypertension. 2005;46(3):488–491. doi:10.1161/01.HYP.0000178594.63193.c016103266
  • Dahlberg J, Nilsson LO, von Wowern F, Melander O. Polymorphism in NEDD4L is associated with increased salt sensitivity, reduced levels of P-renin and increased levels of Nt-proANP. PLoS One. 2007;2(5):e432. doi:10.1371/journal.pone.000043217487281
  • Svensson-Farbom P, Wahlstrand B, Almgren P, et al. A functional variant of the NEDD4L gene is associated with beneficial treatment response with beta-blockers and diuretics in hypertensive patients. J Hypertens. 2011;29(2):388–395. doi:10.1097/HJH.0b013e328341039021052022
  • McDonough CW, Burbage SE, Duarte JD, et al. Association of variants in NEDD4L with blood pressure response and adverse cardiovascular outcomes in hypertensive patients treated with thiazide diuretics. J Hypertens. 2013;31(4):698–704. doi:10.1097/HJH.0b013e32835e2a7123353631
  • Turner ST, Bailey KR, Fridley BL, et al. Genomic association analysis suggests chromosome 12 locus influencing antihypertensive response to thiazide diuretic. Hypertension. 2008;52(2):359–365. doi:10.1161/HYPERTENSIONAHA.107.10427318591461
  • Duarte JD, Turner ST, Tran B, et al. Association of chromosome 12 locus with antihypertensive response to hydrochlorothiazide may involve differential YEATS4 expression. Pharmacogenomics J. 2013;13(3):257–263. doi:10.1038/tpj.2012.422350108
  • Singh S, Wang Z, Shahin MH, et al. Targeted sequencing identifies a missense variant in the BEST3 gene associated with antihypertensive response to hydrochlorothiazide. Pharmacogenet Genomics. 2018;28(11):251–255. doi:10.1097/FPC.000000000000035330289819
  • Hiltunen TP, Donner KM, Sarin AP, et al. Pharmacogenomics of hypertension: a genome-wide, placebo-controlled cross-over study, using four classes of antihypertensive drugs. J Am Heart Assoc. 2015;4(1):e001521. doi:10.1161/JAHA.114.00152125622599
  • Shahin MH, Sa AC, Webb A, et al. Genome-wide prioritization and transcriptomics reveal novel signatures associated with thiazide diuretics blood pressure response. Circ Cardiovasc Genet. 2017;10(1):e001404. doi:10.1161/CIRCGENETICS.116.00140428115488
  • Magvanjav O, Gong Y, McDonough CW, et al. Genetic variants associated with uncontrolled blood pressure on thiazide diuretic/beta-blocker combination therapy in the PEAR (Pharmacogenomic Evaluation of Antihypertensive Responses) and INVEST (International Verapamil-SR Trandolapril Study) trials. J Am Heart Assoc. 2017;6(11):e006522. doi:10.1161/JAHA.117.00652229097388
  • Mann SJ. Redefining beta-blocker use in hypertension: selecting the right beta-blocker and the right patient. J Am Soc Hypertens. 2017;11(1):54–65. doi:10.1016/j.jash.2016.11.00728057444
  • Laurent S. Antihypertensive drugs. Pharmacol Res. 2017;124:116–125. doi:10.1016/j.phrs.2017.07.02628780421
  • Blumenfeld JD, Sealey JE, Mann SJ, et al. Beta-adrenergic receptor blockade as a therapeutic approach for suppressing the renin-angiotensin-aldosterone system in normotensive and hypertensive subjects. Am J Hypertens. 1999;12(5):451–459. doi:10.1016/S0895-7061(99)00005-910342782
  • Johnson JA, Liggett SB. Cardiovascular pharmacogenomics of adrenergic receptor signaling: clinical implications and future directions. Clin Pharmacol Ther. 2011;89(3):366–378. doi:10.1038/clpt.2010.31521289619
  • Zhang F, Steinberg SF. S49G and R389G polymorphisms of the beta(1)-adrenergic receptor influence signaling via the cAMP-PKA and ERK pathways. Physiol Genomics. 2013;45(23):1186–1192. doi:10.1152/physiolgenomics.00087.201324151242
  • Johnson JA, Zineh I, Puckett BJ, McGorray SP, Yarandi HN, Pauly DF. Beta 1-adrenergic receptor polymorphisms and antihypertensive response to metoprolol. Clin Pharmacol Ther. 2003;74(1):44–52. doi:10.1016/S0009-9236(03)00068-712844134
  • Si D, Wang J, Xu Y, Chen X, Zhang M, Zhou H. Association of common polymorphisms in beta1-adrenergic receptor with antihypertensive response to carvedilol. J Cardiovasc Pharmacol. 2014;64(4):306–309. doi:10.1097/FJC.000000000000011925291495
  • Chen L, Xiao T, Chen L, Xie S, Deng M, Wu D. The association of ADRB1 and CYP2D6 polymorphisms with antihypertensive effects and analysis of their contribution to hypertension risk. Am J Med Sci. 2018;355(3):235–239. doi:10.1016/j.amjms.2017.11.00229549925
  • Suonsyrja T, Donner K, Hannila-Handelberg T, Fodstad H, Kontula K, Hiltunen TP. Common genetic variation of beta1- and beta2-adrenergic receptor and response to four classes of antihypertensive treatment. Pharmacogenet Genomics. 2010;20(5):342–345. doi:10.1097/FPC.0b013e328338e1b820300048
  • Filigheddu F, Argiolas G, Degortes S, et al. Haplotypes of the adrenergic system predict the blood pressure response to beta-blockers in women with essential hypertension. Pharmacogenomics. 2010;11(3):319–325. doi:10.2217/pgs.09.15820235788
  • Rau T, Heide R, Bergmann K, et al. Effect of the CYP2D6 genotype on metoprolol metabolism persists during long-term treatment. Pharmacogenetics. 2002;12(6):465–472. doi:10.1097/00008571-200208000-0000712172215
  • Nozawa T, Taguchi M, Tahara K, et al. Influence of CYP2D6 genotype on metoprolol plasma concentration and beta-adrenergic inhibition during long-term treatment: a comparison with bisoprolol. J Cardiovasc Pharmacol. 2005;46(5):713–720. doi:10.1097/01.fjc.0000184117.76188.6816220080
  • Lefebvre J, Poirier L, Poirier P, Turgeon J, Lacourciere Y. The influence of CYP2D6 phenotype on the clinical response of nebivolol in patients with essential hypertension. Br J Clin Pharmacol. 2007;63(5):575–582. doi:10.1111/bcp.2007.63.issue-517094780
  • Bijl MJ, Visser LE, van Schaik RH, et al. Genetic variation in the CYP2D6 gene is associated with a lower heart rate and blood pressure in beta-blocker users. Clin Pharmacol Ther. 2009;85(1):45–50. doi:10.1038/clpt.2008.17218784654
  • Rau T, Wuttke H, Michels LM, et al. Impact of the CYP2D6 genotype on the clinical effects of metoprolol: a prospective longitudinal study. Clin Pharmacol Ther. 2009;85(3):269–272. doi:10.1038/clpt.2008.21819037197
  • Swen JJ, Nijenhuis M, de Boer A, et al. Pharmacogenetics: from bench to byte–an update of guidelines. Clin Pharmacol Ther. 2011;89(5):662–673. doi:10.1038/clpt.2011.3421412232
  • Hamadeh IS, Langaee TY, Dwivedi R, et al. Impact of CYP2D6 polymorphisms on clinical efficacy and tolerability of metoprolol tartrate. Clin Pharmacol Ther. 2014;96(2):175–181. doi:10.1038/clpt.2014.6224637943
  • Wu D, Li G, Deng M, et al. Associations between ADRB1 and CYP2D6 gene polymorphisms and the response to beta-blocker therapy in hypertension. J Int Med Res. 2015;43(3):424–434. doi:10.1177/030006051456315125823457
  • Zineh I, Beitelshees AL, Gaedigk A, et al. Pharmacokinetics and CYP2D6 genotypes do not predict metoprolol adverse events or efficacy in hypertension. Clin Pharmacol Ther. 2004;76(6):536–544. doi:10.1016/j.clpt.2004.08.02015592325
  • Gong Y, Wang Z, Beitelshees AL, et al. Pharmacogenomic genome-wide meta-analysis of blood pressure response to beta-blockers in hypertensive African Americans. Hypertension. 2016;67(3):556–563. doi:10.1161/HYPERTENSIONAHA.115.0634526729753
  • Singh S, El Rouby N, McDonough CW, et al. Genomic association analysis reveals variants associated with blood pressure response to beta-blockers in European Americans. Clin Transl Sci. 2019. doi:10.1111/cts.12643
  • Rimpela JM, Kontula KK, Fyhrquist F, et al. Replicated evidence for aminoacylase 3 and nephrin gene variations to predict antihypertensive drug responses. Pharmacogenomics. 2017;18(5):445–458. doi:10.2217/pgs-2016-020428353407
  • Singh S, Warren HR, Hiltunen TP, et al. Genome-wide meta-analysis of blood pressure response to beta1-blockers: results from ICAPS (International Consortium of Antihypertensive Pharmacogenomics Studies). J Am Heart Assoc. 2019;8(16):e013115. doi:10.1161/JAHA.119.01311531423876
  • Sy RG, Nevado JB Jr., Llanes EJB, et al. The klotho variant rs36217263 is associated with poor response to cardioselective beta-blocker therapy among filipinos. Clin Pharmacol Ther. 2019. doi:10.1002/cpt.1585
  • Sparks MA, Crowley SD, Gurley SB, Mirotsou M, Coffman TM. Classical renin-angiotensin system in kidney physiology. Compr Physiol. 2014;4(3):1201–1228.24944035
  • van Thiel BS, van der Pluijm I, te Riet L, Essers J, Danser AH. The renin-angiotensin system and its involvement in vascular disease. Eur J Pharmacol. 2015;763(Pt A):3–14. doi:10.1016/j.ejphar.2015.03.09025987425
  • Lupoli S, Salvi E, Barcella M, Barlassina C. Pharmacogenomics considerations in the control of hypertension. Pharmacogenomics. 2015;16(17):1951–1964. doi:10.2217/pgs.15.13126555875
  • Rigat B, Hubert C, Alhenc-Gelas F, Cambien F, Corvol P, Soubrier F. An insertion/deletion polymorphism in the angiotensin I-converting enzyme gene accounting for half the variance of serum enzyme levels. J Clin Invest. 1990;86(4):1343–1346. doi:10.1172/JCI1148441976655
  • Chiang FT, Lai ZP, Chern TH, et al. Lack of association of the angiotensin converting enzyme polymorphism with essential hypertension in a Chinese population. Am J Hypertens. 1997;10(2):197–201. doi:10.1016/S0895-7061(96)00345-79037328
  • Nakai K, Itoh C, Miura Y, et al. Deletion polymorphism of the angiotensin I-converting enzyme gene is associated with serum ACE concentration and increased risk for CAD in the Japanese. Circulation. 1994;90(5):2199–2202. doi:10.1161/01.CIR.90.5.21997955173
  • Bloem LJ, Manatunga AK, Pratt JH. Racial difference in the relationship of an angiotensin I-converting enzyme gene polymorphism to serum angiotensin I-converting enzyme activity. Hypertension. 1996;27(1):62–66. doi:10.1161/01.HYP.27.1.628591889
  • Iwai N, Ohmichi N, Nakamura Y, Kinoshita M. DD genotype of the angiotensin-converting enzyme gene is a risk factor for left ventricular hypertrophy. Circulation. 1994;90(6):2622–2628. doi:10.1161/01.CIR.90.6.26227994801
  • Schunkert H, Hense HW, Holmer SR, et al. Association between a deletion polymorphism of the angiotensin-converting-enzyme gene and left ventricular hypertrophy. N Engl J Med. 1994;330(23):1634–1638. doi:10.1056/NEJM1994060933023028177269
  • Cambien F, Poirier O, Lecerf L, et al. Deletion polymorphism in the gene for angiotensin-converting enzyme is a potent risk factor for myocardial infarction. Nature. 1992;359(6396):641–644. doi:10.1038/359641a01328889
  • Abouelfath R, Habbal R, Laaraj A, Khay K, Harraka M, Nadifi S. ACE insertion/deletion polymorphism is positively associated with resistant hypertension in Morocco. Gene. 2018;658:178–183. doi:10.1016/j.gene.2018.03.02829548858
  • Fernandez-Llama P, Poch E, Oriola J, et al. Angiotensin converting enzyme gene I/D polymorphism in essential hypertension and nephroangiosclerosis. Kidney Int. 1998;53(6):1743–1747. doi:10.1046/j.1523-1755.1998.00946.x9607207
  • Pontremoli R, Sofia A, Tirotta A, et al. The deletion polymorphism of the angiotensin I-converting enzyme gene is associated with target organ damage in essential hypertension. J Am Soc Nephrol. 1996;7(12):2550–2558.8989733
  • Heidari F, Vasudevan R, Mohd Ali SZ, et al. Association of insertion/deletion polymorphism of angiotensin-converting enzyme gene among Malay male hypertensive subjects in response to ACE inhibitors. J Renin Angiotensin Aldosterone Syst. 2015;16(4):872–879. doi:10.1177/147032031453887825002132
  • Stavroulakis GA, Makris TK, Krespi PG, et al. Predicting response to chronic antihypertensive treatment with fosinopril: the role of angiotensin-converting enzyme gene polymorphism. Cardiovasc Drugs Ther. 2000;14(4):427–432. doi:10.1023/A:100782040137710999650
  • Kurland L, Melhus H, Karlsson J, et al. Angiotensin converting enzyme gene polymorphism predicts blood pressure response to angiotensin II receptor type 1 antagonist treatment in hypertensive patients. J Hypertens. 2001;19(10):1783–1787. doi:10.1097/00004872-200110000-0001211593098
  • Ohmichi N, Iwai N, Uchida Y, Shichiri G, Nakamura Y, Kinoshita M. Relationship between the response to the angiotensin converting enzyme inhibitor imidapril and the angiotensin converting enzyme genotype. Am J Hypertens. 1997;10(8):951–955. doi:10.1016/S0895-7061(97)00121-09270093
  • Heidari F, Vasudevan R, Mohd Ali SZ, Ismail P, Arkani M. RAS genetic variants in interaction with ACE inhibitors drugs influences essential hypertension control. Arch Med Res. 2017;48(1):88–95. doi:10.1016/j.arcmed.2017.03.00328577874
  • Sasaki M, Oki T, Iuchi A, et al. Relationship between the angiotensin converting enzyme gene polymorphism and the effects of enalapril on left ventricular hypertrophy and impaired diastolic filling in essential hypertension: M-mode and pulsed doppler echocardiographic studies. J Hypertens. 1996;14(12):1403–1408. doi:10.1097/00004872-199612000-000038986921
  • Hingorani AD, Jia H, Stevens PA, Hopper R, Dickerson JE, Brown MJ. Renin-angiotensin system gene polymorphisms influence blood pressure and the response to angiotensin converting enzyme inhibition. J Hypertens. 1995;13(12 Pt 2):1602–1609.8903618
  • Dudley C, Keavney B, Casadei B, Conway J, Bird R, Ratcliffe P. Prediction of patient responses to antihypertensive drugs using genetic polymorphisms: investigation of renin-angiotensin system genes. J Hypertens. 1996;14(2):259–262. doi:10.1097/00004872-199602000-000168728305
  • Konoshita T; Genomic Disease Outcome Consortium Study I. Do genetic variants of the renin-angiotensin system predict blood pressure response to renin-angiotensin system-blocking drugs? A systematic review of pharmacogenomics in the renin-angiotensin system. Curr Hypertens Rep. 2011;13(5):356–361. doi:10.1007/s11906-011-0212-021562941
  • Joshi PH, Xu H, Lestrange R, et al. The M235T single nucleotide polymorphism in the angiotensinogen gene is associated with coronary artery calcium in patients with a family history of coronary artery disease. Atherosclerosis. 2013;226(2):433–439. doi:10.1016/j.atherosclerosis.2012.10.03923137822
  • Mondorf UF, Russ A, Wiesemann A, Herrero M, Oremek G, Lenz T. Contribution of angiotensin I converting enzyme gene polymorphism and angiotensinogen gene polymorphism to blood pressure regulation in essential hypertension. Am J Hypertens. 1998;11(2):174–183. doi:10.1016/S0895-7061(97)00402-09524045
  • Kurland L, Liljedahl U, Karlsson J, et al. Angiotensinogen gene polymorphisms: relationship to blood pressure response to antihypertensive treatment. results from the Swedish Irbesartan Left Ventricular Hypertrophy Investigation vs Atenolol (SILVHIA) trial. Am J Hypertens. 2004;17(1):8–13. doi:10.1016/j.amjhyper.2003.09.00914700505
  • Freel EM, Ingram M, Friel EC, et al. Phenotypic consequences of variation across the aldosterone synthase and 11-beta hydroxylase locus in a hypertensive cohort: data from the MRC BRIGHT study. Clin Endocrinol (Oxf). 2007;67(6):832–838. doi:10.1111/cen.2007.67.issue-617651452
  • Hautanena A, Lankinen L, Kupari M, et al. Associations between aldosterone synthase gene polymorphism and the adrenocortical function in males. J Intern Med. 1998;244(1):11–18. doi:10.1046/j.1365-2796.1998.00308.x9698019
  • Lim PO, Macdonald TM, Holloway C, et al. Variation at the aldosterone synthase (CYP11B2) locus contributes to hypertension in subjects with a raised aldosterone-to-renin ratio. J Clin Endocrinol Metab. 2002;87(9):4398–4402. doi:10.1210/jc.2001-01207012213905
  • Davies E, Holloway CD, Ingram MC, et al. Aldosterone excretion rate and blood pressure in essential hypertension are related to polymorphic differences in the aldosterone synthase gene CYP11B2. Hypertension. 1999;33(2):703–707. doi:10.1161/01.HYP.33.2.70310024332
  • Lacchini R, Sabha M, Coeli FB, et al. T allele of −344 C/T polymorphism in aldosterone synthase gene is not associated with resistant hypertension. Hypertens Res. 2009;32(2):159–162. doi:10.1038/hr.2008.3619262476
  • Kurland L, Melhus H, Karlsson J, et al. Aldosterone synthase (CYP11B2) −344 C/T polymorphism is related to antihypertensive response: result from the Swedish Irbesartan Left Ventricular Hypertrophy Investigation versus Atenolol (SILVHIA) trial. Am J Hypertens. 2002;15(5):389–393. doi:10.1016/S0895-7061(02)02256-212022239
  • Ji X, Qi H, Li DB, et al. Associations between human aldosterone synthase CYP11B2 (−344T/C) gene polymorphism and antihypertensive response to valsartan in Chinese patients with essential hypertension. Int J Clin Exp Med. 2015;8(1):1173–1177.25785110
  • Ortlepp JR, Hanrath P, Mevissen V, Kiel G, Borggrefe M, Hoffmann R. Variants of the CYP11B2 gene predict response to therapy with candesartan. Eur J Pharmacol. 2002;445(1–2):151–152. doi:10.1016/S0014-2999(02)01766-112065207
  • Jankowski P, Safar ME, Benetos A. Pleiotropic effects of drugs inhibiting the renin-angiotensin-aldosterone system. Curr Pharm Des. 2009;15(5):571–584. doi:10.2174/13816120978731574719199982
  • Ismail H, Mitchell R, McFarlane SI, Makaryus AN. Pleiotropic effects of inhibitors of the RAAS in the diabetic population: above and beyond blood pressure lowering. Curr Diab Rep. 2010;10(1):32–36. doi:10.1007/s11892-009-0081-y20425064
  • Fontana V, de Faria AP, Oliveira-Paula GH, et al. Effects of angiotensin-converting enzyme inhibition on leptin and adiponectin levels in essential hypertension. Basic Clin Pharmacol Toxicol. 2014;114(6):472–475. doi:10.1111/bcpt.1219524428812
  • Oliveira-Paula GH, Pinheiro LC, Ferreira GC, et al. Angiotensin converting enzyme inhibitors enhance the hypotensive effects of propofol by increasing nitric oxide production. Free Radic Biol Med. 2018;115:10–17. doi:10.1016/j.freeradbiomed.2017.11.01029138017
  • Linz W, Wohlfart P, Scholkens BA, Malinski T, Wiemer G. Interactions among ACE, kinins and NO. Cardiovasc Res. 1999;43(3):549–561. doi:10.1016/S0008-6363(99)00091-710690327
  • Oliveira-Paula GH, Lacchini R, Tanus-Santos JE. Endothelial nitric oxide synthase: from biochemistry and gene structure to clinical implications of NOS3 polymorphisms. Gene. 2016;575(2 Pt 3):584–599. doi:10.1016/j.gene.2015.09.06126428312
  • Oliveira-Paula GH, Lacchini R, Tanus-Santos JE. Clinical and pharmacogenetic impact of endothelial nitric oxide synthase polymorphisms on cardiovascular diseases. Nitric Oxide. 2017;63:39–51. doi:10.1016/j.niox.2016.08.00427569446
  • Oliveira-Paula GH, Lacchini R, Pinheiro LC, et al. Endothelial nitric oxide synthase polymorphisms affect the changes in blood pressure and nitric oxide bioavailability induced by propofol. Nitric Oxide. 2018;75:77–84. doi:10.1016/j.niox.2018.02.00729496565
  • Silva PS, Fontana V, Luizon MR, et al. eNOS and BDKRB2 genotypes affect the antihypertensive responses to enalapril. Eur J Clin Pharmacol. 2013;69(2):167–177. doi:10.1007/s00228-012-1326-222706620
  • Mason RP, Jacob RF, Kubant R, et al. Effects of angiotensin receptor blockers on endothelial nitric oxide release: the role of eNOS variants. Br J Clin Pharmacol. 2012;74(1):141–146. doi:10.1111/bcp.2012.74.issue-122283728
  • Oliveira-Paula GH, Lacchini R, Luizon MR, et al. Endothelial nitric oxide synthase tagSNPs influence the effects of enalapril in essential hypertension. Nitric Oxide. 2016;55-56:62–69. doi:10.1016/j.niox.2016.03.00627060232
  • Li P, Kondo T, Numaguchi Y, et al. Role of bradykinin, nitric oxide, and angiotensin II type 2 receptor in imidapril-induced angiogenesis. Hypertension. 2008;51(2):252–258. doi:10.1161/HYPERTENSIONAHA.107.09739418086946
  • Yang X, Zhu Q, Fong J, et al. Enalaprilat, an angiotensin-converting enzyme inhibitor, enhances functional preservation during long-term cardiac preservation. Possible involvement of bradykinin and PKC. J Mol Cell Cardiol. 1996;28(7):1445–1452. doi:10.1006/jmcc.1996.01358841932
  • Oliveira-Paula GH, Luizon MR, Lacchini R, et al. Gene-gene interactions among PRKCA, NOS3 and BDKRB2 polymorphisms affect the antihypertensive effects of enalapril. Basic Clin Pharmacol Toxicol. 2017;120(3):284–291. doi:10.1111/bcpt.1268227696692
  • Oliveira-Paula GH, Lacchini R, Fontana V, Silva PS, Biagi C, Tanus-Santos JE. Polymorphisms in VEGFA gene affect the antihypertensive responses to enalapril. Eur J Clin Pharmacol. 2015;71(8):949–957. doi:10.1007/s00228-015-1872-526002049
  • Frau F, Zaninello R, Salvi E, et al. Genome-wide association study identifies CAMKID variants involved in blood pressure response to losartan: the SOPHIA study. Pharmacogenomics. 2014;15(13):1643–1652. doi:10.2217/pgs.14.11925410890
  • Turner ST, Bailey KR, Schwartz GL, Chapman AB, Chai HS, Boerwinkle E. Genomic association analysis identifies multiple loci influencing antihypertensive response to an angiotensin II receptor blocker. Hypertension. 2012;59(6):1204–1211. doi:10.1161/HYP.0b013e31825b30f822566498
  • Elliott WJ, Ram CV. Calcium channel blockers. J Clin Hypertens (Greenwich). 2011;13(9):687–689. doi:10.1111/j.1751-7176.2011.00513.x21896151
  • Nguyen BN, Parker RB, Noujedehi M, Sullivan JM, Johnson JA. Effects of COER-verapamil on circadian pattern of forearm vascular resistance and blood pressure. J Clin Pharmacol. 2000;40(12 Pt 2):1480–1487.11185670
  • Niu Y, Gong Y, Langaee TY, et al. Genetic variation in the beta2 subunit of the voltage-gated calcium channel and pharmacogenetic association with adverse cardiovascular outcomes in the INternational VErapamil SR-Trandolapril STudy GENEtic Substudy (INVEST-GENES). Circ Cardiovasc Genet. 2010;3(6):548–555. doi:10.1161/CIRCGENETICS.110.95765421156931
  • Beitelshees AL, Gong Y, Wang D, et al. KCNMB1 genotype influences response to verapamil SR and adverse outcomes in the INternational VErapamil SR/Trandolapril STudy (INVEST). Pharmacogenet Genomics. 2007;17(9):719–729. doi:10.1097/FPC.0b013e32810f2e3c17700361
  • Kamide K, Yang J, Matayoshi T, et al. Genetic polymorphisms of L-type calcium channel alpha1C and alpha1D subunit genes are associated with sensitivity to the antihypertensive effects of L-type dihydropyridine calcium-channel blockers. Circ J. 2009;73(4):732–740. doi:10.1253/circj.CJ-08-076119225208
  • Bremer T, Man A, Kask K, Diamond C. CACNA1C polymorphisms are associated with the efficacy of calcium channel blockers in the treatment of hypertension. Pharmacogenomics. 2006;7(3):271–279. doi:10.2217/14622416.7.3.27116610939
  • He F, Luo J, Luo Z, et al. The KCNH2 genetic polymorphism (1956, C>T) is a novel biomarker that is associated with CCB and alpha,beta-ADR blocker response in EH patients in China. PLoS One. 2013;8(4):e61317. doi:10.1371/journal.pone.006131723613831
  • Zhu Y, Wang F, Li Q, et al. Amlodipine metabolism in human liver microsomes and roles of CYP3A4/5 in the dihydropyridine dehydrogenation. Drug Metab Dispos. 2014;42(2):245–249. doi:10.1124/dmd.113.05540024301608
  • Tracy TS, Korzekwa KR, Gonzalez FJ, Wainer IW. Cytochrome P450 isoforms involved in metabolism of the enantiomers of verapamil and norverapamil. Br J Clin Pharmacol. 1999;47(5):545–552. doi:10.1046/j.1365-2125.1999.00923.x10336579
  • Kuehl P, Zhang J, Lin Y, et al. Sequence diversity in CYP3A promoters and characterization of the genetic basis of polymorphic CYP3A5 expression. Nat Genet. 2001;27(4):383–391. doi:10.1038/8688211279519
  • Huang Y, Wen G, Lu Y, et al. CYP3A4*1G and CYP3A5*3 genetic polymorphisms alter the antihypertensive efficacy of amlodipine in patients with hypertension following renal transplantation. Int J Clin Pharmacol Ther. 2017;55(2):109–118. doi:10.5414/CP20255927841150
  • Zhang YP, Zuo XC, Huang ZJ, et al. CYP3A5 polymorphism, amlodipine and hypertension. J Hum Hypertens. 2014;28(3):145–149. doi:10.1038/jhh.2013.6723863802
  • Kim KA, Park PW, Lee OJ, et al. Effect of CYP3A5*3 genotype on the pharmacokinetics and pharmacodynamics of amlodipine in healthy Korean subjects. Clin Pharmacol Ther. 2006;80(6):646–656. doi:10.1016/j.clpt.2006.09.00917178265
  • Bhatnagar V, Garcia EP, O’Connor DT, et al. CYP3A4 and CYP3A5 polymorphisms and blood pressure response to amlodipine among African-American men and women with early hypertensive renal disease. Am J Nephrol. 2010;31(2):95–103. doi:10.1159/00025868819907160
  • Langaee TY, Gong Y, Yarandi HN, et al. Association of CYP3A5 polymorphisms with hypertension and antihypertensive response to verapamil. Clin Pharmacol Ther. 2007;81(3):386–391. doi:10.1038/sj.clpt.610009017339868
  • Kamide K, Asayama K, Katsuya T, et al. Genome-wide response to antihypertensive medication using home blood pressure measurements: a pilot study nested within the HOMED-BP study. Pharmacogenomics. 2013;14(14):1709–1721. doi:10.2217/pgs.13.16124192120
  • Hamrefors V, Sjogren M, Almgren P, et al. Pharmacogenetic implications for eight common blood pressure-associated single-nucleotide polymorphisms. J Hypertens. 2012;30(6):1151–1160. doi:10.1097/HJH.0b013e328353633822525200
  • Lin E, Hsu SY. A bayesian approach to gene-gene and gene-environment interactions in chronic fatigue syndrome. Pharmacogenomics. 2009;10(1):35–42. doi:10.2217/14622416.10.1.3519102713
  • Lin E, Hwang Y, Liang KH, Chen EY. Pattern-recognition techniques with haplotype analysis in pharmacogenomics. Pharmacogenomics. 2007;8(1):75–83. doi:10.2217/14622416.8.1.7517187511
  • Zanger UM. Pharmacogenetics - challenges and opportunities ahead. Front Pharmacol. 2010;1:112.21607063
  • Ritchie MD, Motsinger AA. Multifactor dimensionality reduction for detecting gene-gene and gene-environment interactions in pharmacogenomics studies. Pharmacogenomics. 2005;6(8):823–834. doi:10.2217/14622416.6.8.82316296945
  • Ritchie MD, Hahn LW, Roodi N, et al. Multifactor-dimensionality reduction reveals high-order interactions among estrogen-metabolism genes in sporadic breast cancer. Am J Hum Genet. 2001;69(1):138–147. doi:10.1086/32127611404819
  • Lane HY, Tsai GE, Lin E. Assessing gene-gene interactions in pharmacogenomics. Mol Diagn Ther. 2012;16(1):15–27. doi:10.1007/BF0325642622352452
  • Li H, Oehrlein SA, Wallerath T, et al. Activation of protein kinase C alpha and/or epsilon enhances transcription of the human endothelial nitric oxide synthase gene. Mol Pharmacol. 1998;53(4):630–637. doi:10.1124/mol.53.4.6309547352
  • Amiri F, Garcia R. Renal angiotensin II receptors and protein kinase C in diabetic rats: effects of insulin and ACE inhibition. Am J Physiol Renal Physiol. 2000;278(4):F603–F612. doi:10.1152/ajprenal.2000.278.4.F60310751221
  • Zhang W, Huang RS, Dolan ME. Integrating epigenomics into pharmacogenomic studies. Pharmgenomics Pers Med. 2008;2008(1):7–14. doi:10.2147/pgpm.s434120622972
  • Padmanabhan S, Joe B. Towards precision medicine for hypertension: a review of genomic, epigenomic, and microbiomic effects on blood pressure in experimental rat models and humans. Physiol Rev. 2017;97(4):1469–1528. doi:10.1152/physrev.00035.201628931564
  • Evangelou E, Warren HR, Mosen-Ansorena D, et al. Genetic analysis of over 1 million people identifies 535 new loci associated with blood pressure traits. Nat Genet. 2018;50(10):1412–1425. doi:10.1038/s41588-018-0205-x30224653
  • Warren HR, Evangelou E, Cabrera CP, et al. Genome-wide association analysis identifies novel blood pressure loci and offers biological insights into cardiovascular risk. Nat Genet. 2017;49(3):403–415. doi:10.1038/ng.376828135244
  • Cunningham PN, Chapman AB. The future of pharmacogenetics in the treatment of hypertension. Pharmacogenomics. 2019;20(3):129–132. doi:10.2217/pgs-2018-019130808251
  • O’Donnell PH, Wadhwa N, Danahey K, et al. Pharmacogenomics-based point-of-care clinical decision support significantly alters drug prescribing. Clin Pharmacol Ther. 2017;102(5):859–869. doi:10.1002/cpt.70928398598
  • Rosenman MB, Decker B, Levy KD, Holmes AM, Pratt VM, Eadon MT. Lessons learned when introducing pharmacogenomic panel testing into clinical practice. Value Health. 2017;20(1):54–59. doi:10.1016/j.jval.2016.08.72728212969