376
Views
2
CrossRef citations to date
0
Altmetric
Review

Pharmacogenomic Response of Inhaled Corticosteroids for the Treatment of Asthma: Considerations for Therapy

ORCID Icon, ORCID Icon, ORCID Icon &
Pages 261-271 | Published online: 04 Aug 2020

References

  • Pelaia G, Vatrella A, Gallelli L, Cazzola M, Maselli R, Marsico SA. Potential genetic influences on the response to asthma treatment. Pulm Pharmacol Ther. 2004;17(5):253–261. doi:10.1016/j.pupt.2004.04.00515477120
  • Rogers AJ, Tantisira KG, Fuhlbrigge AL, et al. Predictors of poor response during asthma therapy differ with definition of outcome. Pharmacogenomics. 2009;10(8):1231–1242. doi:10.2217/pgs.09.8619663668
  • Shastry BS. Genetic diversity and new therapeutic concepts. J Hum Genet. 2005;50(7):321–328. doi:10.1007/s10038-005-0264-616041496
  • Cain DW, Cidlowski JA. Immune regulation by glucocorticoids. Nat Rev Immunol. 2017;17(4):233–247. doi:10.1038/nri.2017.128192415
  • Strehl C, Buttgereit F. Optimized glucocorticoid therapy: teaching old drugs new tricks. Mol Cell Endocrinol. 2013;380(1–2):32–40. doi:10.1016/j.mce.2013.01.02623403055
  • Parente L, Solito E. Annexin 1: more than an anti-phospholipase protein. Inflamm Res. 2004;53(4):125–132. doi:10.1007/s00011-003-1235-z15060718
  • De Bosscher K, Haegeman G. Minireview: latest perspectives on antiinflammatory actions of glucocorticoids. Mol Endocrinol. 2009;23(3):281–291. doi:10.1210/me.2008-028319095768
  • Perretti M, D’Acquisto F. Annexin A1 and glucocorticoids as effectors of the resolution of inflammation. Nat Rev Immunol. 2009;9(1):62–70. doi:10.1038/nri247019104500
  • Girol AP, Mimura KK, Drewes CC, et al. Anti-inflammatory mechanisms of the annexin A1 protein and its mimetic peptide Ac2-26 in models of ocular inflammation in vivo and in vitro. J Immunol. 2013;190(11):5689–5701. doi:10.4049/jimmunol.120203023645879
  • Barnes PJ. Mechanisms and resistance in glucocorticoid control of inflammation. J Steroid Biochem Mol Biol. 2010;120(2–3):76–85. doi:10.1016/j.jsbmb.2010.02.01820188830
  • Cazzola M, Coppola A, Rogliani P, Matera MG. Novel glucocorticoid receptor agonists in the treatment of asthma. Expert Opin Investig Drugs. 2015;24(11):1473–1482. doi:10.1517/13543784.2015.1078310
  • Keskin O, Farzan N, Birben E, et al. Genetic associations of the response to inhaled corticosteroids in asthma: a systematic review. Clin Transl Allergy. 2019;9:2. doi:10.1186/s13601-018-0239-230647901
  • Matera MG, Rinaldi B, Calzetta L, Cazzola M. Pharmacogenetic and pharmacogenomic considerations of asthma treatment. Expert Opin Drug Metab Toxicol. 2017;13(11):1159–1167. doi:10.1080/17425255.2017.139121528992739
  • Ortega VE, Bleecker ER. The pharmacogenetics of asthma and the road to personalized medicine. Pulmão RJ. 2012;21(2):41–52.
  • Duong-Thi-Ly H, Nguyen-Thi-Thu H, Nguyen-Hoang L, Nguyen-Thi-Bich H, Craig TJ, Duong-Quy S. Effects of genetic factors to inhaled corticosteroid response in children with asthma: a literature review. J Int Med Res. 2017;45(6):1818–1830. doi:10.1177/030006051668387729251255
  • Song QQ, Xie WY, Tang YJ, Zhang J, Liu J. Genetic variation in the glucocorticoid pathway involved in interindividual differences in the glucocorticoid treatment. Pharmacogenomics. 2017;18(3):293–316. doi:10.2217/pgs-2016-015128112586
  • Tantisira KG, Lake S, Silverman ES, et al. Corticosteroid pharmacogenetics: association of sequence variants in CRHR1 with improved lung function in asthmatics treated with inhaled corticosteroids. Hum Mol Genet. 2004;13(13):1353–1359. doi:10.1093/hmg/ddh14915128701
  • Kim WJ, Sheen SS, Kim TH, et al. Association between CRHR1 polymorphism and improved lung function in response to inhaled corticosteroid in patients with COPD. Respirology. 2009;14(2):260–263. doi:10.1111/j.1440-1843.2008.01425.x19210659
  • Awasthi S, Gupta S, Agarwal S, Sharma N. CRHR1 Gene SNPs and response to systemic corticosteroids in Indian asthmatic children during acute exacerbation. Indian J Pediatr. 2015;82(9):781–786. doi:10.1007/s12098-015-1702-x25712009
  • Mougey EB, Chen C, Tantisira KG, et al. Pharmacogenetics of asthma controller treatment. Pharmacogenomics J. 2013;13(3):242–250. doi:10.1038/tpj.2012.522370858
  • Dijkstra A, Koppelman GH, Vonk JM, Bruinenberg M, Schouten JP, Postma DS. Pharmacogenomics and outcome of asthma: no clinical application for long-term steroid effects by CRHR1 polymorphisms. J Allergy Clin Immunol. 2008;121(6):1510–1513. doi:10.1016/j.jaci.2008.04.01518539200
  • Keskin O, Uluca Ü, Birben E, et al. Genetic associations of the response to inhaled corticosteroids in children during an asthma exacerbation. Pediatr Allergy Immunol. 2016;27(5):507–513. doi:10.1111/pai.1256627003716
  • Ito K, Chung KF, Adcock IM. Update on glucocorticoid action and resistance. J Allergy Clin Immunol. 2006;117(3):522–543. doi:10.1016/j.jaci.2006.01.03216522450
  • Rivers C, Levy A, Hancock J, Lightman S, Norman M. Insertion of an amino acid in the DNA-binding domain of the glucocorticoid receptor as a result of alternative splicing. J Clin Endocrinol Metab. 1999;84(11):4283–4286. doi:10.1210/jcem.84.11.623510566686
  • Lu NZ, Cidlowski JA. Glucocorticoid receptor isoforms generate transcription specificity. Trends Cell Biol. 2006;16(6):301–307. doi:10.1016/j.tcb.2006.04.00516697199
  • Panek M, Pietras T, Fabijan A, et al. Effect of glucocorticoid receptor gene polymorphisms on asthma phenotypes. Exp Ther Med. 2013;5(2):572–580. doi:10.3892/etm.2012.80923407653
  • Leventhal SM, Lim D, Green TL, Cantrell AE, Cho K, Greenhalgh DG. Uncovering a multitude of human glucocorticoid receptor variants: an expansive survey of a single gene. BMC Genet. 2019;20(1):16. doi:10.1186/s12863-019-0718-z30736733
  • Maltese P, Canestrari E, Palma L, et al. High resolution melting (HRM) analysis for the detection of ER22/23EK, BclI, and N363S polymorphisms of the glucocorticoid receptor gene. J Steroid Biochem Mol Biol. 2009;113(3–5):269–274. doi:10.1016/j.jsbmb.2009.01.01219429432
  • Reimondo G, Chiodini I, Puglisi S, et al. Analysis of BCLI, N363S and ER22/23EK polymorphisms of the glucocorticoid receptor gene in adrenal incidentalomas. PLoS One. 2016;11(9):e0162437. doi:10.1371/journal.pone.016243727649075
  • Russcher H, van Rossum EF, de Jong FH, Brinkmann AO, Lamberts SW, Koper JW. Increased expression of the glucocorticoid receptor-A translational isoform as a result of the ER22/23EK polymorphism. Mol Endocrinol. 2005;19(7):1687–1696. doi:10.1210/me.2004-046715746190
  • Cuzzoni E, De Iudicibus S, Bartoli F, Ventura A, Decorti G. Association between BclI polymorphism in the NR3C1 gene and in vitro individual variations in lymphocyte responses to methylprednisolone. Br J Clin Pharmacol. 2012;73(4):651–655. doi:10.1111/j.1365-2125.2011.04130.x22008062
  • Pietras T, Panek M, Tworek D, et al. The Bcl I single nucleotide polymorphism of the human glucocorticoid receptor gene h-GR/NR3C1 promoter in patients with bronchial asthma: pilot study. Mol Biol Rep. 2011;38(6):3953–3958. doi:10.1007/s11033-010-0512-521113676
  • Huizenga NA, Koper JW, De Lange P, et al. A polymorphism in the glucocorticoid receptor gene may be associated with and increased sensitivity to glucocorticoids in vivo. J Clin Endocrinol Metab. 1998;83(1):144–151. doi:10.1210/jcem.83.1.44909435432
  • Jewell CM, Cidlowski JA. Molecular evidence for a link between the N363S glucocorticoid receptor polymorphism and altered gene expression. J Clin Endocrinol Metab. 2007;92(8):3268–3277. doi:10.1210/jc.2007-064217535992
  • Nicolaides NC, Galata Z, Kino T, Chrousos GP, Charmandari E. The human glucocorticoid receptor: molecular basis of biologic function. Steroids. 2010;75(1):1–12. doi:10.1016/j.steroids.2009.09.00219818358
  • Panek M, Pietras T, Antczak A, Górski P, Kuna P, Szemraj J. The role of functional single nucleotide polymorphisms of the human glucocorticoid receptor gene NR3C1 in Polish patients with bronchial asthma. Mol Biol Rep. 2012;39(4):4749–4757. doi:10.1007/s11033-011-1267-322015776
  • Szczepankiewicz A, Breborowicz A, Sobkowiak P, Popiel A. No association of glucocorticoid receptor polymorphisms with asthma and response to glucocorticoids. Adv Med Sci. 2008;53(2):245–250. doi:10.2478/v10039-008-0042-818952539
  • Koper JW, Stolk RP, de Lange P, et al. Lack of association between five polymorphisms in the human glucocorticoid receptor gene and glucocorticoid resistance. Hum Genet. 1997;99(5):663–668. doi:10.1007/s0043900504259150737
  • Huizenga NA, de Lange P, Koper JW, et al. Five patients with biochemical and/or clinical generalized glucocorticoid resistance without alterations in the glucocorticoid receptor gene. J Clin Endocrinol Metab. 2000;85(5):2076–2081. doi:10.1210/jcem.85.5.654210843199
  • Green TL, Tung K, Lim D, Leventhal SM, Cho K, Greenhalgh DG. A novel human glucocorticoid receptor SNP results in increased transactivation potential. Biochem Biophys Rep. 2016;9:140–145. doi:10.1016/j.bbrep.2016.12.00328955999
  • Hawkins GA, Lazarus R, Smith RS, et al. The glucocorticoid receptor heterocomplex gene STIP1 is associated with improved lung function in asthmatic subjects treated with inhaled corticosteroids. J Allergy Clin Immunol. 2009;123(6):1376–1383. doi:10.1016/j.jaci.2009.01.04919254810
  • Ouyang J, Chen P, Jiang T, Chen Y, Li J. Nuclear HSP90 regulates the glucocorticoid responsiveness of PBMCs in patients with idiopathic nephrotic syndrome. Int Immunopharmacol. 2012;14(3):334–340. doi:10.1016/j.intimp.2012.08.01222926076
  • Maltese P, Palma L, Sfara C, et al. Glucocorticoid resistance in Crohn’s disease and ulcerative colitis: an association study investigating GR and FKBP5 gene polymorphisms. Pharmacogenomics J. 2012;12(5):432–438. doi:10.1038/tpj.2011.2621788965
  • Koper JW, van Rossum EF, van den Akker EL. Glucocorticoid receptor polymorphisms and haplotypes and their expression in health and disease. Steroids. 2014;92:62–73. doi:10.1016/j.steroids.2014.07.01525150015
  • Kobayashi Y, Mercado N, Barnes PJ, Ito K, Hartl D. Defects of protein phosphatase 2A causes corticosteroid insensitivity in severe asthma. PLoS One. 2011;6(12):e27627. doi:10.1371/journal.pone.002762722205926
  • Kobayashi Y, Ito K, Kanda A, Tomoda K, Mercado N, Barnes PJ. Impaired dual-specificity protein phosphatase DUSP4 reduces corticosteroid sensitivity. Mol Pharmacol. 2017;91(5):475–481. doi:10.1124/mol.116.10765628283554
  • Pelaia G, Cuda G, Vatrella A, et al. Mitogen-activated protein kinases and asthma. J Cell Physiol. 2005;202(3):642–653. doi:10.1002/jcp.2016915316926
  • Wang X, Nelin LD, Kuhlman JR, Meng X, Welty SE, Liu Y. The role of MAP kinase phosphatase-1 in the protective mechanism of dexamethasone against endotoxemia. Life Sci. 2008;83(19–20):671–680. doi:10.1016/j.lfs.2008.09.00318845168
  • Jin Y, Hu D, Peterson EL, et al. Dual-specificity phosphatase 1 as a pharmacogenetic modifier of inhaled steroid response among asthmatic patients. J Allergy Clin Immunol. 2010;126(3):618–625. doi:10.1016/j.jaci.2010.06.00720673984
  • Shaw D, Portelli MA, Sayers I. Asthma In: Padmanabhan S, editor. Handbook of Pharmacogenomics and Stratified Medicine. London: Academic Press; 2014.
  • Bhavsar P, Ahmad T, Adcock IM. The role of histone deacetylases in asthma and allergic diseases. J Allergy Clin Immunol. 2008;121(3):580–584. doi:10.1016/j.jaci.2007.12.115618234319
  • Grausenburger R, Bilic I, Boucheron N, et al. Conditional deletion of histone deacetylase 1 in T cells leads to enhanced airway inflammation and increased Th2 cytokine production. J Immunol. 2010;185(6):3489–3497. doi:10.4049/jimmunol.090361020702731
  • Barnes PJ. Therapy of airway disease: epigenetic potential In: Tollefsbol T, editor. Epigenetics in Human Disease. Amsterdam: Elsevier; 2012:387–393.
  • Kim MH, Kim SH, Kim YK, et al. A polymorphism in the histone deacetylase 1 gene is associated with the response to corticosteroids in asthmatics. Korean J Intern Med. 2013;28(6):708–714. doi:10.3904/kjim.2013.28.6.70824307847
  • Matera MG, Rinaldi B, Calzetta L, Rogliani P, Cazzola M. Pharmacokinetics and pharmacodynamics of inhaled corticosteroids for asthma treatment. Pulm Pharmacol Ther. 2019;58:101828. doi:10.1016/j.pupt.2019.10182831349002
  • Kelly HW. Comparison of inhaled corticosteroids: an update. Ann Pharmacother. 2009;43(3):519–527. doi:10.1345/aph.1L54619261959
  • Stockmann C, Fassl B, Gaedigk R, et al. Fluticasone propionate pharmacogenetics: CYP3A4*22 polymorphism and pediatric asthma control. J Pediatr. 2013;162(6):1222–1227. doi:10.1016/j.jpeds.2012.11.03123290512
  • Stockmann C, Reilly CA, Fassl B, et al. Effect of CYP3A5*3 on asthma control among children treated with inhaled beclomethasone. J Allergy Clin Immunol. 2015;136(2):505–507. doi:10.1016/j.jaci.2015.02.00925825214
  • Barnes PJ, Adcock IM. Glucocorticoid resistance in inflammatory diseases. Lancet. 2009;373(9678):1905–1917. doi:10.1016/S0140-6736(09)60326-319482216
  • Han SS, Xu YQ, Lu Y, Gu XC, Wang Y. A PRISM: a-compliant meta-analysis of MDR1 polymorphisms and idiopathic nephrotic syndrome: susceptibility and steroid responsiveness. Medicine (Baltimore). 2017;96(24):e7191. doi:10.1097/MD.000000000000719128614261
  • Crowe A, Tan AM. Oral and inhaled corticosteroids: differences in P-glycoprotein (ABCB1) mediated efflux. Toxicol Appl Pharmacol. 2012;260(3):294–302. doi:10.1016/j.taap.2012.03.00822464980
  • Vandevyver S, Dejager L, Libert C. On the trail of the glucocorticoid receptor: into the nucleus and back. Traffic. 2012;13(3):364–374. doi:10.1111/j.1600-0854.2011.01288.x21951602
  • Mingot JM, Kostka S, Kraft R, Hartmann E, Görlich D. Importin 13: a novel mediator of nuclear import and export. EMBO J. 2001;20(14):3685–3694. doi:10.1093/emboj/20.14.368511447110
  • Tao T, Lan J, Lukacs GL, Haché RJ, Kaplan F. Importin 13 regulates nuclear import of the glucocorticoid receptor in airway epithelial cells. Am J Respir Cell Mol Biol. 2006;35(6):668–680. doi:10.1165/rcmb.2006-0073OC16809634
  • Raby BA, Van Steen K, Lasky-Su J, Tantisira K, Kaplan F, Weiss ST. Importin-13 genetic variation is associated with improved airway responsiveness in childhood asthma. Respir Res. 2009;10(1):67. doi:10.1186/1465-9921-10-6719619331
  • Turolo S, Edefonti A, Lepore M, et al. SXR rs3842689: a prognostic factor for steroid sensitivity or resistance in pediatric idiopathic nephrotic syndrome. Pharmacogenomics. 2016;17(11):1227–1233. doi:10.2217/pgs-2016-002927377607
  • Tantisira KG, Hwang ES, Raby BA, et al. TBX21: a functional variant predicts improvement in asthma with the use of inhaled corticosteroids. Proc Natl Acad Sci USA. 2004;101(52):18099–18104. doi:10.1073/pnas.040853210215604153
  • Tantisira KG, Lasky-Su J, Harada M, et al. Genomewide association between GLCCI1 and response to glucocorticoid therapy in asthma. N Engl J Med. 2011;365(13):1173–1183. doi:10.1056/NEJMoa091135321991891
  • Chapman MS, Qu N, Pascoe S, et al. Isolation of differentially expressed sequence tags from steroid-responsive cells using mRNA differential display. Mol Cell Endocrinol. 1995;108(1–2):R1–R7. doi:10.1016/0303-7207(95)03481-L7758820
  • Hosking L, Bleecker E, Ghosh S, et al. GLCCI1 rs37973 does not influence treatment response to inhaled corticosteroids in white subjects with asthma. J Allergy Clin Immunol. 2014;133(2):587–589. doi:10.1016/j.jaci.2013.08.02424131825
  • Hu CP, Xun QF, Li XZ, et al. Effects of glucocorticoid-induced transcript 1 gene deficiency on glucocorticoid activation in asthmatic mice. Chin Med J (Engl). 2018;131(23):2817–2826. doi:10.4103/0366-6999.24606130511684
  • Park HW, Dahlin A, Tse S, et al. Genetic predictors associated with improvement of asthma symptoms in response to inhaled corticosteroids. J Allergy Clin Immunol. 2014;133(3):664–669. doi:10.1016/j.jaci.2013.12.104224486069
  • Gautam Y, Afanador Y, Abebe T, López JE, Mersha TB. Genome-wide analysis revealed sex-specific gene expression in asthmatics. Hum Mol Genet. 2019;28(15):2600–2614. doi:10.1093/hmg/ddz074
  • Berce V, Kozmus CE, Potočnik U. Association among ORMDL3 gene expression, 17q21 polymorphism and response to treatment with inhaled corticosteroids in children with asthma. Pharmacogenomics J. 2013;13(6):523–529. doi:10.1038/tpj.2012.3622986918
  • Leusink M, Vijverberg SJ, Koenderman L, et al. Genetic variation in uncontrolled childhood asthma despite ICS treatment. Pharmacogenomics J. 2016;16(2):158–163. doi:10.1038/tpj.2015.3625963336
  • Ryan JJ, Spiegel S. The role of sphingosine-1-phosphate and its receptors in asthma. Drug News Perspect. 2008;21(2):89–96. doi:10.1358/dnp.2008.21.2.118819518389100
  • Balantic M, Rijavec M, Skerbinjek Kavalar M, et al. Asthma treatment outcome in children is associated with vascular endothelial growth factor A (VEGFA) polymorphisms. Mol Diagn Ther. 2012;16(3):173–180. doi:10.1007/BF0326220622519966
  • Lee KS, Kim SR, Park HS, Jin GY, Lee YC. Cysteinyl leukotriene receptor antagonist regulates vascular permeability by reducing vascular endothelial growth factor expression. J Allergy Clin Immunol. 2004;114(5):1093–1099. doi:10.1016/j.jaci.2004.07.03915536415
  • García-Menaya JM, Cordobés-Durán C, García-Martín E, Agúndez JAG. Pharmacogenetic factors affecting asthma treatment response. Potential implications for drug therapy. Front Pharmacol. 2019;10:520. doi:10.3389/fphar.2019.0052031178722
  • Wang RS, Croteau-Chonka DC, Silverman EK, Loscalzo J, Weiss ST, Hall KT. Pharmacogenomics and placebo response in a randomized clinical trial in asthma. Clin Pharmacol Ther. 2019;106(6):1261–1267. doi:10.1002/cpt.164631557306
  • Tantisira KG, Silverman ES, Mariani TJ, et al. FCER2: a pharmacogenetic basis for severe exacerbations in children with asthma. J Allergy Clin Immunol. 2007;120(6):1285–1291. doi:10.1016/j.jaci.2007.09.00517980418
  • Koster ES, Maitland-van der Zee A-H, Tavendale R, Maitland-van der Zee AH, Tavendale R, et al. FCER2 T2206C variant associated with chronic symptoms and exacerbations in steroid-treated asthmatic children. Allergy. 2011;66(12):1546–1552. doi:10.1111/j.1398-9995.2011.02701.x21958076
  • Farzan N, Vijverberg SJ, Arets HG, Raaijmakers JA, Maitland-van der Zee AH. Pharmacogenomics of inhaled corticosteroids and leukotriene modifiers: a systematic review. Clin Exp Allergy. 2017;47(2):271–293. doi:10.1111/cea.1284427790783
  • Mosteller M, Hosking L, Murphy K, et al. No evidence of large genetic effects on steroid response in asthma patients. J Allergy Clin Immunol. 2017;139(3):797–803. doi:10.1016/j.jaci.2016.05.03227523435
  • Cazzola M, Calzetta L, Matera MG, Hanania NA, Rogliani P. How does race/ethnicity influence pharmacological response to asthma therapies? Expert Opin Drug Metab Toxicol. 2018;14(4):435–446. doi:10.1080/17425255.2018.144983329528249
  • Hernandez-Pacheco N, Farzan N, Francis B, et al. Genome-wide association study of inhaled corticosteroid response in admixed children with asthma. Clin Exp Allergy. 2019;49(6):789–798. doi:10.1111/cea.1335430697902
  • Wells KE, Cajigal S, Peterson EL, et al. Assessing differences in inhaled corticosteroid response by self-reported race-ethnicity and genetic ancestry among asthmatic subjects. J Allergy Clin Immunol. 2016;137(5):1364–1369. doi:10.1016/j.jaci.2015.12.133427016472
  • Ulrik CS, Vijverberg S, Hanania NA, Diamant Z. Precision medicine and treatable traits in chronic airway diseases - where do we stand? Curr Opin Pulm Med. 2020;26(1):33–39. doi:10.1097/MCP.000000000000063931644440
  • Kersten ET, Koppelman GH. Pharmacogenetics of asthma: toward precision medicine. Curr Opin Pulm Med. 2017;23(1):12–20. doi:10.1097/MCP.000000000000033527764000
  • Kobayashi Y, Bossley C, Gupta A, et al. Passive smoking impairs histone deacetylase-2 in children with severe asthma. Chest. 2014;145(2):305–312. doi:10.1378/chest.13-083524030221
  • Park HW, Tantisira KG, Weiss ST. Pharmacogenomics in asthma therapy: where are we and where do we go? Annu Rev Pharmacol Toxicol. 2015;55:129–147. doi:10.1146/annurev-pharmtox-010814-12454325292431
  • Abdel-Aziz MI, Neerincx AH, Vijverberg SJ, Kraneveld AD, Maitland-van der Zee AH. Omics for the future in asthma. Semin Immunopathol. 2020;42(1):111–126. doi:10.1007/s00281-019-00776-x31942640