124
Views
1
CrossRef citations to date
0
Altmetric
Original Research

CYP2C9*3/*3 Gene Expression Affects the Total and Free Concentrations of Valproic Acid in Pediatric Patients with Epilepsy

, , , , , & show all
Pages 417-430 | Published online: 09 Apr 2021

References

  • Valproic acid [package insert]. Maple Grove, MN: Upsher-Smith Laboratories, Inc; 2016.
  • Goldenberg MM. Overview of drugs used for epilepsy and seizures: etiology, diagnosis, and treatment. P&T. 2010;35:392–415.
  • Hilal-Dandan R, Brunton LL. Pharmacotherapy of the epilepsies. In: Goodman and Gilman’s Manual of Pharmacology and Therapeutics. 2nd ed. New York: McGraw-Hill Education; 2016.
  • Beydoun A, Sackellares J, Shu V. Safety and efficacy of divalproex sodium monotherapy in partial epilepsy a double-blind, concentration-response design clinical trial. Neurology. 1997;48(1):182–188. doi:10.1212/WNL.48.1.182
  • Nasreddine W, Beydoun A. Valproate-induced thrombocytopenia: a prospective monotherapy study. Epilepsia. 2008;49(3):438–445. doi:10.1111/j.1528-1167.2007.01429.x
  • Kodama Y, Koike Y, Kimoto H, et al. Binding parameters of valproic acid to serum protein in healthy adults at steady state. Ther Drug Monit. 1992;14(1):55–60. doi:10.1097/00007691-199202000-00009
  • Cramer JA, Mattson RH, Bennett DM, Swick CT. Variable free and total valproic acid concentrations in sole- and multi-drug therapy. Ther Drug Monit. 1986;8(4):411–415. doi:10.1097/00007691-198612000-00005
  • Bellver M, Sánchez M, Gonzalez A, Santos Buelga D, Domínguez-Gil A. Plasma protein binding kinetics of valproic acid over a broad dosage range: therapeutic implications. J Clin Pharm Ther. 1993;18(3):191–197. doi:10.1111/j.1365-2710.1993.tb00612.x
  • Patsalos PN, Zugman M, Lake C, James A, Ratnaraj N, Sander JW. Serum protein binding of 25 antiepileptic drugs in a routine clinical setting: a comparison of free non–protein-bound concentrations. Epilepsia. 2017;58(7):1234–1243. doi:10.1111/epi.13802
  • Ito M, Ikeda Y, Arnez JG, Finocchiaro G, Tanaka K. The enzymatic basis for the metabolism and inhibitory effects of valproic acid: dehydrogenation of valproyl-CoA by 2-methyl-branched-chain acyl-CoA dehydrogenase. BBA-Gen Subjects. 1990;1034(2):213–218. doi:10.1016/0304-4165(90)90079-C
  • Ghodke-Puranik Y, Thorn CF, Lamba JK, et al. Valproic acid pathway: pharmacokinetics and pharmacodynamics. Pharmacogenet Genom. 2013;23(4):236–241. doi:10.1097/FPC.0b013e32835ea0b2
  • Kiang TK, Ho PC, Anari MR, Tong V, Abbott FS, Chang TK. Contribution of CYP2C9, CYP2A6, and CYP2B6 to valproic acid metabolism in hepatic microsomes from individuals with the CYP2C9*1/*1 genotype. Toxicol Sci. 2006;2:261–271. doi:10.1093/toxsci/kfl096
  • Tan L, Yu JT, Sun YP, Ou JR, Song JH, Yu Y. The influence of cytochrome oxidase CYP2A6, CYP2B6, and CYP2C9 polymorphisms on the plasma concentrations of valproic acid in epileptic patients. Clin Neurol Neurosurg. 2010;112(4):320–323. doi:10.1016/j.clineuro.2010.01.002
  • Jiang D, Bai X, Zhang Q, et al. Effects of CYP2C19 and CYP2C9 genotypes on pharmacokinetic variability of valproic acid in Chinese epileptic patients: nonlinear mixed-effect modeling. Eur J Clin Pharmacol. 2009;65(12):1187–1193. doi:10.1007/s00228-009-0712-x
  • Budi T, Toth K, Nagy A, et al. Clinical significance of CYP2C9-status guided valproic acid therapy in children. Epilepsia. 2015;56(6):849–855. doi:10.1111/epi.13011
  • Wang C, Wang P, Yang LP, Pan J, Yang X, Ma HY. Association of cyp2c9, cyp2a6, acsm2a, and cpt1a gene polymorphisms with adverse effects of valproic acid in chinese patients with epilepsy. Epilepsy Res. 2017;132:64–69. doi:10.1016/j.eplepsyres.2017.02.015
  • Gielgens RC, Bok LA. Commentary on clinical significance of CYP2C9-status-guided valproic acid therapy in children. Epilepsia. 2016;57(8):1337·1342. doi:10.1111/epi.13452
  • Toth K, Budi T, Kiss A, et al. Phenoconversion of CYP2C9 in epilepsy limits the predictive value of CYP2C9 genotype in optimizing valproate therapy. Pers Mad. 2015;12:201–209.
  • Zhang JF, Zhang ZQ, Dong WC, Jiang Y. A new derivatization method to enhance sensitivity for the determination of low levels of valproic acid in human plasma. J Chromatogr Sci. 2014;52:1173–1180. doi:10.1093/chromsci/bmt167
  • Zhang ZQ, Dong WC, Yang XL, et al. The influence of plasma albumin concentration on the analysis methodology of free valproic acid by ultrafiltration and its application to therapeutic drug monitoring. Ther Drug Monit. 2015;37(6):776–782. doi:10.1097/FTD.0000000000000225
  • Depositario-Cabacar DF, Zelleke TG. Treatment of epilepsy in children with developmental disabilities. Dev Disabil Res Rev. 2010;16(3):239–247. doi:10.1002/ddrr.116
  • Singh BK, White-Scott S. Role of topiramate in adults with intractable epilepsy, mental retardation, and developmental disabilities. Seizure. 2002;11:47–50. doi:10.1053/seiz.2001.0571
  • Salpekar J. Neuropsychiatric effects of epilepsy in developmental disorders. Curr Opin Psychiatry. 2018;31(2):109–115. doi:10.1097/YCO.0000000000000392
  • Gao K, Zhang Y, Zhang L, et al. Large de novo microdeletion in epilepsy with intellectual and developmental disabilities, with a systems biology analysis. Adv Neurobiol. 2018;21:247–266.
  • Lamm WW, Millichap JJ, Soares DC, et al. Novel de novo EEF1A2 missense mutations causing epilepsy and intellectual disability. Mol Genet Genomic Med. 2016;4(4):465–474. doi:10.1002/mgg3.219
  • Kong W, Zhang Y, Gao Y, et al. SCN8A mutations in Chinese children with early onset epilepsy and intellectual disability. Epilepsia. 2015;56(3):431–438. doi:10.1111/epi.12925
  • Zhang Y, Kong W, Gao Y, et al. Gene mutation analysis in 253 Chinese children with unexplained epilepsy and intellectual/developmental disabilities. PLoS One. 2015;10(11):e0141782. doi:10.1371/journal.pone.0141782
  • Ahlers FS, Benros ME, Dreier JW, Christensen J. Infections and risk of epilepsy in children and young adults: a nationwide study. Epilepsia. 2019;60(2):275–283. doi:10.1111/epi.14626
  • Lin CH, Lin WD, Chou IC, Lee IC, Hong SY. Epilepsy and neurodevelopmental outcomes in children with etiologically diagnosed central nervous system infections: a retrospective cohort study. Front Neurol. 2019;10:528. doi:10.3389/fneur.2019.00528
  • Lam SK, Lu WY, Weng WC, Fan PC, Lee WT. The short-term and long-term outcome of febrile infection-related epilepsy syndrome in children. Epilepsy Behav. 2019;95:117–123. doi:10.1016/j.yebeh.2019.02.033
  • Bartolini L, Theodore WH, Jacobson S, et al. Infection with HHV-6 and its role in epilepsy. Epilepsy Res. 2019;153:34–39. doi:10.1016/j.eplepsyres.2019.03.016
  • Bartolini L, Theodore WH, Jacobson S, Gaillard WD. Detection of HHV-6 and EBV and cytokine levels in saliva from children with seizures: results of a multi-center cross-sectional study. Front Neurol. 2018;9:834. doi:10.3389/fneur.2018.00834
  • Cha T, Choi YJ, Oh JW, et al. Respiratory syncytial virus-associated seizures in Korean children, 2011–2016. Korean J Pediatr. 2019;62(4):131–137. doi:10.3345/kjp.2018.07066
  • Cruz-Cruz MDR, Gallardo-Elías J, Paredes-Solís S, Legorreta-Soberanis J, Flores-Moreno M, Andersson N. Factors associated with epilepsy in children in Mexico: a case-control study. Bol Med Hosp Infant Mex. 2017;74(5):334–340. doi:10.1016/j.bmhimx.2017.05.006
  • Nasreddine W, Dirani M, Atweh S, Makki A, Beydoun A. Determinants of free serum valproate concentration: a prospective study in patients on divalproex sodium monotherapy. Seizure. 2018;59:24–27. doi:10.1016/j.seizure.2018.04.012
  • Ho PC, Abbott FS, Zanger UM, Chang TK. Influence of CYP2C9 genotypes on the formation of a hepatotoxic metabolite of valproic acid in human liver microsomes. Pharmacogenomics J. 2003;3:335–342. doi:10.1038/sj.tpj.6500210
  • Monostory K, Nagy A, Tóth K, et al. Relevance of CYP2C9 function in valproate therapy. Curr Neuropharmacol. 2019;17(1):99–106. doi:10.2174/1570159X15666171109143654
  • Goto S, Seo T, Murata T, et al. Population estimation of the effects of cytochrome P450 2C9 and 2C19 polymorphisms on phenobarbital clearance in Japanese. Ther Drug Monit. 2007;29(1):118–121. doi:10.1097/FTD.0b013e318030def0
  • Gunes A, Bilir E, Zengil H, et al. Inhibitory effect of valproic acid on cytochrome P450 2C9 activity in epilepsy patients. Basic Clin Pharmacol Toxicol. 2007;100(6):383–386. doi:10.1111/j.1742-7843.2007.00061.x
  • Smith RL, Haslemo T, Refsum H, Molden E. Impact of age, gender and CYP2C9/2C19 genotypes on dose-adjusted steady-state serum concentrations of valproic acid—a large-scale study based on naturalistic therapeutic drug monitoring data. Eur J Clin Pharmacol. 2016;72:1099–1104. doi:10.1007/s00228-016-2087-0
  • Gu XR, Yu SR, Peng QL, Ma M, Hu Y, Zhou B. Determination of unbound valproic acid in plasma using centrifugal ultrafiltration and gas chromatography: application in TDM. Anal Biochem. 2020;588:113475. doi:10.1016/j.ab.2019.113475
  • Itoh H, Suzuki Y, Fujisaki K, Sato Y, Takeyama M. Correlation between plasma ammonia level and serum trough concentration of free valproic acid in patients with epilepsy. Biol Pharm Bull. 2012;35(6):971–974. doi:10.1248/bpb.35.971
  • Drisaldi A, Weeda E, Meyens R, et al. Accuracy of valproic acid concentration correction based on serum albumin. Neurocrit Care. 2019;30(2):301–306. doi:10.1007/s12028-018-0627-4
  • Riker RR, Gagnon DJ, Hatton C, et al. Valproate protein binding is highly variable in ICU patients and not predicted by total serum concentrations: a case series and literature review. Pharmacotherapy. 2017;37(4):500–508. doi:10.1002/phar.1912
  • Schoemaker R, Wade JR, Stockis A. Brivaracetam population pharmacokinetics in children with epilepsy aged 1 month to 16 years. Eur J Clin Pharmacol. 2017;73(6):727–733. doi:10.1007/s00228-017-2230-6
  • Wu CC, Pai TY, Hsiao FY, Shen LJ, Wu FL. The effect of different carbapenem antibiotics (ertapenem, imipenem/cilastatin and meropenem) on serum valproic acid concentrations. Ther Drug Monit. 2016;38(5):587–592. doi:10.1097/FTD.0000000000000316
  • Šíma M, Hartinger J, Rulíšek J, Šachl R, Slanař O. Meropenem-induced valproic acid elimination: a case report of clinically relevant drug interaction. Prague Med Rep. 2017;118(2–3):105–109. doi:10.14712/23362936.2017.11