67
Views
0
CrossRef citations to date
0
Altmetric
Review

Role of imaging in drug development for Parkinson‘s disease

Pages 335-342 | Published online: 21 Apr 2006

Bibliography

  • Hughes AJ , Ben-ShlomoY, DanielSE, Lees AJ: What features improve the accuracy of clinical diagnosis in Parkinson's disease: a clinicopathological study. Neurology42, 1142–1146 (1992).
  • Chiueh CC , FirnauG, BurnsRSet al.: Determination and visualization of damage to striatal dopaminergic terminals in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced parkins. Adv. Neurol.45, 167–170 (1986).
  • Hutchinson M , RaffU, LebedevS: MRI correlates of pathology in parkinsonism: segmented inversion recovery ratio imaging (SIRRIM).Neuroimage20, 1899–1902 (2003).
  • Schrag A , GoodCD, MiszkielKet al.: Differentiation of atypical parkinsonian syndromes with routine MRI. Neurology54, 697–702 (2000).
  • Seppi K , SchockeMF, EsterhammerRet al.: Diffusion-weighted imaging discriminates progressive supranuclear palsy from PD, but not from the parkinson variant of multiple system atrophy. Neurology60, 922–927 (2003).
  • Eidelberg D , MoellerJR, IshikawaTet al.: Assessment of disease severity in parkinsonism with fluorine-18-fluorodeoxyglucose and PET. J. Nucl. Med.36, 378–383 (1995).
  • Feigin A , FukudaM, DhawanVet al.: Metabolic correlates of levodopa response in Parkinson's disease. Neurology57, 2083–2088 (2001).
  • Sabatini U , BoulanouarK, FabreNet al.: Cortical motor reorganization in akinetic patients with Parkinson's disease – a functional MRI study. Brain123, 394–403 (2000).
  • Jenkins IH , FernandezW, PlayfordEDet al.: Impaired activation of the supplementary motor area in Parkinson's disease is reversed when akinesia is treated with apomorphine. Ann. Neurol.32, 749–757 (1992).
  • Rascol O , SabatiniU, CholletFet al.: Normal activation of the supplementary motor area in patients with Parkinson's disease undergoing long-term treatment with levodopa. J. Neurol. Neurosurg. Psychiat.57, 567–571 (1994).
  • Piccini P , LindvallO, BjorklundAet al.: Delayed recovery of movement-related cortical function in Parkinson's disease after striatal dopaminergic grafts. Ann. Neurol.48, 689–695 (2000).
  • Brooks DJ , FreyKA, Marek KLet al.: Assessment of neuroimaging techniques as biomarkers of the progression of Parkinson's disease. Exp. Neurol.184, S68–S79 (2003).
  • Morrish PK , RakshiJS, SawleGV, Brooks DJ: Measuring the rate of progression and estimating the preclinical period of Parkinson‘s disease with [18F]dopa PET. J. Neurol. Neurosurg. Psychiatr.64, 314–319 (1998).
  • Marek K , InnisR, van Dyck Cet al.: [123I]β-CIT SPECT imaging assessment of the rate of Parkinson's disease progression.Neurology57, 2089–2094 (2001).
  • Snow BJ , TooyamaI, McGeerEGet al.: Human positron emission tomographic [18F]fluorodopa studies correlate with dopamine cell counts and levels. Ann. Neurol.34, 324–330 (1993).
  • Vingerhoets FJG , SchulzerM, CalneDB, SnowBJ: Which clinical sign of Parkinson's disease best reflects the nigrostriatal lesion?Ann. Neurol.41, 58–64 (1997).
  • Doder M , RabinerEA, TurjanskiN, Lees AJ, Brooks DJ: Tremor in Parkinson's disease and serotonergic dysfunction: an (11)C-WAY 10.635 PET study. Neurology60, 601–605 (2003).
  • Lamarre Y : Animal models of tremor. In:Movement Disorders: Tremor. Findley LJ, Capildeo R (Eds). MacMillan Press, London, UK, 183–194 (1984).
  • Kreutzberg GW : Microglia: a sensor for pathological events in the CNS.Trends Neurosci.19, 312–318 (1996).
  • Banati RB , MyersR, KreutzbergGW: PK ('peripheral benzodiazepine')-binding sites in the CNS indicate early and discrete brain lesions: microautoradiographic detection of [3H]PK11195 binding to activated microglia.J. Neurocytol.26, 77–82 (1997).
  • Banati RB , NewcombeJ, GunnRNet al.: The peripheral benzodiazepine binding site in the brain in multiple sclerosis: quantitative in vivo imaging of microglia as a measure of disease activity. Brain123(Pt 11), 2321–2337 (2000).
  • Cagnin A , BrooksDJ, KennedyAMet al.: In vivo measurement of activated microglia in dementia. Lancet358, 461–467 (2001).
  • Gerhard A , PaveseN, HottonGRet al.: Microglial activation in Parkinson‘s disease – its longitudinal course and correlation with clinical parameters: an [11C](R) – PK11195 PET study. Neurology62(Suppl. 5), A432 (2004).
  • Gerhard A , BanatiRB, CagninA, Brooks DJ: In vivo imaging of activated microglia with [11C]PK11195 positron emission tomography (PET) in idiopathic and atypical Parkinson's disease. Neurology56(Suppl. 3), A270 (2001).
  • Ouchi Y , YoshikawaE, SekineYet al.: Microglial activation and dopamine terminal loss in early Parkinson's disease. Ann. Neurol.57, 168–175 (2005).
  • Ward CD : Does selegiline delay progression of Parkinson's disease? A critical re-evaluation of the DATATOP study.J. Neurol. Neurosurg. Psychiatr.57, 217–220 (1994).
  • Brooks DJ : Imaging end points for monitoring neuroprotection in Parkinson's disease.Ann. Neurol.53, S110–S119 (2003).
  • Whone AL , WattsRL, StoesslJet al.: Slower progression of PD with ropinirol versus L-dopa: the REAL-PET study. Ann. Neurol.54, 93–101 (2003).
  • Parkinson Study Group: Dopamine transporter brain imaging to assess the effects of pramipexole vs levodopa Parkinson disease progression. JAMA287, 1653–1661 (2002).
  • Ahlskog JE : Slowing Parkinson's disease progression: recent dopamine agonist trials.Neurology60, 381–389 (2003).
  • Ravina B , EidelbergD, AhlskogJEet al.: The role of radiotracer imaging in Parkinson‘s disease. Neurology64, 208–215 (2005).
  • Parkinson Study Group: Does levodopa slow or hasten the rate of progression of Parkinson disease? The results of the ELLDOPA trial. Neurology60(Suppl. 1), A80–A81 (2003).
  • Freed CR , GreenePE, BreezeREet al.: Transplantation of embryonic dopamine neurons for severe Parkinson's disease. N. Engl. J. Med.344, 710–719 (2001).
  • Olanow CW , GoetzCG, KordowerJHet al.: A double-blind controlled trial of bilateral fetal nigral transplantation in Parkinson's disease. Ann. Neurol.54, 403–414 (2003).
  • Gill SS , PatelNK, HottonGRet al.: Direct brain infusion of glial cell line-derived neurotrophic factor in Parkinson disease. Nature Med.9, 589–595 (2003).
  • Brooks DJ : Positron emission tomography and single-photon emission computed tomography in central nervous system drug development.NeuroRx2, 226–236 (2005).
  • Farde L , NordstromAL, WieselFAet al.: Positron emission tomographic analysis of central D1 and D2 dopamine receptor occupancy in patients treated with classical neuroleptics and clozapine. Relation to extrapyramidal side effects. Arch. Gen. Psychiatry49, 538–544 (1992).
  • Bench CJ , PriceGW, LammertsmaAAet al.: Measurement of human cerebral monoamine oxidase type B (MAO-B) activity with positron emission tomography (PET): a dose ranging study with the reversible inhibitor Ro 19–6327. Eur. J. Clin. Pharmacol40, 169–173 (1991).
  • Hirani E , GilliesJ, KarasawaAet al.: Evaluation of [4-O-methyl-C-11]KW-6002 as a potential PET ligand for mapping central adenosine A(2A) receptors in rats. Synapse42, 164–176 (2001).
  • Sawle GV , BurnDJ, MorrishPKet al.: The effect of entacapone (OR-611) on brain [18F]-6-L-fluorodopa metabolism: implications for levodopa therapy of Parkinson's disease. Neurology44, 1292–1297 (1994).
  • de la Fuente-Fernandez R , LuJQ, SossiVet al.: Biochemical variations in the synaptic level of dopamine precede motor fluctuations in Parkinson's disease: PET evidence of increased dopamine turnover. Ann. Neurol.49, 298–303 (2001).
  • Piccini P , BrooksDJ, BjorklundAet al.: Dopamine release from nigral transplants visualised in vivo in a Parkinson‘s patient. Nature Neurosci.2, 1137–1140 (1999).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.