149
Views
0
CrossRef citations to date
0
Altmetric
Review

A Critical Kinase Cascade In Neurological Disorders: Pi3K, Akt and Mtor

, , &
Pages 733-748 | Published online: 07 Nov 2012

References

  • Chong ZZ , MaieseK. The Src homology 2 domain tyrosine phosphatases SHP-1 and SHP-2: diversified control of cell growth, inflammation, and injury. Histol. Histopathol.22(11), 1251–1267 (2007).
  • Lopez-Ruiz P , Rodriguez-UbrevaJ, CariagaAE, CortesMA, ColasB. SHP-1 in cell-cycle regulation. Anticancer Agents Med. Chem.11(1), 89–98 (2011).
  • Chong ZZ , LiF, MaieseK. Activating Akt and the brain‘s resources to drive cellular survival and prevent inflammatory injury. Histol. Histopathol.20(1), 299–315 (2005).
  • Cheng Z , WhiteMF. Targeting Forkhead box O1 from the concept to metabolic diseases: lessons from mouse models. Antioxid. Redox Signal14(4), 649–661 (2011).
  • Datta SR , BrunetA, GreenbergME. Cellular survival: a play in three Akts. Genes Dev.13(22), 2905–2927. (1999).
  • Chong ZZ , ShangYC, ZhangL, WangS, MaieseK. Mammalian target of rapamycin: hitting the bull‘s-eye for neurological disorders. Oxid. Med. Cell Longev.3(6), 374–391 (2010).
  • Huang X , ZhangH, YangJet al. Pharmacological inhibition of the mammalian target of rapamycin pathway suppresses acquired epilepsy. Neurobiol. Dis.40(1), 193–199 (2010).
  • Chong ZZ , MaieseK. Mammalian target of rapamycin signaling in diabetic cardiovascular disease. Cardiovasc. Diabetol.11(1), 45 (2012).
  • Reynolds THT , BodineSC, LawrenceJC Jr. Control of Ser2448 phosphorylation in the mammalian target of rapamycin by insulin and skeletal muscle load. J. Biol. Chem.277(20), 17657–17662 (2002).
  • Scott PH , BrunnGJ, KohnAD, RothRA, LawrenceJC Jr. Evidence of insulin-stimulated phosphorylation and activation of the mammalian target of rapamycin mediated by a protein kinase B signaling pathway. Proc. Natl Acad. Sci. USA95(13), 7772–7777 (1998).
  • Soliman GA , Acosta-JaquezHA, DunlopEAet al. mTOR Ser-2481 autophosphorylation monitors mTORC-specific catalytic activity and clarifies rapamycin mechanism of action. J. Biol. Chem.285(11), 7866–7879 (2010).
  • Ekim B , MagnusonB, Acosta-JaquezHA, KellerJA, FeenerEP, FingarDC. mTOR kinase domain phosphorylation promotes mTORC1 signaling, cell growth, and cell cycle progression. Mol. Cell Biol.31(14), 2787–2801 (2011).
  • Chong ZZ , ShangYC, WangS, MaieseK. Shedding new light on neurodegenerative diseases through the mammalian target of rapamycin. Prog. Neurobiol. doi:10.1016/j.pneurobio.2012.08.001 (2012) (Epub ahead of print).
  • Loewith R , JacintoE, WullschlegerSet al. Two TOR complexes, only one of which is rapamycin sensitive, have distinct roles in cell growth control. Mol. Cell10(3), 457–468 (2002).
  • Chong ZZ , ShangYC, MaieseK. Cardiovascular disease and mTOR signaling. Trends Cardiovasc. Med.21(5), 151–155 (2011).
  • Sehgal SN , BakerH, VezinaC. Rapamycin (AY-22,989), a new antifungal antibiotic. II. Fermentation, isolation and characterization. J. Antibiot. (Tokyo)28(10), 727–732 (1975).
  • Vezina C , KudelskiA, SehgalSN. Rapamycin (AY-22,989), a new antifungal antibiotic. I. Taxonomy of the producing streptomycete and isolation of the active principle. J. Antibiot. (Tokyo)28(10), 721–726 (1975).
  • Sarbassov DD , AliSM, SenguptaSet al. Prolonged rapamycin treatment inhibits mTORC2 assembly and Akt/PKB. Mol. Cell22(2), 159–168 (2006).
  • Takahashi T , HaraK, InoueHet al. Carboxyl-terminal region conserved among phosphoinositide-kinase-related kinases is indispensable for mTOR function in vivo and in vitro. Genes Cells5(9), 765–775 (2000).
  • Chen J , ZhengXF, BrownEJ, SchreiberSL. Identification of an 11-kDa FKBP12-rapamycin-binding domain within the 289-kDa FKBP12-rapamycin-associated protein and characterization of a critical serine residue. Proc. Natl Acad. Sci. USA92(11), 4947–4951 (1995).
  • Abraham RT . mTOR as a positive regulator of tumor cell responses to hypoxia. Curr. Topic. Microbiol. Immunol.279, 299–319 (2004).
  • Takahara T , HaraK, YonezawaK, SorimachiH, MaedaT. Nutrient-dependent multimerization of the mammalian target of rapamycin through the N-terminal HEAT repeat region. J. Biol. Chem.281(39), 28605–28614 (2006).
  • Wang H , ZhangQ, WenQet al. Proline-rich Akt substrate of 40kDa (PRAS40). a novel downstream target of PI3k/Akt signaling pathway. Cell Signal.24(1), 17–24 (2012).
  • Wang L , HarrisTE, RothRA, LawrenceJC Jr. PRAS40 regulates mTORC1 kinase activity by functioning as a direct inhibitor of substrate binding. J. Biol. Chem.282(27), 20036–20044 (2007).
  • Kim DH , SarbassovDD, AliSMet al. GbetaL, a positive regulator of the rapamycin-sensitive pathway required for the nutrient-sensitive interaction between raptor and mTOR. Mol. Cell11(4), 895–904 (2003).
  • Peterson TR , LaplanteM, ThoreenCCet al. DEPTOR is an mTOR inhibitor frequently overexpressed in multiple myeloma cells and required for their survival. Cell137(5), 873–886 (2009).
  • Fingar DC , RichardsonCJ, TeeAR, CheathamL, TsouC, BlenisJ. mTOR controls cell cycle progression through its cell growth effectors S6K1 and 4E-BP1/eukaryotic translation initiation factor 4E. Mol. Cell Biol.24(1), 200–216 (2004).
  • Jastrzebski K , HannanKM, TchoubrievaEB, HannanRD, PearsonRB. Coordinate regulation of ribosome biogenesis and function by the ribosomal protein S6 kinase, a key mediator of mTOR function. Growth Factors25(4), 209–226 (2007).
  • Gingras AC , KennedySG, O‘LearyMA, SonenbergN, HayN. 4E-BP1, a repressor of mRNA translation, is phosphorylated and inactivated by the Akt(PKB) signaling pathway. Genes Dev.12(4), 502–513 (1998).
  • Bhandari BK , FeliersD, DuraisamySet al. Insulin regulation of protein translation repressor 4E-BP1, an eIF4E-binding protein, in renal epithelial cells. Kidney Int.59(3), 866–875 (2001).
  • Benjamin D , ColombiM, MoroniC, HallMN. Rapamycin passes the torch: a new generation of mTOR inhibitors. Nat. Rev. Drug Discov.10(11), 868–880 (2011).
  • Jacinto E , LoewithR, SchmidtAet al. Mammalian TOR complex 2 controls the actin cytoskeleton and is rapamycin insensitive. Nat. Cell Biol.6(11), 1122–1128 (2004).
  • Rosner M , FuchsC, SiegelN, ValliA, HengstschlagerM. Functional interaction of mammalian target of rapamycin complexes in regulating mammalian cell size and cell cycle. Hum. Mol. Genet.18(17), 3298–3310 (2009).
  • Dada S , DemartinesN, DormondO. mTORC2 regulates PGE2-mediated endothelial cell survival and migration. Biochem. Biophys. Res. Commun.372(4), 875–879 (2008).
  • Sarbassov DD , AliSM, KimDHet al. Rictor, a novel binding partner of mTOR, defines a rapamycin-insensitive and raptor-independent pathway that regulates the cytoskeleton. Curr. Biol.14(14), 1296–1302 (2004).
  • Pearce LR , SommerEM, SakamotoK, WullschlegerS, AlessiDR. Protor-1 is required for efficient mTORC2-mediated activation of SGK1 in the kidney. Biochem. J.436(1), 169–179 (2011).
  • Garcia-Martinez JM , AlessiDR. mTOR complex 2 (mTORC2) controls hydrophobic motif phosphorylation and activation of serum- and glucocorticoid-induced protein kinase 1 (SGK1). Biochem. J.416(3), 375–385 (2008).
  • Gulhati P , BowenKA, LiuJet al. mTORC1 and mTORC2 regulate EMT, motility, and metastasis of colorectal cancer via RhoA and Rac1 signaling pathways. Cancer Res.71(9), 3246–3256 (2011).
  • Hernandez-Negrete I , Carretero-OrtegaJ, RosenfeldtHet al. P-Rex1 links mammalian target of rapamycin signaling to Rac activation and cell migration. J. Biol. Chem.282(32), 23708–23715 (2007).
  • Zou ZQ , ZhangLN, WangF, BellengerJ, ShenYZ, ZhangXH. The novel dual PI3K/mTOR inhibitor GDC-0941 synergizes with the MEK inhibitor U0126 in non-small cell lung cancer cells. Mol. Med. Report5(2), 503–508 (2012).
  • Lee G , GoretskyT, ManagliaEet al. Phosphoinositide 3-kinase signaling mediates beta-catenin activation in intestinal epithelial stem and progenitor cells in colitis. Gastroenterology139(3), 869–881, 881.e1–9 (2010).
  • Maiese K , ChongZZ, ShangYC, HouJ. Novel Avenues of Drug Discovery and Biomarkers for Diabetes Mellitus. J. Clin. Pharmacol.51(2), 128–152 (2011).
  • Ding Z , LiangJ, LiJet al. Physical association of PDK1 with AKT1 is sufficient for pathway activation independent of membrane localization and phosphatidylinositol 3 kinase. PLoS ONE5(3), e9910 (2010).
  • Glidden EJ , GrayLG, VemuruS, LiD, HarrisTE, MayoMW. Multiple site acetylation of Rictor stimulates mammalian target of rapamycin complex 2 (mTORC2)-dependent phosphorylation of Akt protein. J. Biol. Chem.287(1), 581–588 (2012).
  • Chen JX , TuoQ, LiaoDF, ZengH. Inhibition of protein tyrosine phosphatase improves angiogenesis via enhancing Ang-1/Tie-2 signaling in diabetes. Exp. Diabetes Res.2012, 836759 (2012).
  • Deblon N , BourgoinL, Veyrat-DurebexCet al. Chronic mTOR inhibition by rapamycin induces muscle insulin resistance despite weight loss in rats. Br. J. Pharmacol.165(7), 2325–2340 (2012).
  • Hou J , ChongZZ, ShangYC, MaieseK. Early apoptotic vascular signaling is determined by Sirt1 through nuclear shuttling, forkhead trafficking, bad, and mitochondrial caspase activation. Curr. Neurovasc. Res.7(2), 95–112 (2010).
  • Maiese K , ChongZZ, ShangYC. Mechanistic insights into diabetes mellitus and oxidative stress. Curr. Med. Chem.14(16), 1729–1738 (2007).
  • Saha AK , XuXJ, LawsonEet al. Downregulation of AMPK accompanies leucine- and glucose-induced increases in protein synthesis and insulin resistance in rat skeletal muscle. Diabetes59(10), 2426–2434 (2010).
  • Koshimizu T , KawaiM, KondouHet al. Vinculin functions as regulator of chondrogenesis. J. Biol. Chem.287(19), 15760–15775 (2012).
  • Lu MJ , ChenYS, HuangHS, MaMC. Erythropoietin alleviates post-ischemic injury of rat hearts by attenuating nitrosative stress. Life Sci.90(19–20), 776–784 (2012).
  • Inoki K , LiY, ZhuT, WuJ, GuanKL. TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signalling. Nat. Cell Biol.4(9), 648–657 (2002).
  • Sato T , NakashimaA, GuoL, TamanoiF. Specific activation of mTORC1 by Rheb G-protein in vitro involves enhanced recruitment of its substrate protein. J. Biol. Chem.284(19), 12783–12791 (2009).
  • Cai SL , TeeAR, ShortJDet al. Activity of TSC2 is inhibited by AKT-mediated phosphorylation and membrane partitioning. J. Cell Biol.173(2), 279–289 (2006).
  • Zandi E , RothwarfDM, DelhaseM, HayakawaM, KarinM. The IkappaB kinase complex (IKK) contains two kinase subunits, IKKalpha and IKKbeta, necessary for IkappaB phosphorylation and NF-kappaB activation. Cell91(2), 243–252 (1997).
  • Dan HC , AdliM, BaldwinAS. Regulation of mammalian target of rapamycin activity in PTEN-inactive prostate cancer cells by I kappa B kinase alpha. Cancer Res.67(13), 6263–6269 (2007).
  • Lee DF , KuoHP, ChenCTet al. IKK beta suppression of TSC1 links inflammation and tumor angiogenesis via the mTOR pathway. Cell130(3), 440–455 (2007).
  • Oshiro N , TakahashiR, YoshinoKet al. The proline-rich Akt substrate of 40 kDa (PRAS40) is a physiological substrate of mammalian target of rapamycin complex 1. J. Biol. Chem.282(28), 20329–20339 (2007).
  • Wang L , HarrisTE, LawrenceJC Jr. Regulation of proline-rich Akt substrate of 40 kDa (PRAS40) function by mammalian target of rapamycin complex 1 (mTORC1)-mediated phosphorylation. J. Biol. Chem.283(23), 15619–15627 (2008).
  • Sancak Y , ThoreenCC, PetersonTRet al. PRAS40 is an insulin-regulated inhibitor of the mTORC1 protein kinase. Mol. Cell25(6), 903–915 (2007).
  • Kovacina KS , ParkGY, BaeSSet al. Identification of a proline-rich Akt substrate as a 14–13–3 binding partner. J. Biol. Chem.278(12), 10189–10194 (2003).
  • Vander Haar E , LeeSI, BandhakaviS, GriffinTJ, KimDH. Insulin signalling to mTOR mediated by the Akt/PKB substrate PRAS40. Nat. Cell Biol.9(3), 316–323 (2007).
  • Maiese K . The many facets of cell injury: angiogenesis to autophagy. Curr. Neurovasc. Res.9(2), 1–2 (2012).
  • Maiese K , ChongZZ, HouJ, ShangYC. Oxidative stress: biomarkers and novel therapeutic pathways. Exp. Gerontol.45(3), 217–234 (2010).
  • Wong E , CuervoAM. Autophagy gone awry in neurodegenerative diseases. Nat. Neurosci.13(7), 805–811 (2010).
  • Gumy LF , TanCL, FawcettJW. The role of local protein synthesis and degradation in axon regeneration. Exp. Neurol.223(1), 28–37 (2010).
  • Tatton NA . Increased caspase 3 and Bax immunoreactivity accompany nuclear GAPDH translocation and neuronal apoptosis in Parkinson‘s disease. Exp. Neurol.166(1), 29–43 (2000).
  • Broe M , ShepherdCE, MilwardEA, HallidayGM. Relationship between DNA fragmentation, morphological changes and neuronal loss in Alzheimer‘s disease and dementia with Lewy bodies. Acta Neuropathol.101(6), 616–624 (2001).
  • Louneva N , CohenJW, HanLYet al. Caspase-3 is enriched in postsynaptic densities and increased in Alzheimer‘s disease. Am. J. Pathol.173(5), 1488–1495 (2008).
  • Qin AP , LiuCF, QinYYet al. Autophagy was activated in injured astrocytes and mildly decreased cell survival following glucose and oxygen deprivation and focal cerebral ischemia. Autophagy6(6), 738–753 (2010).
  • Wang JY , XiaQ, ChuKTet al. Severe global cerebral ischemia-induced programmed necrosis of hippocampal CA1 neurons in rat is prevented by 3-methyladenine: a widely used inhibitor of autophagy. J. Neuropathol. Exp. Neurol.70(4), 314–322 (2011).
  • Baba H , SakuraiM, AbeK, TominagaR. Autophagy-mediated stress response in motor neuron after transient ischemia in rabbits. J. Vasc. Surg.50(2), 381–387 (2009).
  • Canu N , TufiR, SerafinoAL, AmadoroG, CiottiMT, CalissanoP. Role of the autophagic-lysosomal system on low potassium-induced apoptosis in cultured cerebellar granule cells. J. Neurochem.92(5), 1228–1242 (2005).
  • Xue L , FletcherGC, TolkovskyAM. Autophagy is activated by apoptotic signalling in sympathetic neurons: an alternative mechanism of death execution. Mol. Cell Neurosci.14(3), 180–198 (1999).
  • Spencer B , PotkarR, TrejoMet al. Beclin 1 gene transfer activates autophagy and ameliorates the neurodegenerative pathology in alpha-synuclein models of Parkinson‘s and Lewy body diseases. J. Neurosci.29(43), 13578–13588 (2009).
  • Spilman P , PodlutskayaN, HartMJet al. Inhibition of mTOR by rapamycin abolishes cognitive deficits and reduces amyloid-beta levels in a mouse model of Alzheimer‘s disease. PLoS ONE5(4), e9979 (2010).
  • Nopparat C , PorterJE, EbadiM, GovitrapongP. The mechanism for the neuroprotective effect of melatonin against methamphetamine-induced autophagy. J. Pineal Res.49(4), 382–389 (2010).
  • Pattingre S , TassaA, QuXet al. Bcl-2 antiapoptotic proteins inhibit Beclin 1-dependent autophagy. Cell122(6), 927–939 (2005).
  • Luo S , RubinszteinDC. Apoptosis blocks Beclin 1-dependent autophagosome synthesis: an effect rescued by Bcl-xL. Cell Death Differ.17(2), 268–277 (2010).
  • Wang S , ChongZZ, ShangYC, MaieseK. WISP1 (CCN4) autoregulates its expression and nuclear trafficking of beta-catenin during oxidant stress with limited effects upon neuronal autophagy. Curr. Neurovasc. Res.9(2), 89–99 (2012).
  • Maiese K , ChongZZ, HouJ, ShangYC. The vitamin nicotinamide: translating nutrition into clinical care. Molecules14(9), 3446–3485 (2009).
  • Chong ZZ , ShangYC, WangS, MaieseK. SIRT1: New avenues of discovery for disorders of oxidative stress. Expert Opin. Ther. Targets16(2), 167–178 (2012).
  • Troy CM , AkpanN, JeanYY. Regulation of caspases in the nervous system implications for functions in health and disease. Prog. Mol. Biol. Transl. Sci.99, 265–305 (2011).
  • Maiese K , ChongZZ, ShangYC. OutFOXOing disease and disability: the therapeutic potential of targeting FoxO proteins. Trends Mol. Med.14(5), 219–227 (2008).
  • Chong ZZ , LiF, MaieseK. Oxidative stress in the brain: Novel cellular targets that govern survival during neurodegenerative disease. Prog. Neurobiol.75(3), 207–246 (2005).
  • Maiese K , ChongZZ, ShangYC, WangS. Translating cell survival and cell longevity into treatment strategies with SIRT1. Rom. J. Morphol. Embryol.52(4), 1173–1185 (2011).
  • Wang S , ChongZZ, ShangYC, MaieseK. Wnt1 inducible signaling pathway protein 1 (WISP1) blocks neurodegeneration through phosphoinositide 3 kinase/Akt1 and apoptotic mitochondrial signaling involving Bad, Bax, Bim, and Bcl-xL. Curr. Neurovasc. Res.9(1), 20–31 (2012).
  • Hou J , WangS, ShangYC, ChongZZ, MaieseK. Erythropoietin employs cell longevity pathways of SIRT1 to foster endothelial vascular integrity during oxidant stress. Curr. Neurovasc. Res.8(3), 220–235 (2011).
  • Koh PO . Nicotinamide attenuates the ischemic brain injury-induced decrease of Akt activation and Bad phosphorylation. Neurosci. Lett.498(2), 105–109 (2011).
  • Dormond O , MadsenJC, BriscoeDM. The effects of mTOR-Akt interactions on anti-apoptotic signaling in vascular endothelial cells. J. Biol. Chem.282(32), 23679–23686 (2007).
  • Chong ZZ , HouJ, ShangYC, WangS, MaieseK. EPO relies upon novel signaling of wnt1 that requires Akt1, Foxo3a, GSK-3beta, and beta-catenin to foster vascular integrity during experimental diabetes. Curr. Neurovasc. Res.8(2), 103–120 (2011).
  • Chong ZZ , LiF, MaieseK. The pro-survival pathways of mTOR and protein kinase B target glycogen synthase kinase-3beta and nuclear factor-kappaB to foster endogenous microglial cell protection. Int. J. Mol. Med.19(2), 263–272 (2007).
  • Shang YC , ChongZZ, WangS, MaieseK. Prevention of beta-amyloid degeneration of microglia by erythropoietin depends on Wnt1, the PI 3-K/mTOR pathway, Bad, and Bcl-xL. Aging (Albany NY)4(3), 187–201 (2012).
  • Choi KC , KimSH, HaJY, KimST, SonJH. A novel mTOR activating protein protects dopamine neurons against oxidative stress by repressing autophagy related cell death. J. Neurochem.112(2), 366–376 (2010).
  • Chong ZZ , ShangYC, WangS, MaieseK. PRAS40 is an integral regulatory component of erythropoietin mTOR signaling and cytoprotection. PLoS ONE7(9), e45456 (2012).
  • Shang YC , ChongZZ, WangS, MaieseK. wnt1 inducible signaling pathway protein 1 (WISP1) targets PRAS40 to govern beta-amyloid apoptotic injury of microglia. Curr. Neurovasc. Res. (2012).
  • Thedieck K , PolakP, KimMLet al. PRAS40 and PRR5-like protein are new mTOR interactors that regulate apoptosis. PLoS ONE2(11), e1217 (2007).
  • Pastor MD , Garcia-YebenesI, FradejasNet al. mTOR/S6 kinase pathway contributes to astrocyte survival during ischemia. J. Biol. Chem.284(33), 22067–22078 (2009).
  • Wu X , ReiterCE, AntonettiDA, KimballSR, JeffersonLS, GardnerTW. Insulin promotes rat retinal neuronal cell survival in a p70S6K-dependent manner. J. Biol. Chem.279(10), 9167–9175 (2004).
  • Maiese K , ChongZZ, ShangYC. Raves and risks for erythropoietin. Cytokine Growth Factor Rev.19(2), 145–155 (2008).
  • Kim J , JungY, SunHet al. Erythropoietin mediated bone formation is regulated by mTOR signaling. J. Cell Biochem.113(1), 220–228 (2012).
  • Shang YC , ChongZZ, WangS, MaieseK. Erythropoietin and Wnt1 govern pathways of mTOR, Apaf-1, and XIAP in inflammatory microglia. Curr. Neurovasc. Res.8(4), 270–285 (2011).
  • Chong ZZ , LiF, MaieseK. Attempted cell cycle induction in post-mitotic neurons occurs in early and late apoptotic programs through Rb, E2f1, and caspase 3. Curr. Neurovasc. Res.3(1), 25–39 (2006).
  • Yu Y , RenQG, ZhangZHet al. Phospho-Rb mediating cell cycle reentry induces early apoptosis following oxygen-glucose deprivation in rat cortical neurons. Neurochem. Res.37(3), 503–511 (2012).
  • Bhaskar K , MillerM, ChludzinskiA, HerrupK, ZagorskiM, LambBT. The PI3K-Akt-mTOR pathway regulates Abeta oligomer induced neuronal cell cycle events. Mol. Neurodegener.4, 14 (2009).
  • Baryawno N , SveinbjornssonB, EksborgS, ChenCS, KognerP, JohnsenJI. Small-molecule inhibitors of phosphatidylinositol 3-kinase/Akt signaling inhibit Wnt/beta-catenin pathway cross-talk and suppress medulloblastoma growth. Cancer Res.70(1), 266–276 (2010).
  • Chung CY , ParkYL, SongYAet al. Knockdown of RON inhibits AP-1 activity and induces apoptosis and cell cycle arrest through the modulation of Akt/FoxO signaling in human colorectal cancer cells. Dig. Dis. Sci.57(2), 371–380 (2012).
  • Fokas E , YoshimuraM, PrevoRet al. NVP-BEZ235 and NVP-BGT226, dual phosphatidylinositol 3-kinase/mammalian target of rapamycin inhibitors, enhance tumor and endothelial cell radiosensitivity. Radiat. Oncol.7(1), 48 (2012).
  • Janku F , WhelerJJ, WestinSNet al. PI3K/AKT/mTOR inhibitors in patients with breast and gynecologic malignancies harboring PIK3CA mutations. J. Clin. Oncol.30(8), 777–782 (2012).
  • Yamada E , SinghR. Mapping autophagy on to your metabolic radar. Diabetes61(2), 272–280 (2012).
  • Clarke PG . Developmental cell death: morphological diversity and multiple mechanisms. Anat. Embryol.181(3), 195–213 (1990).
  • Levine B . Eating oneself and uninvited guests: autophagy-related pathways in cellular defense. Cell120(2), 159–162 (2005).
  • Silva DF , EstevesAR, OliveiraCR, CardosoSM. Mitochondria: the common upstream driver of amyloid-beta and tau pathology in Alzheimer‘s disease. Curr. Alzheimer Res.8(5), 563–572 (2011).
  • Kapoor V , ZaharievaMM, DasSN, BergerMR. Erufosine simultaneously induces apoptosis and autophagy by modulating the Akt-mTOR signaling pathway in oral squamous cell carcinoma. Cancer Lett.319(1), 39–48 (2012).
  • Le XF , MaoW, LuZ, CarterBZ, BastRC Jr. Dasatinib induces autophagic cell death in human ovarian cancer. Cancer116(21), 4980–4990 (2010).
  • Viola G , BortolozziR, HamelEet al. MG-2477, a new tubulin inhibitor, induces autophagy through inhibition of the Akt/mTOR pathway and delayed apoptosis in A549 cells. Biochem. Pharmacol.83(1), 16–26 (2012).
  • Wu YT , TanHL, HuangQ, OngCN, ShenHM. Activation of the PI3K-Akt-mTOR signaling pathway promotes necrotic cell death via suppression of autophagy. Autophagy5(6), 824–834 (2009).
  • Yu L , McpheeCK, ZhengLet al. Termination of autophagy and reformation of lysosomes regulated by mTOR. Nature465(7300), 942–946 (2010).
  • Rong Y , McPheeCK, DengSet al. Spinster is required for autophagic lysosome reformation and mTOR reactivation following starvation. Proc. Natl Acad. Sci. USA108(19), 7826–7831 (2011).
  • Jung CH , JunCB, RoSHet al. ULK-Atg13-FIP200 complexes mediate mTOR signaling to the autophagy machinery. Mol. Biol. Cell20(7), 1992–2003 (2009).
  • Sarkar S , RavikumarB, RubinszteinDC. Autophagic clearance of aggregate-prone proteins associated with neurodegeneration. Methods Enzymol.453, 83–110 (2009).
  • Berger Z , RavikumarB, MenziesFMet al. Rapamycin alleviates toxicity of different aggregate-prone proteins. Hum. Mol. Genet.15(3), 433–442 (2006).
  • Ravikumar B , VacherC, BergerZet al. Inhibition of mTOR induces autophagy and reduces toxicity of polyglutamine expansions in fly and mouse models of Huntington disease. Nat. Genet.36(6), 585–595 (2004).
  • Floto RA , SarkarS, PerlsteinEO, KampmannB, SchreiberSL, RubinszteinDC. Small molecule enhancers of rapamycin-induced TOR inhibition promote autophagy, reduce toxicity in Huntington‘s disease models and enhance killing of mycobacteria by macrophages. Autophagy3(6), 620–622 (2007).
  • Roscic A , BaldoB, CrochemoreC, MarcellinD, PaganettiP. Induction of autophagy with catalytic mTOR inhibitors reduces huntingtin aggregates in a neuronal cell model. J. Neurochem.119(2), 398–407 (2011).
  • Fox JH , ConnorT, ChopraVet al. The mTOR kinase inhibitor Everolimus decreases S6 kinase phosphorylation but fails to reduce mutant huntingtin levels in brain and is not neuroprotective in the R6/2 mouse model of Huntington‘s disease. Mol. Neurodegeneration5, 26 (2010).
  • Hyrskyluoto A , ReijonenS, KivinenJ, LindholmD, KorhonenL. GADD34 mediates cytoprotective autophagy in mutant huntingtin expressing cells via the mTOR pathway. Exp. Cell Res.318(1), 33–42 (2012).
  • Maiese K , ChongZZ, HouJ, ShangYC. New strategies for Alzheimer‘s disease and cognitive impairment. Oxid. Med. Cell Longev.2(5), 279–289 (2009).
  • Slipczuk L , BekinschteinP, KatcheC, CammarotaM, IzquierdoI, MedinaJH. BDNF activates mTOR to regulate GluR1 expression required for memory formation. PLoS ONE4(6), e6007 (2009).
  • Griffin RJ , MoloneyA, KelliherMet al. Activation of Akt/PKB, increased phosphorylation of Akt substrates and loss and altered distribution of Akt and PTEN are features of Alzheimer‘s disease pathology. J. Neurochem.93(1), 105–117 (2005).
  • An WL , CowburnRF, LiLet al. Up-regulation of phosphorylated/activated p70 S6 kinase and its relationship to neurofibrillary pathology in Alzheimer‘s disease. Am. J. Pathol.163(2), 591–607 (2003).
  • Paccalin M , Pain-BarcS, PluchonCet al. Activated mTOR and PKR kinases in lymphocytes correlate with memory and cognitive decline in Alzheimer‘s disease. Dement. Geriatr. Cogn. Disord.22(4), 320–326 (2006).
  • Ma T , HoefferCA, Capetillo-ZarateEet al. Dysregulation of the mTOR pathway mediates impairment of synaptic plasticity in a mouse model of Alzheimer‘s disease. PLoS ONE5(9), e12845 (2010).
  • Lee ST , ChuK, ParkJEet al. Erythropoietin improves memory function with reducing endothelial dysfunction and amyloid-beta burden in Alzheimer‘s disease models. J. Neurochem.120(1), 115–124 (2012).
  • Lafay-Chebassier C , PaccalinM, PageGet al. mTOR/p70S6k signalling alteration by Abeta exposure as well as in APP-PS1 transgenic models and in patients with Alzheimer‘s disease. J. Neurochem.94(1), 215–225 (2005).
  • Chano T , OkabeH, HuletteCM. RB1CC1 insufficiency causes neuronal atrophy through mTOR signaling alteration and involved in the pathology of Alzheimer‘s diseases. Brain Res.1168, 97–105 (2007).
  • Malagelada C , RyuEJ, BiswasSC, Jackson-LewisV, GreeneLA. RTP801 is elevated in Parkinson brain substantia nigral neurons and mediates death in cellular models of Parkinson‘s disease by a mechanism involving mammalian target of rapamycin inactivation. J. Neurosci.26(39), 9996–10005 (2006).
  • Deyoung MP , HorakP, SoferA, SgroiD, EllisenLW. Hypoxia regulates TSC1/2-mTOR signaling and tumor suppression through REDD1-mediated 14-13-3 shuttling. Genes Dev.22(2), 239–251 (2008).
  • Malagelada C , JinZH, Jackson-LewisV, PrzedborskiS, GreeneLA. Rapamycin protects against neuron death in in vitro and in vivo models of Parkinson‘s disease. J. Neurosci.30(3), 1166–1175 (2010).
  • Imai Y , GehrkeS, WangHQet al. Phosphorylation of 4E-BP by LRRK2 affects the maintenance of dopaminergic neurons in Drosophila. Embo J.27(18), 2432–2443 (2008).
  • Tain LS , MortiboysH, TaoRN, ZivianiE, BandmannO, WhitworthAJ. Rapamycin activation of 4E-BP prevents parkinsonian dopaminergic neuron loss. Nat. Neurosci.12(9), 1129–1135 (2009).
  • Santini E , HeimanM, GreengardP, ValjentE, FisoneG. Inhibition of mTOR signaling in Parkinson‘s disease prevents L-DOPA-induced dyskinesia. Sci. Signal.2(80), ra36 (2009).
  • Crews L , SpencerB, DesplatsPet al. Selective molecular alterations in the autophagy pathway in patients with Lewy body disease and in models of alpha-synucleinopathy. PLoS ONE5(2), e9313 (2010).
  • Holmes GL , StafstromCE. Tuberous sclerosis complex and epilepsy: recent developments and future challenges. Epilepsia48(4), 617–630 (2007).
  • Waltereit R , WelzlH, DichgansJ, LippHP, SchmidtWJ, WellerM. Enhanced episodic-like memory and kindling epilepsy in a rat model of tuberous sclerosis. J. Neurochem.96(2), 407–413 (2006).
  • Zeng LH , XuL, GutmannDH, WongM. Rapamycin prevents epilepsy in a mouse model of tuberous sclerosis complex. Ann. Neurol.63(4), 444–453 (2008).
  • Zeng LH , RensingNR, WongM. The mammalian target of rapamycin signaling pathway mediates epileptogenesis in a model of temporal lobe epilepsy. J. Neurosci.29(21), 6964–6972 (2009).
  • Buckmaster PS , IngramEA, WenX. Inhibition of the mammalian target of rapamycin signaling pathway suppresses dentate granule cell axon sprouting in a rodent model of temporal lobe epilepsy. J. Neurosci.29(25), 8259–8269 (2009).
  • Balduini W , CarloniS, BuonocoreG. Autophagy in hypoxia-ischemia induced brain injury. J. Matern. Fetal Neonatal Med.25(Suppl. 1), 30–34 (2012).
  • Shi GD , OuyangYP, ShiJG, LiuY, YuanW, JiaLS. PTEN deletion prevents ischemic brain injury by activating the mTOR signaling pathway. Biochem. Biophys. Res. Commun.404(4), 941–945 (2011).
  • Zhang W , KhatibiNH, Yamaguchi-OkadaMet al. Mammalian target of rapamycin (mTOR) inhibition reduces cerebral vasospasm following a subarachnoid hemorrhage injury in canines. Exp. Neurol.233(2), 799–806 (2012).
  • Erlich S , AlexandrovichA, ShohamiE, Pinkas-KramarskiR. Rapamycin is a neuroprotective treatment for traumatic brain injury. Neurobiol. Dis.26(1), 86–93 (2007).
  • Sekiguchi A , KannoH, OzawaH, YamayaS, ItoiE. Rapamycin promotes autophagy and reduces neural tissue damage and locomotor impairment after spinal cord injury in mice. J. Neurotrauma29(5), 946–956 (2012).
  • Sheng B , LiuJ, LiGH. Metformin preconditioning protects Daphnia pulex from lethal hypoxic insult involving AMPK, HIF and mTOR signaling. Comp. Biochem. Physiol. B Biochem. Mol. Biol.163(1), 51–58 (2012).
  • Koh PO . Melatonin prevents ischemic brain injury through activation of the mTOR/p70S6 kinase signaling pathway. Neurosci. Lett.444(1), 74–78 (2008).
  • Liu G , DetloffMR, MillerKN, SantiL, HouleJD. Exercise modulates microRNAs that affect the PTEN/mTOR pathway in rats after spinal cord injury. Exp. Neurol.233(1), 447–456 (2012).
  • Sun F , ParkKK, BelinSet al. Sustained axon regeneration induced by co-deletion of PTEN and SOCS3. Nature480(7377), 372–375 (2011).
  • Liu K , LuY, LeeJKet al. PTEN deletion enhances the regenerative ability of adult corticospinal neurons. Nat. Neurosci.13(9), 1075–1081 (2010).
  • Park KK , LiuK, HuYet al. Promoting axon regeneration in the adult CNS by modulation of the PTEN/mTOR pathway. Science322(5903), 963–966 (2008).
  • Hu LY , SunZG, WenYMet al. ATP-mediated protein kinase B Akt/mammalian target of rapamycin mTOR/p70 ribosomal S6 protein p70S6 kinase signaling pathway activation promotes improvement of locomotor function after spinal cord injury in rats. Neuroscience169(3), 1046–1062 (2010).
  • Walker CL , WalkerMJ, LiuNKet al. Systemic bisperoxovanadium activates Akt/mTOR, reduces autophagy, and enhances recovery following cervical spinal cord injury. PLoS ONE7(1), e30012 (2012).
  • Pavel ME , HainsworthJD, BaudinEet al. Everolimus plus octreotide long-acting repeatable for the treatment of advanced neuroendocrine tumours associated with carcinoid syndrome (RADIANT-2): a randomised, placebo-controlled, Phase 3 study. Lancet378(9808), 2005–2012 (2011).
  • Barrett D , BrownVI, GruppSA, TeacheyDT. Targeting the PI3K/AKT/mTOR signaling axis in children with hematologic malignancies. Paediatr. Drugs14(5), 299–316 (2012).
  • Grzybowska-Izydorczyk O , SmolewskiP. mTOR kinase inhibitors as a treatment strategy in hematological malignancies. Future Med. Chem.4(4), 487–504 (2012).
  • Hernandez G , LalH, FidalgoMet al. A novel cardioprotective p38-MAPK/mTOR pathway. Exp. Cell Res.317(20), 2938–2949 (2011).
  • Sinha SS , PhamMX, VagelosRHet al. Effect of rapamycin therapy on coronary artery physiology early after cardiac transplantation. Am. Heart J.155(5), 889.e1–6 (2008).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.