66
Views
0
CrossRef citations to date
0
Altmetric
Review

Progress With Optogenetic Functional Mri and Its Translational Implications

&
Pages 691-700 | Published online: 28 Oct 2013

References

  • Alivisatos AP , ChunMY, ChurchGM, GreenspanRJ, RoukesML, YusteR. The brain activity map project and the challenge of functional connectomics. Neuron74(6), 970–974 (2012).
  • Bohland JW , WuCZ, BarbasHet al. A proposal for a coordinated effort for the determination of brainwide neuroanatomical connectivity in model organisms at a mesoscopic scale. PLoS Comput. Biol.5(3), e1000334 (2009).
  • Sporns O . The human connectome: a complex network. Ann. NY Acad. Sci.1224, 109–125 (2011).
  • Briggman KL , DenkW. Towards neural circuit reconstruction with volume electron microscopy techniques. Curr. Opin. Neurobiol.16(5), 562–570 (2006).
  • Wilt BA , BurnsLD, HoETW, GhoshKK, MukamelEA, SchnitzerMJ. Advances in light microscopy for neuroscience. Ann. Rev. Neurosci.32, 435–506 (2009).
  • Stosiek C , GaraschukO, HolthoffK, KonnerthA. In vivo two-photon calcium imaging of neuronal networks. Proc. Natl Acad. Sci. USA100(12), 7319–7324 (2003).
  • Chanda B , BlunckR, FariaLC, SchweizerFE, ModyI, BezanillaF. A hybrid approach to measuring electrical activity in genetically specified neurons. Nat. Neurosci.8(11), 1619–1626 (2005).
  • Scanziani M , HausserM. Electrophysiology in the age of light. Nature461(7266), 930–939 (2009).
  • Burns SP , SritharanD, JounyCet al. A network analysis of the dynamics of seizure. Conf. Proc. IEEE Eng. Med. Biol. Soc.2012, 4684–4687 (2012).
  • Peyron R , FaillenotI, PomaresFB, Le Bars D, Garcia-Larrea L, Laurent B. Mechanical allodynia in neuropathic pain. Where are the brain representations located? A positron emission tomography (PET) study. Eur. J. Pain17(9), 1327–1337 (2013).
  • Kringelbach ML , HansenPC, GreenAL, AzizTZ. Using magnetoencephalography to elucidate the principles of deep brain stimulation. MEG: an Introduction to Methods. Oxford University Press, NY, USA, 403–423 (2010).
  • Yeo BTT , KrienenFM, SepulcreJet al. The organization of the human cerebral cortex estimated by intrinsic functional connectivity. J. Neurophysiol.106(3), 1125–1165 (2011).
  • Greicius MD , SrivastavaG, ReissAL, MenonV. Default-mode network activity distinguishes Alzheimer‘s disease from healthy aging: evidence from functional MRI. Proc. Natl Acad. Sci. USA101(13), 4637–4642 (2004).
  • Huang C , TangC, FeiginAet al. Changes in network activity with the progression of Parkinson‘s disease. Brain130(Pt 7), 1834–1846 (2007).
  • Belmonte MK , AllenG, Beckel-MitchenerA, BoulangerLM, CarperRA, WebbSJ. Autism and abnormal development of brain connectivity. J. Neurosci.24(42), 9228–9231 (2004).
  • Liao W , ZhangZQ, PanZYet al. Default mode network abnormalities in mesial temporal lobe epilepsy: a study combining fMRI and DTI. Hum. Brain Mapp.32(6), 883–895 (2011).
  • Menon V . Large-scale brain networks and psychopathology: a unifying triple network model. Trends Cogn. Sci.15(10), 483–506 (2011).
  • Deisseroth K . Optogenetics. Nat. Methods8(1), 26–29 (2011).
  • Arenkiel BR , EhlersMD. Molecular genetics and imaging technologies for circuit-based neuroanatomy. Nature461(7266), 900–907 (2009).
  • Tye KM , DeisserothK. Optogenetic investigation of neural circuits underlying brain disease in animal models. Nat. Rev. Neurosci.13(4), 251–266 (2012).
  • Kravitz AV , FreezeBS, ParkerPRet al. Regulation of parkinsonian motor behaviours by optogenetic control of basal ganglia circuitry. Nature466(7306), 622–626 (2010).
  • Kim SY , AdhikariA, LeeSYet al. Diverging neural pathways assemble a behavioural state from separable features in anxiety. Nature496(7444), 219–223 (2013).
  • Tye KM , MirzabekovJJ, WardenMRet al. Dopamine neurons modulate neural encoding and expression of depression-related behaviour. Nature493(7433), 537–541 (2013).
  • Chaudhury D , WalshJJ, FriedmanAKet al. Rapid regulation of depression-related behaviours by control of midbrain dopamine neurons. Nature493(7433), 532–536 (2013).
  • Paz JT , DavidsonTJ, FrechetteESet al. Closed-loop optogenetic control of thalamus as a tool for interrupting seizures after cortical injury. Nat. Neurosci.16(1), 64–70 (2013).
  • Krook-Magnuson E , ArmstrongC, OijalaM, SolteszI. On-demand optogenetic control of spontaneous seizures in temporal lobe epilepsy. Nat. Commun.4, 1376 (2013).
  • Stefanik MT , MoussawiK, KupchikYMet al. Optogenetic inhibition of cocaine seeking in rats. Addict. Biol.18(1), 50–53 (2013).
  • Ahmari SE , SpellmanT, DouglassNLet al. Repeated cortico-striatal stimulation generates persistent OCD-like behavior. Science340(6137), 1234–1239 (2013).
  • Burguiere E , MonteiroP, FengG, GraybielAM. Optogenetic stimulation of lateral orbitofronto-striatal pathway suppresses compulsive behaviors. Science340(6137), 1243–1246 (2013).
  • Yizhar O , FennoLE, PriggeMet al. Neocortical excitation/inhibition balance in information processing and social dysfunction. Nature477(7363), 171–178 (2011).
  • Famm K , LittB, TraceyKJ, BoydenES, SlaouiM. Drug discovery: a jump-start for electroceuticals. Nature496(7444), 159–161 (2013).
  • Lee JH , DurandR, GradinaruVet al. Global and local fMRI signals driven by neurons defined optogenetically by type and wiring. Nature465(7299), 788–792 (2010).
  • Lee JH . Informing brain connectivity with optogenetic functional magnetic resonance imaging. Neuroimage62(4), 2244–2249 (2012).
  • Gerits A , FarivarR, RosenBR, WaldLL, BoydenES, VanduffelW. Optogenetically induced behavioral and functional network changes in primates. Curr. Biol.22(18), 1722–1726 (2012).
  • Boyden ES , ZhangF, BambergE, NagelG, DeisserothK. Millisecond-timescale, genetically targeted optical control of neural activity. Nat. Neurosci.8(9), 1263–1268 (2005).
  • Ranck JB . Which elements are excited in electrical stimulation of mammalian central nervous system: a review. Brain Res.98(3), 417–440 (1975).
  • Diester I , KaufmanMT, MogriMet al. An optogenetic toolbox designed for primates. Nat. Neurosci.14(3), 387–397 (2011).
  • Gerits A , VanduffelW. Optogenetics in primates: a shining future? Trends Genet.29(7), 403–411 (2013).
  • Zhang F , WangLP, BoydenES, DeisserothK. Channelrhodopsin-2 and optical control of excitable cells. Nat. Methods3(10), 785–792 (2006).
  • Han X , BoydenES. Multiple-color optical activation, silencing, and desynchronization of neural activity, with single-spike temporal resolution. PLoS ONE2(3), e299 (2007).
  • Mattis J , TyeKM, FerencziEAet al. Principles for applying optogenetic tools derived from direct comparative analysis of microbial opsins. Nat. Methods9(2), 159–172 (2012).
  • Gunaydin LA , YizharO, BerndtA, SohalVS, DeisserothK, HegemannP. Ultrafast optogenetic control. Nat. Neurosci.13(3), 387–392 (2010).
  • Berndt A , YizharO, GunaydinLA, HegemannP, DeisserothK. Bi-stable neural state switches. Nat. Neurosci.12(2), 229–234 (2009).
  • Zhang F , PriggeM, BeyriereFet al. Red-shifted optogenetic excitation: a tool for fast neural control derived from Volvox carteri. Nat. Neurosci.11(6), 631–633 (2008).
  • Busskamp V , PicaudS, SahelJA, RoskaB. Optogenetic therapy for retinitis pigmentosa. Gene Ther.19(2), 169–175 (2012).
  • Chow BY , BoydenES. Optogenetics and translational medicine. Sci. Transl. Med.5(177), 177ps5 (2013).
  • Williams JC , DenisonT. From optogenetic technologies to neuromodulation therapies. Sci. Transl. Med.5(177), 177ps6 (2013).
  • Logothetis NK . Bold claims for optogenetics. Nature468(7323), E3–E4; discussion E4–E5 (2010).
  • Han X , QianX, BernsteinJGet al. Millisecond-timescale optical control of neural dynamics in the nonhuman primate brain. Neuron62(2), 191–198 (2009).
  • Desai M , KahnI, KnoblichUet al. Mapping brain networks in awake mice using combined optical neural control and fMRI. J. Neurophysiol.105(3), 1393–1405 (2011).
  • Kahn I , DesaiM, KnoblichUet al. Characterization of the functional MRI response temporal linearity via optical control of neocortical pyramidal neurons. J. Neurosci.31(42), 15086–15091 (2011).
  • Domingos AI , VaynshteynJ, VossHUet al. Leptin regulates the reward value of nutrient. Nat. Neurosci.14(12), 1562–1568 (2011).
  • Abe Y , SekinoM, TerazonoYet al. Opto-fMRI analysis for exploring the neuronal connectivity of the hippocampal formation in rats. Neurosci. Res.74(3–4), 248–255 (2012).
  • Fenno L , YizharO, DeisserothK. The development and application of optogenetics. Ann. Rev. Neurosci.34, 389–412 (2011).
  • Jazayeri M , Lindbloom-BrownZ, HorwitzGD. Saccadic eye movements evoked by optogenetic activation of primate V1. Nat. Neurosci.15(10), 1368–1370 (2012).
  • Cavanaugh J , MonosovIE, McalonanKet al. Optogenetic inactivation modifies monkey visuomotor behavior. Neuron76(5), 901–907 (2012).
  • Bittner T , FuhrmannM, BurgoldSet al. Multiple events lead to dendritic spine loss in triple transgenic Alzheimer‘s disease mice. PLoS ONE5(11), e15477 (2010).
  • Trapp BD , StysPK. Virtual hypoxia and chronic necrosis of demyelinated axons in multiple sclerosis. Lancet Neurol.8(3), 280–291 (2009).
  • Hutsler JJ , ZhangH. Increased dendritic spine densities on cortical projection neurons in autism spectrum disorders. Brain Res.1309, 83–94 (2010).
  • Fang Z , LeeJH. High-throughput optogenetic functional magnetic resonance imaging with parallel computations. J. Neurosci. Methods218(2), 184–195 (2013).
  • Le N , NyugenT, YuX, FangZ, LeeJ. Compressed sensing enabled ultra-high resolution optogenetic functional magnetic resonance imaging (ofMRI). Proc. Intl Soc. Mag. Reson. Med.20, 2051 (2012).
  • Ohliger MA , SodicksonDK. An introduction to coil array design for parallel MRI. NMR Biomed.19(3), 300–315 (2006).
  • Ekstrom LB , RoelfsemaPR, ArsenaultJT, BonmassarG, VanduffelW. Bottom-up dependent gating of frontal signals in early visual cortex. Science321(5887), 414–417 (2008).
  • Janssens T , KeilB, FarivarRet al. An implanted 8-channel array coil for high-resolution macaque MRI at 3T. Neuroimage62(3), 1529–1536 (2012).
  • Ridha BH , BarnesJ, BartlettJWet al. Tracking atrophy progression in familial Alzheimer‘s disease: a serial MRI study. Lancet Neurol.5(10), 828–834 (2006).
  • Paulsen JS , ZimbelmanJL, HintonSCet al. fMRI biomarker of early neuronal dysfunction in presymptomatic Huntington‘s Disease. AJNR Am. J. Neuroradiol.25(10), 1715–1721 (2004).
  • Lee JH . Tracing activity across the whole brain neural network with optogenetic functional magnetic resonance imaging. Front. Neuroinform.5, 21 (2011).
  • Mingozzi F , HighKA. Therapeutic in vivo gene transfer for genetic disease using AAV: progress and challenges. Nat. Rev. Genet.12(5), 341–355 (2011).
  • Weerts EM , FantegrossiWE, GoodwinAK. The value of nonhuman primates in drug abuse research. Exp. Clin. Psychopharmacol.15(4), 309–327 (2007).
  • Berger B , GasparP, VerneyC. Dopaminergic innervation of the cerebral cortex: unexpected differences between rodents and primates. Trends Neurosci.14(1), 21–27 (1991).
  • Christie IN , WellsJA, SouthernPet al. fMRI response to blue light delivery in the naive brain: implications for combined optogenetic fMRI studies. Neuroimage66C, 634–641 (2012).
  • Logothetis NK , PaulsJ, AugathM, TrinathT, OeltermannA. Neurophysiological investigation of the basis of the fMRI signal. Nature412(6843), 150–157 (2001).
  • Logothetis NK , PfeufferJ. On the nature of the BOLD fMRI contrast mechanism. Magn. Reson. Imaging22(10), 1517–1531 (2004).
  • Logothetis NK . What we can do and what we cannot do with fMRI. Nature453(7197), 869–878 (2008).
  • Harel N , LeeSP, NagaokaT, KimDS, KimSG. Origin of negative blood oxygenation level-dependent fMRI signals. J. Cereb. Blood Flow Metab.22(8), 908–917 (2002).
  • Schridde U , KhubchandaniM, MotelowJE, SanganahalliBG, HyderF, BlumenfeldH. Negative BOLD with large increases in neuronal activity. Cereb. Cortex18(8), 1814–1827 (2008).
  • Shih YY , ChenCC, ShyuBCet al. A new scenario for negative functional magnetic resonance imaging signals: endogenous neurotransmission. J. Neurosci.29(10), 3036–3044 (2009).
  • Heeger DJ , HukAC, GeislerWS, AlbrechtDG. Spikes versus BOLD: what does neuroimaging tell us about neuronal activity? Nat. Neurosci.3(7), 631–633 (2000).
  • Arthurs OJ , WilliamsEJ, CarpenterTA, PickardJD, BonifaceSJ. Linear coupling between functional magnetic resonance imaging and evoked potential amplitude in human somatosensory cortex. Neuroscience101(4), 803–806 (2000).
  • Kahn I , KnoblichU, DesaiMet al. Optogenetic drive of neocortical pyramidal neurons generates fMRI signals that are correlated with spiking activity. Brain Res.1511, 33–45 (2013).
  • Scott NA , MurphyTH. Hemodynamic responses evoked by neuronal stimulation via channelrhodopsin-2 can be independent of intracortical glutamatergic synaptic transmission. PLoS ONE7(1), e29859 (2012).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.