50
Views
0
CrossRef citations to date
0
Altmetric
Review

Optimizing Mouse Models of Neurodegenerative Disorders: Are Therapeutics In Sight?

&
Pages 67-75 | Published online: 16 Dec 2013

References

  • Justice MJ , SiracusaLD, StewartAF. Technical approaches for mouse models of human disease. Dis. Model Mech.4(3), 305–310 (2011).
  • Wilkins HM , BouchardRJ, LorenzonNM, LinsemanDA. Poor correlation between drug efficacies in the mutant SOD1 mouse model versus clinical trials of ALS necessitates the development of novel animal models for sporadic motor neuron disease. In: Horizons in Neuroscience Research. CostaA, VillalbaE(Eds) . Nova Science Publishers, Inc., NY, USA (2011).
  • Gordon P , CorciaP, MeiningerV. New therapy options for amyotrophic lateral sclerosis. Expert Opin. Pharmacother.14(14), 1907–1917 (2013).
  • Benatar M . Lost in translation: treatment trials in the SOD1 mouse and in human ALS. Neurobiol. Dis.26(1), 1–13 (2007).
  • Landis SC , AmaraSG, AsadullahKet al. A call for transparent reporting to optimize the predictive value of preclinical research. Nature490(7419), 187–191 (2012).
  • Lefebvre S , BurglenL, ReboulletSet al. Identification and characterization of a spinal muscular atrophy-determining gene. Cell80(1), 155–165 (1995).
  • Lefebvre S , BurletP, LiuQet al. Correlation between severity and SMN protein level in spinal muscular atrophy. Nat. Genet.16(3), 265–269 (1997).
  • Michaud M , ArnouxT, BielliSet al. Neuromuscular defects and breathing disorders in a new mouse model of spinal muscular atrophy. Neurobiol. Dis.38(1), 125–135 (2010).
  • Le TT , PhamLT, ButchbachMEet al. SMNDelta7, the major product of the centromeric survival motor neuron (SMN2) gene, extends survival in mice with spinal muscular atrophy and associates with full-length SMN. Hum. Mol. Genet.14(6), 845–857 (2005).
  • Hsieh-Li HM , ChangJG, JongYJet al. A mouse model for spinal muscular atrophy. Nat. Genet.24(1), 66–70 (2000).
  • Campuzano V , MonterminiL, MoltoMDet al. Friedreich‘s ataxia: autosomal recessive disease caused by an intronic GAA triplet repeat expansion. Science271(5254), 1423–1427 (1996).
  • Al-Mahdawi S , PintoRM, RuddleP, CarrollC, WebsterZ, PookM. GAA repeat instability in Friedreich ataxia YAC transgenic mice. Genomics84(2), 301–310 (2004).
  • Miranda CJ , SantosMM, OhshimaKet al. Frataxin knockin mouse. FEBS Lett.512(1–3), 291–297 (2002).
  • Pandolfo M . The molecular basis of Friedreich ataxia. Adv. Exp. Med. Biol.516, 99–118 (2002).
  • Pook MA , Al-MahdawiS, CarrollCJet al. Rescue of the Friedreich‘s ataxia knockout mouse by human YAC transgenesis. Neurogenetics3(4), 185–193 (2001).
  • Perdomini M , HickA, PuccioH, PookMA. Animal and cellular models of Friedreich ataxia. J. Neurochem.126(Suppl. 1), S65–S79 (2013).
  • Rosen DR , SiddiqueT, PattersonDet al. Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature362(6415), 59–62 (1993).
  • Gurney ME , PuH, ChiuAYet al. Motor neuron degeneration in mice that express a human Cu,Zn superoxide dismutase mutation. Science264(5166), 1772–1775 (1994).
  • Tsao W , JeongYH, LinSet al. Rodent models of TDP-43: recent advances. Brain Res.1462, 26–39 (2012).
  • Mancuso R , OlivanS, ManceraPet al. Effect of genetic background on onset and disease progression in the SOD1-G93A model of amyotrophic lateral sclerosis. Amyotroph. Lateral Scler.13(3), 302–310 (2012).
  • Butchbach ME , SinghJ, ThorsteinsdottirMet al. Effects of 2,4-diaminoquinazoline derivatives on SMN expression and phenotype in a mouse model for spinal muscular atrophy. Hum. Mol. Genet.19(3), 454–467 (2010).
  • Narver HL , KongL, BurnettBGet al. Sustained improvement of spinal muscular atrophy mice treated with trichostatin A plus nutrition. Ann. Neurol.64(4), 465–470 (2008).
  • Carlson DF , FahrenkrugSC, HackettPB. Targeting DNA with fingers and TALENs. Mol. Ther. Nucleic Acids1, e3 (2012).
  • Jinek M , ChylinskiK, FonfaraI, HauerM, DoudnaJA, CharpentierE. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science337(6096), 816–821 (2012).
  • Chio A , CalvoA, MogliaC, MazziniL, MoraG. Phenotypic heterogeneity of amyotrophic lateral sclerosis: a population based study. J. Neurol. Neurosurg. Psychiatry82(7), 740–746 (2011).
  • Scott S , KranzJE, ColeJet al. Design, power, and interpretation of studies in the standard murine model of ALS. Amyotroph. Lateral Scler.9(1), 4–15 (2008).
  • Heiman-Patterson TD , DeitchJS, BlankenhornEPet al. Background and gender effects on survival in the TgN(SOD1-G93A)1Gur mouse model of ALS. J. Neurol. Sci.236(1–2), 1–7 (2005).
  • Wooley CM , XingS, BurgessRW, CoxGA, SeburnKL. Age, experience and genetic background influence treadmill walking in mice. Physiol. Behav.96(2), 350–361 (2009).
  • Hatzipetros T , BogdanikLP, TassinariVRet al. Prp-TDP43A315T mice develop progressive neurodegeneration in the myenteric plexus of the colon without exhibiting key features of ALS. Brain Res. doi:10.1016/j.brainres.2013.10.013 (2013) (Epub ahead of print).
  • Lutz CM , KariyaS, PatruniSet al. Postsymptomatic restoration of SMN rescues the disease phenotype in a mouse model of severe spinal muscular atrophy. J. Clin. Invest.121(8), 3029–3041 (2011).
  • Foust KD , WangX, McgovernVLet al. Rescue of the spinal muscular atrophy phenotype in a mouse model by early postnatal delivery of SMN. Nat. Biotechnol.28(3), 271–274 (2010).
  • Passini MA , BuJ, RoskelleyEMet al. CNS-targeted gene therapy improves survival and motor function in a mouse model of spinal muscular atrophy. J. Clin. Invest.120(4), 1253–1264 (2010).
  • Nurputra DK , LaiPS, HarahapNIet al. Spinal muscular atrophy: from gene discovery to clinical trials. Ann. Hum. Genet. doi:10.1111/ahg.12031 (2013) (Epub ahead of print).
  • Osborne M , GomezD, FengZet al. Characterization of behavioral and neuromuscular junction phenotypes in a novel allelic series of SMA mouse models. Hum. Mol. Genet.21(20), 4431–4447 (2012).
  • Cobb MS , RoseFF, RindtHet al. Development and characterization of an SMN2-based intermediate mouse model of spinal muscular atrophy. Hum. Mol. Genet.22(9), 1843–1855 (2013).
  • Esmaeili MA , PanahiM, YadavS, HenningsL, KiaeiM. Premature death of TDP-43 (A315T) transgenic mice due to gastrointestinal complications prior to development of full neurological symptoms of amyotrophic lateral sclerosis. Int. J. Exp. Pathol.94(1), 56–64 (2013).
  • Guo Y , WangQ, ZhangKet al. HO-1 induction in motor cortex and intestinal dysfunction in TDP-43 A315T transgenic mice. Brain Res.1460, 88–95 (2012).
  • Kong L , WangX, ChoeDWet al. Impaired synaptic vesicle release and immaturity of neuromuscular junctions in spinal muscular atrophy mice. J. Neurosci.29(3), 842–851 (2009).
  • Park GH , Maeno-HikichiY, AwanoT, LandmesserLT, MonaniUR. Reduced survival of motor neuron (SMN) protein in motor neuronal progenitors functions cell autonomously to cause spinal muscular atrophy in model mice expressing the human centromeric (SMN2) gene. J. Neurosci.30(36), 12005–12019 (2010).
  • Bevan AK , HutchinsonKR, FoustKDet al. Early heart failure in the SMNDelta7 model of spinal muscular atrophy and correction by postnatal scAAV9-SMN delivery. Hum. Mol. Genet.19(20), 3895–3905 (2010).
  • Heier CR , SattaR, LutzC, DidonatoCJ. Arrhythmia and cardiac defects are a feature of spinal muscular atrophy model mice. Hum. Mol. Genet.19(20), 3906–3918 (2010).
  • Shababi M , HabibiJ, YangHT, ValeSM, SewellWA, LorsonCL. Cardiac defects contribute to the pathology of spinal muscular atrophy models. Hum. Mol. Genet.19(20), 4059–4071 (2010).
  • Shababi M , LorsonCL, Rudnik-SchonebornSS. Spinal muscular atrophy: a motor neuron disorder or a multi-organ disease? J. Anat. doi:10.1111/joa.12083 (2013) (Epub ahead of print).
  • Araujo A , AraujoM, SwobodaKJ. Vascular perfusion abnormalities in infants with spinal muscular atrophy. J. Pediatr.155(2), 292–294 (2009).
  • Shababi M , HabibiJ, MaL, GlascockJJ, SowersJR, LorsonCL. Partial restoration of cardio-vascular defects in a rescued severe model of spinal muscular atrophy. J. Mol. Cell. Cardiol.52(5), 1074–1082 (2012).
  • Arnold WD , BurghesAH. Spinal muscular atrophy: the development and implementation of potential treatments. Ann. Neurol.74(3), 348–362 (2013).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.