649
Views
30
CrossRef citations to date
0
Altmetric
Research Article

Use of the Flory–Huggins theory to predict the solubility of nifedipine and sulfamethoxazole in the triblock, graft copolymer Soluplus

&
Pages 446-455 | Received 29 Mar 2015, Accepted 15 Jul 2015, Published online: 12 Aug 2015

References

  • Hughey JR, Keen JM, Brough C, et al. Thermal processing of a poorly water-soluble drug substance exhibiting a high melting point: the utility of KinetiSol® dispersing. Int J Pharm 2011;419:222–30
  • Murdande SB, Pikal MJ, Shanker RM, Bogner RH. Solubility advantage of amorphous pharmaceuticals, Part 3: is maximum solubility advantage experimentally attainable and sustainable? J Pharm Sci 2011;100:4349–56
  • Sun Y, Tao J, Zhang GGZ, Yu L. Solubilities of crystalline drugs in polymers: an improved analytical method and comparison of solubilities of indomethacin and nifedipine in PVP, PVP/VA, and PVAc. J Pharm Sci 2010;99:4023–31
  • Lin D, Huang Y. A thermal analysis method to predict the complete phase diagram of drug–polymer solid dispersions. Int J Pharm 2010;399:109–15
  • Wegiel LA, Mauer LJ, Edgar KJ, Taylor LS. Crystallization of amorphous solid dispersions of resveratrol during preparation and storage-Impact of different polymers. J Pharm Sci 2013;102:171–84
  • Leuner C, Dressman J. Improving drug solubility for oral delivery using solid dispersions. Eur J Pharm Biopharm 2000;50:47–60
  • Djuris J, Nikolakakis I, Ibric S, et al. Preparation of carbamazepine-Soluplus® solid dipersions by hot-melt extrusion, and prediction of drug-polymer miscibility by thermodynamic model fitting. Eur J Pharm Biopharm 2013;84:228–37
  • Bennett RC, Brough C, Miller DA, et al. Preparation of amorphous solid dispersions by rotary evaporation and KinetiSol Dispersing: approaches to enhance solubility of a poorly water-soluble gum extract. Drug Dev Ind Pharm 2015;41:382–97
  • Chen C, Kie X, Li Y, et al. Influence of different polymers on crystallization tendency and dissolution behavior of cilnidipine in solid dispersions. Drug Dev Ind Pharm 2014;40:441–51
  • Pandya P, Gattani S, Jain P, et al. Co-solvent evaporation method for enhancement of solubility and dissolution rate of poorly aqueous soluble drug simvastatin: in vitro-in vivo evaluation. AAPS PharmSciTech 2008;9:1247–52
  • Taylor LS, Zografi G. Spectroscopic characterization of interactions between PVP and indomethacin in amorphous molecular dispersions. Pharm Res 1997;14:1691–8
  • Song Y, Wang L, Yang P, et al. Physicochemical characterization of felodipine-kollidon VA64 amorphous solid dispersions prepared by hot-melt extrusion. J Pharm Sci 2013;102:1915–23
  • Ranzani LS, Font J, Galimany F, et al. Enhanced in vivo absorption of CB-1 antabonist in rats via solid solutions prepared by hot melt extrusion. Drug Dev Ind Pharm 2011;37:694–701
  • Forster A, Hempenstall J, Tucker I, Rades T. The potential of small-scale fusion experiments and the Gordon-Taylor Equation to predict the suitability of drug/polymer blends for melt extrusion. Drug Dev Ind Pharm 2001;27:549–60
  • Tian Y, Booth J, Meehan E, et al. Construction of drug–polymer thermodynamic phase diagrams using Flory–Huggins Interaction Theory: identifying the relevance of temperature and drug weight fraction to phase separation within solid dispersions. Mol Pharm 2012;10:236–48
  • Marsac PJ, Shamblin SL, Taylor LS. Theoretical and practical approaches for prediction of drug–polymer miscibility and solubility. Pharm Res 2006;23:2417–26
  • Mahieu A, Willart J-F, Dudognon E, et al. A new protocol to determine the solubility of drugs into polymer matrixes. Mol Pharm 2012;10:560–6
  • Morgen M, Bloom C, Beyerinck R, et al. Polymeric nanoparticles for increased oral bioavailability and rapid absorption using celecoxib as a model of a low-solubility, high-permeability drug. Pharm Res 2012;29:427–40
  • Weuts I, Van Dycke F, Voorspoels J, et al. Physicochemical properties of the amorphous drug, cast films, and spray dried powders to predict formulation probability of success for solid dispersions: etravirine. J Pharm Sci 2011;100:260–74
  • Huggins ML. The viscosity of dilute solutions of long-chain molecules. IV. Dependence on concentration. J Am Chem Soc 1942;64:2716–18
  • Flory PJ. Thermodynamics of high polymer solutions. J Chem Phys 1942;10:51–61
  • Hiemenz PC, Lodge TP. Polymer chemistry. 2nd edn. Boca Raton (FL): CRC Press; 2007
  • Nishi T, Wang T. Melting point depression and kinetic effects of cooling on crystallization in poly(viny1idene fluoride)-poly (methyl methacrylate) mixtures. Macromolecules 1975;8:909–15
  • Marsac PJ, Li T, Taylor LS. Estimation of drug-polymer miscibility and solubility in amorphous solid dispersions using experimentally determined interaction parameters. Pharm Res 2009;26:139–51
  • Zhao Y, Inbar P, Chokshi HP, et al. Prediction of the thermal phase diagram of amorphous solid dispersions by Flory-Huggins theory. J Pharm Sci 2011;100:3196–207
  • Janssens S, van den Mooter G. Review: physical chemistry of solid dispersions. J Pharm Pharmacol 2009;61:1571–86
  • Huang Y, Dai W-G. Fundamental aspects of solid dispersion technology for poorly soluble drugs. Acta Pharm Sin B 2014;4:18–25
  • Laitinen R, Priemel PA, Surwase S, et al. Theoretical considerations in developing amorphous solid dispersions. In: Shah N, Sandhu H, Choi DS, et al., eds. Amorphous solid dispersions: theory and practice. New York: Springer; 2014:35–90
  • Qian C, Mumby SJ, Eichinger B. Phase diagrams of binary polymer solutions and blends. Macromolecules 1991;24:1655–61
  • Qian F, Huang J, Hussain MA. Drug–polymer solubility and miscibility: stability consideration and practical challenges in amorphous solid dispersion development. J Pharm Sci 2010;99:2941–7
  • Schubert DW, Abetz V, Stamm M, et al. Composition and temperature dependence of the segmental interaction parameter in statistical copolymer/homopolymer blends. Macromolecules 1995;28:2519–25
  • Tao J, Sun Y, Zhang GZ, Yu L. Solubility of small-molecule crystals in polymers: d-Mannitol in PVP, indomethacin in PVP/VA, and nifedipine in PVP/VA. Pharm Res 2009;26:855–64
  • BASF. <Soluplus Technical Information>. 2009
  • Ali S, Langley N, Djuric D, Kolter, K. Eye on excipients. Available from: http://www.pharma-ingredients.basf.com/Soluplus/Home.aspx ingredients.basf.com/Soluplus/Home.aspx [last accessed 5 May 2013]
  • Matsuda Y, Teraoka R, Sugimoto I. Comparative evaluation of photostability of solid-state nifedipine under ordinary and intensive light irradiation conditions. Int J Pharm 1989;54:211–21
  • Bayomi MA, Abanumay KA, Al-Angary AA. Effect of inclusion complexation with cyclodextrins on photostability of nifedipine in solid state. Int J Pharm 2002;243:107–17
  • Özdemir N, Erkin J. Enhancement of dissolution rate and bioavailability of sulfamethoxazole by complexation with β-cyclodextrin. Drug Dev Ind Pharm 2012;38:331–40
  • Alhalaweh H, Alzghoul A, Kaialy W, et al. Computational predictions of glass-forming ability and crystallization tendency of drug molecules. Mol Pharm 2014;11:3123–32
  • Mahlin D, Bergström CA. Early drug development predictions of glass-forming ability and physical stability of drugs. Eur J Pharm Sci 2013;49:323–32
  • Pereira AV, Cass QB. High-performance liquid chromatography method for the simultaneous determination of sulfamethoxazole and trimethoprim in bovine milk using an on-line clean-up column. J Chromatogr B 2005;826:139–46
  • Liew CV, Chan LW, Ching AL, Heng PWS. Evaluation of sodium alginate as drug release modifier in matrix tablets. Int J Pharm 2006;309:25–37
  • Viana M, Jouannin P, Pontier C, Chulia D. About pycnometric density measurements. Talanta 2002;57:583–93
  • Yang M, Wang P, Gogos C. Prediction of acetaminophen’s solubility in poly(ethylene oxide) at room temperature using the Flory-Huggins theory. Drug Dev Ind Pharm 2013;39:102–8
  • Cheng SZ. Phase transitions in polymers: the role of metastable states. Amsterdam: Elsevier; 2008
  • Brostow W, Chiu R, Kalogeras IM, Vassilikou-Dova A. Prediction of glass transition temperatures: binary blends and copolymers. Mater Lett 2008;62:3152–5
  • Gordon M, Taylor JS. Ideal copolymers and the second-order transitions of synthetic rubbers. I. Non-crystalline copolymers. J Appl Chem 1952;2:493–500
  • Baird JA, Van Eerdenbrugh B, Taylor LS. A classification system to assess the crystallization tendency of organic molecules from undercooled melts. J Pharm Sci 2010;99:3787–806
  • Gupta SS, Meena A, Parikh T, Serajuddin ATM. Investigation of thermal and viscoelastic properties of polymers relevant to hot melt extrusion, I: polyvinylpyrrolidone and related polymers. J Excip Food Chem 2014;5:32–45
  • Schick C. Differential scanning calorimetry (DSC) of semicrystalline polymers. Anal Bioanal Chem 2009;395:1589–611
  • Simha R, Boyer RF. On a general relation involving the glass temperature and coefficients of expansion of polymers. J Chem Phys 1962;37:1003–7

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.