22
Views
5
CrossRef citations to date
0
Altmetric
Research Article

Critical Assessment of Feedstocks for Biotechnology

, &
Pages 233-285 | Published online: 27 Sep 2008

References

  • Schmid R. Die Industrie setzt hohe Erwartungen in den Einsatz biotechnischer Verfahren. Handels-blah 1983.; 225: 35
  • Bull A. T., Holt G., Lilly M. D. Biotechnology, International Trends and Perspectives. 1982; 21, OECD,Paris
  • Harnisch H., Wohner G. Die Bedeutung der Biotechnologie für die industrielle Chemie. Chem. -Ing. -Tech. 1984.; 56(6)447
  • Dellweg H. Technische Mikrobiologie, V. Symp. Versuchs- und Lehranstalt für Spiritusfabrikation und Fermentationstechnologie im Institut für Garungsgewerbe und Biotechnologie, Berlin. 1982.
  • Grünewald H. Die industrielle Biotechnologie steht vor einem entscheidenden Durchbruch. Han-delsblah 1984.; 59: 11
  • Nesemann G., Dimmling W. Technische Anwendung mikrobieller Verfahren. Chem. Ztg. 1974.; 11: 523
  • Dimmling W., Sambeth W. Einzeller Proteine (Single Cell Protein, SCP) - Ihre Herstellung und Anwendung. Forum MikrobioJ. 1981.; 4: 9
  • Dimmling W. Rohstoffe fiir Fermentationen. Starch/St'arke 1978.; 30(12)401
  • Internal information. Hoechst Marktforschung
  • Semel J., Steiner R. Nachwachsende Rohstoffe in der chemischen Industrie. Chem. Ind. (Düs-seldorf) 1983.; 35: 489
  • Fischbeck G., Haushofer H., Schroeder D., Wiebecke C. Nicht-Nahrungsmittelpflanzen Agrarspektrum, Schriftreihe des Dachverbandes, München 4, VTJA Verlagsunion Agrar. 1982.
  • Hepner L. Feasibility of producing basic chemicals by fermentations. Unitar Symposium, Göttingen 1976, Microbial Energy Conversion, H. G. Schlegel, J. Barnea. Pergamon Press, Oxford 1976; 531
  • 1981 Statistical Yearbook. United Nations, New York 1983.
  • Biotechnologie, 82, Eine Studie über Forschung, Entwicklung und Ausbildung DECHEMA, Deutsche Gesellschaft für chemisches. Apparatewesen, Frankfurt am Main 1982; 59
  • Buzinski Stärke A. Vielversprechende Rohstoffbasis der Chemie. Chem. Ind. (Düsseldorf) 1982.; 34: 505
  • Barretts de Menezes T. J. Starchy materials for alcohol fuel production. Process Biochem. 1982.; 32
  • Internal, information: Inter-Uhde. Sao Paulo
  • Olbrich H. Geschichte der Melasse, Verlag. Dr. A. Bartens, Berlin 1970.
  • Brown O. Sucrose and Molasses as feedstocks for fermentation processes, (meeting of the SCI Biotechnology Group, London, 1982). Chem. Ind. (London) 1983; 95
  • Cimerman A., Jernejc K. Zur Charakterisierung einiger jugoslawischer Melassen f4uUr die Citro-nensaureproduktion. Die Branntweinwirtschaft 1983.; 123: 243
  • Fiedler A., Jakob R., Tressl R., Bronn W. K. Überdas Vorkommen von organischen Sauren und flüchtigen stickstoffhaltigen Substanzen in verschiedenen Rübenmelassen. Die Branntweinwirtschaft 1981.; 121: 202
  • Emmerich A. Zur Zusammensetzung von Rübenmelassen. Die Branntweinwirtschaft 1983.; 123: 234
  • Dellweg H. Internal information, Institut für Gärungsgewerbe und Biotechnologie, Berlin. 1984.
  • Ilczuk Z. Attempts at improving citric fermentation on molasses solutions. Eur. J. Appi. Microbiol. Biotechnol 1983.; 17: 69
  • Weiland P., Jostmann T., Onken U. Kontinuierliche Verhefung von Molke in einem Airlift-Schlaufenreaktor. Chem. -Ing. Tech. 1984.; 56(3)244
  • Stärke als industrielle Rohstoffalternative Fakten und Perspektiven, Fachverband der Starkeindus-trie, Bonn. 1981.
  • Uhde Market Research. Uhde GmbH, D 4600 Dortmund-1
  • Hiltrup S. Gesamtkonzeption, Nachwachsende Rohstoffe, Bundesministeriums für Ernährung, Landwirtschaft und Forsten, 1983; Landwirtschaftsverlag GmbH, 4400 Miinster. 1983.
  • Swodenk W. Ethylalkohol als Rohstoff für die chemische Industrie, presented at 290 DECHEMA-Kolliquium, Frankfurt, March 13. 1983.
  • Dimmling W. Feedstocks for large scale fermentation processes. Unitax Symposium, Gottingen 1976, Microbial Energy Conversion, H. G. Schlegel, J. Barnea. Pergamon Press, Oxford 1976; 499
  • Präve P., Faust U., Sittig W., Sukatsch D. A. Handbuch der Biotechnologie. Akademische Verlagsgesellschaft, Wiesbaden 1982.
  • Internal, information, Uhde, GmbH, D 4600 Dortmund-1.
  • Ro Umpp H. Chemie Lexikon.6, Ed. Franckh'sche Verlagshandlung, Stuttgart 1966.
  • Ullmanns Encyklopädie der Technischen Chemie4th ed. Verlag Chemie, Weinheim/ Bergstr. 1975; Vol. 16
  • Ullmanns Encyklopadie der Technischen Chemie4th ed. Verlag Chemie, Weinheim/ Bergstr. 1975; Vol. 9: 248
  • Otto-Albrecht Neumüller. Auflage Franckh'sche Verlagshandlung, Stuttgart. Römpps Chemie Lexikon 1983; 8
  • Lebensmittel-Lexikon. Oetker Ceves, Verlag Bielefeld, Dr. 1977.; 8
  • Henstock A. E. Availability and demand patterns for renewable resources: urban and industrial wastes. Future Sources of Organic Raw Materials, WN Chemra, I. St. Pierre, E. L.G.R. Brown. Pergamon Press, New York 1978; 63
  • Ghose T. K. Chemical and biochemical reactions: balance of energy inputs and reaction time. CHEMRAWN III Conference Working Papers, The Hague, June 25 to 29, 1984
  • Bushell M. E. Application of the principles of industrial microbiology to biotechnology. Principles of Biotechnology, A. Wiseman. Surrey University Press. 1983.
  • Ministry, of Industry and Commerce, Assessment of Brazil's National Alcohol Program. Secretariat of Industry and Commerce, BrasiliaBrazil 1981.
  • Earthscan. Fuel Alcohol-Energy and Environment in a Hungry World, Earthscan, London 1982.
  • Barretts de Menezes T. J. Starchy materials for alcohol fuel production. Proc. Biochem. 1982.; 32
  • Scheller W. A., Volkswagen A. G., Wolfsburg. The production of alcohol by the fermentation of grain. Int. Symp. Alcohol Fuel Technol 1977.; Vol. 3
  • Kardos N., Mulcock A. P. Ethanol from Agricultural Crops. A Literature Survey, Rep. No. 28, New Zealand Energy Research and Development Committee. University of Auckland, New Zealand 1977.
  • Drawert F. Biokonversion. 2. BMFT-StatusseminarBioverfahrenstechnik. Berlin 1979.
  • Janshekar H., Fiechter A. Lignin: biosynthesis, application, and biodegradation. Adv. Biochem. Eng./Biotechnol. 1983.; 27: 119
  • Luck G., Dellweg H. Formation of cellulases and degradation of cellulose by several fungi. J. Ferment. Technol. 1978.; 56: 273
  • Wilke C. R., Yang R. D., Sciamanna A. F., Freitas K. P. Raw materials evaluation and process development studies for conversion of biomass to sugars and ethanol. Biotechnol. Bioeng. 1981.; 23: 163
  • Guidoboni G. E. Continuous fermentation systems for alcohol production. Enzyme Microb. Technol. 1984.; 6, 194
  • Misselhorn K., Dellweg H. Alcohol production from sugar and starch materials. Colloque Society Francaise Microbiology. Reims 1981; 47
  • Kosaric N., Russel D. C., Ng M.I., Stewart G. C. Ethanol production by fermentation: an alternative liquid fuel. Adv. Appl. Microbiol. 1980.; 26: 148
  • Parisi F. Energy balances for ethanol as a fuel. Adv. Biochem. Eng./Biotechnol. 1983.; 28: 41
  • Bioenergy. Adv. Biochem. Eng, A. Fiechter. Springer-Verlag, New York 1981; 20
  • Buchta K. Primarmetabolite. Handbuch der Biotechnologie, P. Präve, U. Faust, W. Sittig, D. A. Sukatsch. Akad. Verlagsgesellschaft, Wiesbaden 1982; 349
  • Vijaikishore P., Karantk N. G. Glycerin production from glucose in alkaline medium. Biotechnol. Lett. 1984.; 6(2)103
  • Shu P., Hohnson M. J. The interdependence of medium constituents in citric acid production by submerged fermentation. J. Bacteriol. 1948.; 56: 577
  • Röhr M., Kubicek Ch. PI., Kominek J. Citric acid. Biotechnology, H. Dellweg. Verlag Chemie, Basel. 1983; Vol. 3
  • Perlman D., Sih C. J. Fungal synthesis of citric, fumaric, and itaconic acids. Progress in Industrial Microbiology, D. J. D. Hockenhull. Springer-Verlag, New York 1960; Vol. 2: 169
  • Leopold H., Valtr Z. Zur Wirkung des Kaliumhexacyanoferrats (II) bei der Herstellung von Melasselosungen für die Citronensaure-Garung. V. Mitt. Neue Kochverfahren und ihre Auswirkung auf die Dosierung des Hexacyanoferrats (II) und die Citronensaure-Ausbeuten. Nahrung 1969.; 13: 11
  • Chaudhary A. Q., Pirt S. J. The influence of metal-complexing agents on citric acid production by. Aspergillus niger, J. Gen. Microbiol. 1969.; 43, 71
  • Kapoov V. K., Chaudhary K., Tauro P. Citric acid. Prescott and Dunn's: Industrial Microbiology4th ed. AVI, Westport, Conn. 1982; 707
  • Leopold H., Fencl Z. Stüdie über die Biosynthese der Citronensäure. III. Die Melasse als Roh-stoff der Citronensäuregärung nach dem Oberflächenverfahren. Chem. Techn. 1958.; 10: 507
  • Abou-Zeid A. A., Ashy M. A. Production of citric acid: a review. Agric. Wastes 1984.; 9: 51
  • Miall M., Parker G. F. Continuous preparation of citric acid by. Candida lipolytica 1975., German Patent 2429224
  • Ebner Essig H. Ullmanns Encyklop'adie der technischen Chemie 1976; 41, 4. Auflage, Band 11,.
  • Ebner H., Follmann H. Acetic acid. Biotechnology, H. Dellweg. Verlag Chemie, Basel 1983; Vol. 3: 386
  • Buchta K. Lactic acid. Biotechnology, H. Dellweg. Verlag Chemie, Basel 1983; Vol. 3: 409
  • Yamada K., Yagi O. Verfahren zur Herstellung von Milchs'aure. German Patent Application 1947038 1979.
  • Childs C. G., Welsby B. Continuous lactic fermentation. Process Biochem. 1966.; 1: 441
  • Stenroos S.-L., Linko Y.-Y., Linko P. Production of L-lactic-acid with immobilized. Lactobacillus delbrueckii, Biotechnol. Lett. 1982.; 4: 159
  • Hastings J. J. H. Aceton-butylalcohol fermentation. Economic Microbiology 2, Primary Products of Metabolism, A. H. Rose. Academic Press, London 1978; 31
  • Fond O., Petitdemange E., Petitdemange H., Gay R. Effect of glucose flow on the acetone butanol fermentation. Biotechnol. Lett. 1984.; 6: 13
  • Monot F., Martin J. -R., Petitdemange H., Gay R. Aceton and butanol production by Clostridium acetobutylicum in a synthetic medium. Appl. Environ. Microbiol. 1982.; 44: 1318
  • Shoutens G. H., Nieuwenhuizen M. C. H., Kossen N. W. F. Butanol from whey ultrafiltrate: batch experiments with. Clostridium beyerinckii LMD 27.6, Appl. Microbiol. Biotechnol. 1984.; 19: 203
  • Gibbs D. F. The rise and fall (.and rise?) of acetone/butanol fermentation. Trends Biotechnol. 1983.; 1: 12
  • Yu E. K.C, Beschatelets L., Saddler J. N. The bioconversion of wood hydrolyzates to butanol and butanediol. Biotechnol. Lett. 1984.; 6: 327
  • Nayayama K. Amino acids. Prescott and Dunn's: Industrial Microbiology, G. Reed. AVI, Westport, Conn. 1982; 748
  • Abe S. Amino acid-produring microorganisms: variety and classification. The Microbial Production of Amino Acids, K. Yamada, S. Kinoshita, T. Tsunoda, K. Aida. Kodansha Ltd., y 1972; 3
  • Kanzaki T., Isobe K., Okazaki H., Fukuda H. L-glutamic acid fermentation. VII. Relation between biotin and oleic acid. Agric. Biol. Chem. 1969.; 33: 771
  • Shiio I., Otsuka S., Katsuya N. Cellular permeability and extracellular formation of glutamic acid. Brevibacterium flavum, J. Biochem. (Tokyo) 1963.; 53: 333
  • Takinami K., Okada H., Tsunoda T. Biochemical effects of fatty acid and its derivatives on L-glumatic acid fermentation, h. Effective chemical structure of fatty acid derivatives on the accumulation of L-glutamic acid in biotin sufficient medium. Agric. Biol. Chem. 1964.; 28: 114
  • Kamirgo T., Parthasarathy S., Numa S. Evidence that acyl coenzyme A synthetase activity is required for repression of yeast acetyl coenzyme A carboxylase by exogenuous fatty acids. Proc. Natl. Acad. Sci. U.S.A. 1976.; 73: 386
  • Nakao Y., Kikushi M., Suzuki M., Doi M. Microbial production of L-glutamic acid from n-paraffins by glycerol auxotrophs. Agric. Biol. Chem. 1970.; 34: 1875
  • Nakao Y., Kanamura T., Kikuchi M., Yamatodani S. Extracellular accumulation of phospholipids, UDP-N-acetylhexosamine derivatives and L-glutamic acid by penicillin-treated. Corynebac-terium alkanolyticum, Agric. Biol. Chem. 1973.; 37: 2399
  • Nakao Y., Kikuchi M., Suzuki M., Doi M. Microbial production of L-glutamic acid by glycerol auxotrophs. I. Induction of glycerol auxotrophs and production of L-glutamic acid from n-paraffins. Agric. Biol. Chem. 1972.; 36: 490
  • Tosoka O., Enei H., Hirose Y. The production of L-lysine by fermentation. Trends Biotechnol. 1983.; 1: 70
  • Morinaga Y., Yamanaka S., Takinami K. L-Serin production by temperature sensitive mutants of methanol-utilizing bacterium Pscudomonas MS31. Agric. Biol. Chem. 1981.; 45: 1425
  • Izumi Y., Takizawa M., Tani Y., Yamada H. L-Serine production by resting cells of a methanol-utilizing bacterium. J. Ferment. Technol. 1982.; 60: 269
  • Morinaga Y., Tami Y., Yamada H. L-Methionine production by ethionine-resistant mutants of a facultative methylotroph Pseudomonas FM 518. Agric. Biol. Chem. 1982.; 46: 473
  • Yoshida H., Araki K., Nakayama K. N-acetylglutamate-acetylornithine acetyltransferase-de-ficient Arginine Auxotroph of. Corynebacterium glutamicum, Agric. Biol. Chem. 1979.; 43: 1899
  • Nyeste L., Pecs M., Sevella B., Hollo J. Production of L-tryptophan by microbial processes. Adv. Biochem. Eng./Biotechnol. 1983.; 26: 175
  • Soda K., Tanaka H., Esaki N. Amino acids. Biotechnology, H. Dellweg. Verlag Chemie, Basel 1982; Vol. 3: 479
  • Kissumi M., Kato J., Komatsubara S., Chibata I. Increase in isoleucin accumulation by o-aminobutyric acid-resistant mutants of. Serratia marcescens, Appl. Environ. Microbiol. 1970.; 21: 569
  • Matsushima H. Studies on the micorobial production of L-isoIeucine. J. Ferment. Technol. 1976.; 54: 340
  • Tanaka Y., Araki K., Nakayama K. Stimulation of microbial conversion of glycin into L-serine by magnesium phosphate. J. Ferment. Technol. 1980.; 58: 189
  • Yamada K., Kinoshita S., Tsunoda T., Aida K. The Microbial Production of Amino Acids. John Wiley & Sons, New York 1972.
  • Swartz R. W. The use of economic analysis of penicillin G manufacturing costs in establishing priorities for fermentation process improvement. Ann. Rep. Ferment. Proc. 1979.; 3: 75
  • McCann E. P., Calam C. T. The metabolism of Penicillium chrysogenum and the production of penicillin using a high yielding strain at different temperatures. J. Appl. Chem. Biotechnol. 1972.; 22: 1201
  • Calam C. T., Russell D. W. Microbial aspects of fermentation processes development. J. Appl. Chem. Biotechnol. 1973.; 23: 225
  • Heim J., Yong-Qiang Shen, Wolfe S., Demain A. L. Regulation of isopenicillin N synthetase and deacetoxycephalosporin C synthetase by carbon source during the fermentation of. Cephalospo-rium acremonium, Appl. Microbiol. Biotechnol. 1984.; 19: 232
  • Mendelowitz S., Aharonowitz Y. Regulation of cephamycin C synthesis, aspartokinase, dihy-drodipicolinic acid synthetase and homoserin dehydrogenase by aspartic acid family amino acids. Streptomyces clavuligerus, Antimicrob. Agents Chemother. 1982.; 21: 74
  • Lee K. M., Ryu D. D.-Y. Studies on the cephalosporin C biosynthesis by fermentation. Arch. Pharm. Res. 1979.; 2: 79
  • Pirt S. J., Righelato R. C. Effect of growth rate on the synthesis of penicillin by Penicillium chrysogenum in batch and chemostat cultures. Appl. Microbiol. 1967.; 15: 1284
  • Mou D. -G. Biochemical engineering and β-lactam antibiotics production. Antibiotics Containing the Beta-Lactam Structure, Part I, A. L. Demain, N. A. Solomon. Springer-Verlag, New York 1983; 255
  • Küenzi M. T. Regulation of cephalosporin synthesis in Cephalosporium acremoniumby phosphate and glucose. Arch. Microbiol. 1980.; 128: 78
  • Perlman D. Microbial production of antibiotics. Microbial Technology2nd ed., H. J. Peppier, D. Perlman. Springer-Verlag, New York 1979; 241
  • Konig B., Schuegerl K. Strategies for penicillin fermentation in tower-loop reactors. Biotechnol. Bioeng. 1982.; 24: 259
  • Huber F. M., Tietz A. J. Defined media strategies for the biosynthesis of cephalosporin C. Biotechnol. Lett. 1983.; 5: 385
  • Sawada Y., Baldwin J. E., Singh P. D., Solomon N. A., Demain A. L. Cell-free cyclization of d-(L-α-aminoadipyI)-L-cysteinyl-D-valin to isopenicillin N. Antimicrob. Agents Chemother. 1980.; 18: 465
  • Hidy P. H. U.S. Patent 1971.; 3: 580–811
  • Hidy P. H., Baldwin R. S., Greasham R. L., Keith C. L., McMullen J. R. Zearalenone and some derivatives: production and biological activities. Adv. Appl. Microbiol. 1977.; 22: 59
  • Maddox I. S., Richert S. H. Production of gibberellinic acid using a dairy waste as the basal medium. Appl. nviron. Microbiol. 1977.; 33: 201
  • Rehm H. -J. Industrielle Mikrobiologie 2nd ed. Springer-Verlag, New York 1980.
  • Jefferys E. G. The gibberellin fermentation. Adv. Appl. Microbiol. 1970.; 13: 283
  • Kusel J. P., Fa Y. H., Demain A. L. Betaine stimulation of vitamin B12 biosynthesis in Pseudomonas denitrificans may be mediated by an increase in activity of aminolaevulanic acid synthase. J. Gen. Microbiol. 1983.; 130: 835
  • Kulhanek M. Fermentation processes employed in vitamin C syntheses. Adv. Appl. Microbiol. 1970.; 12: 11
  • Perlman D. Microbial processes for riboflavin production. Microbial Technology2nd ed., H.-J. Peppier, D. Perlman. Academic Press, London 1979; Vol. 1: 521
  • Ninet L., Renault J. Carotinoids. Microbial Technology2nd ed., H. Peppier, J. D. Perlman. Academic Press, London 1979; Vol. 1: 529
  • Kelleher J. Ergot alkaloid fermentation. Adv. Appl. Microbiol. 1969.; 11: 211
  • Mantle P. G. Industrial explotation of ergot fungi. The Filamentous Fungi, J. E. Smith, D. R. Berry. Edward Arnold, London 1975; Vol. 1: 281
  • Aunstrup K. Enzymes of industrial interest: traditional products. Ann. Rep. Ferment. Proc 1983.; Vol 6: 175
  • Street, Large scale industrial enzyme production. Crit. Rev. Biotechnol. 1983.; 1: 59
  • Aunstrup K., Andresen O., Falch E. A., Nielsen T. K. Production of microbial enzymes. Microbial Technology2nd ed., H. J. Peppier, D. Perlman. Springer-Verlag, New York 1979; 281
  • Kula Enzyme M.-R. Handbuch der Biotechnologie Prave, P. Faust, U. Sittig, W. D. A. Su-Katsch. Akad. Verlagsgesellschaft, Wiesbaden 1982; 379
  • Wang D. I.C, Cooney D. L., Demain A. L., Dunnill P, Humphrey A. E., Lilly M. D. Fermentation and Enzyme Technology. John Wiley & Sons, New York 1979.
  • Reese E. T., Lola J. E., Parrish F. W. Modified substrates and modified products as inducers of carbohydrates. J.Bacteriol. 1969.; 100: 1151
  • Hope G. C., Dean A. C. R. Pullulanase synthesis in Klebsiella (Aerobacter) aerogenes strains growing in continuous culture. Biochem. J. 1974.; 144: 403
  • Böing J. T. P. Enzyme production. Precott and Dunn's: Industrial Microbiology4th ed., G. Reed. AVI, Westport, Conn. 1982; 634
  • Eveleigh D. E., Montenecourt B. S. Increasing yields of extracellular enzymes. Adv. Appl. Microbiol. 1979.; 25: 58
  • Kalabokias G. U.S. Patent 3 1971.; 623: 956
  • Zuidwey M. H. J., Bos C. J. K., van Welzen A. Proteolytic components of alkaline proteases of Bacillus strains. Zymograms and electrophoretic isolation. Biotechnol. Bioeng. 1972.; 14: 685
  • Dworschak R. G., Chen J. C., Lamm W. R., Davis L. G. U.S. Patent 3 1973.; 736: 232
  • Shieh K. K. U.S. Patent 3 1976.; 982: 262
  • Ghose T. K., Ghosh P. Cellulase production and cellulose hydrolysis. Proc. Biochem. 1979.; 14: 20
  • Ingle M. B., Erickson R. J. Bacterial o-amylases. Adv. Appl. Microbiol. 1978.; 24: 257
  • Montville T. J., Cooney C. L., Sinskey A. J. Streptococcus mutansdextransucrase: a review. Adv. Appl. Microbiol. 1978.; 24: 55
  • Sutherland J. W. Extracellular polysaccharides. Biotechnology, H. Dellweg. Verlag Chemie, Basel. 1983; Vol. 3: 531
  • Alsop R. M. Industrial production of dextrans. Prog. Ind. Microbiol 1983.; I: 18
  • Sandford P. A. Polysaccharides in Food, J. M. V. Blanshard, J. R. Mitchell. Butter-worths, Boston 1979; 251
  • Cottrell J. W. Fungal Polysaccharides, P. A. Sandford, K. Matsuda. American Chemical Society, Washington, D.C. 1980; 251
  • Pettit D. J. Polysaccharides in Food, J. M. V. Blanshard, J. R. Mitchell. Butter-worths, Boston 1980; 263
  • Charles M., Radjai M. K. Extracellular Microbial Polysaccharides, P. A. Sandford, A. Laskin. American Chemical Society, Washington, D.C. 1977; 27
  • Voclskow H. Extrazelluläre mikrobielle Polysaccharide: Biopolymere mit interessanten Anwen-dungsmoglichkeiten. Forum Mikrobiol. 1983.; 6: 273
  • Pace G. W., Righelato R. C. Production of extracellular microbial polysaccharides. Adv. Biochem. Eng. 1980.; 15: 41
  • Slodki M. E., Cadmus M. C. Production of microbial polysaccharides. Adv. Appl. Microbiol. 1978.; 23: 19
  • Catley B. J. Regulation of yeast and fungal polysaccharides excluding chitin and cellulose. Prog. Ind. Microbiol. 1983.; 8: 129
  • Hirose Y., Enai H., Shibai H. Nucleosides and nucleotides. Ann. Rep. Ferment. Proc 1979.; 3: 253
  • Kotani Y., Yamaguchi K., Kato F., Furuya A. Inosin accumulation by mutants of Brevibacterium ammoniagenes strain improvement and culture conditions. Agric. Biol. Chem. 1978.; 42: 399
  • Nara T., Misawa M., Komuro T., Kinoshita S. Production of nucleic acid-related substances by fermentative processes. Agric. Biol. Chem. 1969.; 33: 358
  • Enei H., Sato K., Ishii M., Hirose Y. Method for producing inosine by fermentation. U.S. Patent 3 960 661 1976.
  • Nogami I., Kida M., Lijima I., Yoneda M. Studies on the fermentative production of purine derivatives. I. Derivation of guanosin and inosine-producing mutants from a. Bacillus strain, Agric. Biol. Chem. 1969.; 32: 144
  • Furuya A., Abe S., Kinoshita S. Conversion of S'-xanthylic acid to guanine and guanine nucleotides by a mutant of. Brevibacterium ammoniagenes, Biotechnol. Bioeng. 1971.; 13: 229
  • Furuya A., Okachi R., Tokayama K., Abe S. Accumulation of 5'-guanine nucleotides by mutants of. Brevibacterium ammoniagenes, Biotechnol. Bioeng. 1973.; 15: 795
  • Ogata K., Kinoshita S., Tsundda T., Aida K. Microbial Production of Nucleic-Acid Related Substances. Kodansha Ltd., Tokyo 1976.
  • Knecht R. Microbiology and biotechnology of SCP produced from n-paraffin. Process Biochem. 1977.; 12: 11
  • Schlingmann M., Prave P. Single Cell Proteine mit reduziertem Nukleinsaure - und Fettgehalt. Fette-Seifen-Anstrichmittel 1978.; 80: 283
  • Burrows S. Baker's yeast. The Yeasts, A. Rose, J. -S. Harrison. Academic Press, New York 1970; 349
  • Peppier H. J. Yeasts. Ann. Rep. Ferment. Prove 1978.; 2: 191
  • Soeder C. J. Zur Verwendung von Mikroalgen fiir Ernahrungszwecke. Naturwissenschaften 1976.; 63: 131
  • Anon. Waste-gas CO. 2feeds algae. Chem. Eng. News 1966; 20
  • Hamer G. Biomass from natural gas. Economic Microbiology. Academic Press, London 1979; Vol. 4: 315
  • Harrison D. E. F. Making protein from methane. Chem. Technol. 1976.; 570
  • Cooney C. L., Levine D. W. SCP production from methanol by yeast. Single Cell Protein, R. I. Mateles, S. R. Tannenbaum. MIT Press, Cambridge 1975; 402
  • Ridgeway J. A., Lappin B. M., Benjamin B. M., Corns J. B., Akin C. Single cell protein materials from ethanol. U.S. Patent 3 1975.; 865: 691
  • Perry J. J. Propane utilization by microorganisms. Adv. Appl. Microbiol. 1980.; 26: 89
  • Takahashi J. Production of intracellular and extracellular protein from n-butane by Pseudomonas butanovorasp. nov. Adv. Appl. Microbiol. 1980.; 26: 117
  • Pra Uve P., Sambeth W., Sukatsch D. A. Mikrobielle Eiweisgewinnung aus Kohlenwasserstoffen. Chemie in unserer Zeit 1975.; 9: 59
  • Tuse D. Single-cell protein: current status and future prospects, Cn'r. Rev. Food Sci. Nutr. 1984.; 19: 273
  • Walker J. D., Cooney J. J. Oxidation of n-alkanes by Cladosporium resinae. Can. J. Microbiol. 1973.; 19: 1325
  • Kolot F. B. Microbial carries - strategy for selection. Proc. Biochem. 1981.; 16: 12
  • Nesemann G., Sukatsch D. A. Die technische Mikrobiologie. Chemische Rundschau. 1983.; 36: 11, 51/52

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.