46
Views
16
CrossRef citations to date
0
Altmetric
Research Article

Immobilized Cells in Meat Fermentation

&
Pages 179-192 | Published online: 27 Sep 2008

References

  • Pederson C. S. Microbiology of Food Fermentations. AVI Publishing, Westport, Conn 1980
  • Martin R., Azcona J., Garcia T., Hernandez P. E., Sanz B. Sandwich ELISA for detection of horse meat in raw meat mixtures using antisera to muscle soluble proteins. Meat Sci. 1988; 22: 143
  • Miller A. T. Collagen Sausage Casing. U.S. Patent 4388331, 1983
  • Ensor S. A., Sofos J. N., Schmidt G. R. Optimization of algin/calcium binder in restructured beef. J. Muscle Foods 1990; 1(3)197
  • Cordray J. C., Huffman D. L. Restructured pork from hot processed sow meat: effect of encapsulated food acids. J. Food Protect. 1985; 48(11)965
  • Siragusa G. R., Dickson J. S. Inhibition of Listeria monocytogenes on beef tissue by application of organic acids immobilized in calcium alginate gel. J. Food Sci. 1992; 57: 293
  • Rugala H. W. Encapsulated controls GDL release—production efficiency improved. Food Product. Dev. 1978; 12(10)28
  • Kearney L., Upton M., McLoughlin A. J. Meat fermentations with immobilized lactic acid bacteria. Appl. Microbiol. Biotechnol. 1990; 33: 648
  • Hammes W. P., Bantleon A., Min S. Lactic acid bacteria in meat fermentation. FEMS Microbiol. Rev. 1990; 87: 165
  • Shay B. J., Egan A. F. Meat starter cultures and the manufacture of meat products. Encyclopedia of Food Science and Technology, Y. H. Hui. John Wiley & Son, New York 1992; Vol. 3: 1735
  • Hamm R. Postmortem breakdown of ATP and glycogen in ground muscle: a review. Meat Sci. 1977; 1: 15
  • Bacus J. N., Brown W. L. Use of microbial cultures: meat products. Food Technol. 1981; 35: 74
  • Zaika L. L., Kissinger J. C. Fermentation enhancement by spices: identification of active component. J. Food Sci. 1984; 49: 5
  • Archibald F. S., Fridovich I. Manganese and defence against oxygen in Lactobacillus plantarum. J. Bacteriol. 1981; 145: 442
  • Archibald F. S., Fridovich I. Manganese, superoxide dismutase and oxygen tolerance in some lactic acid bacteria. J. Bacteriol. 1981; 146: 928
  • Lindgren S. E., Dobrogosz W. J. Antagonistic activities of lactic acid bacteria in food and feed fermentations. FEMS Microbiol. Rev. 1990; 87: 149
  • Klement J. T., Cassens R. G., Fennema O. R. The effect of bacterial fermentation on protein solubility in a sausage model system. J. Food Sci. 1974; 39: 833
  • Deibel R. H., Niven C. F., Jr., Wilson G. D. Microbiology of meat curing. III. Some microbiological and related technological aspects in the manufacture of fermented sausages. Appl. Microbiol 1961; 9: 156
  • Deibel R. H., Wilson G. D., Niven C. F., Jr. Microbiology of meat curing. IV. A lyophilized Pediococcus cerevisiae starter culture for fermented sausage. Appl. Microbiol. 1961; 9: 239
  • Terzaghi E., O'Hara M. Microbial plasticity: the relevance to microbial ecology. Adv. Microbiol. Ecol. 1990; 11: 431
  • Karel S. F., Libicki S. B., Robertson C. R. The immobilization of whole cells: engineering principles. Chem. Eng. Sci. 1985; 40: 1321
  • McLoughlin A. J. Controlled release of immobilized cells as a strategy to regulate ecological competence of inocula. Adv. Biochem. Eng. 1994; 51: 1
  • Mattiasson B., Hahn-Hagerdal B. Microenvi-ronmental effects on metabolic behaviour of immobilized cells, a hypothesis. Eur. J. Appl. Microbiol. Biotechnol. 1982; 16: 52
  • Pitt C. G., Schindler A. Biodegradation of polymers. Controlled Drug Delivery, Vol. 1, Basic Concepts, S. D. Brack. CRC Press, Boca Raton 1983; 53
  • Ray B., Speck M. L. Freeze injury in bacteria. Crit. Rev. Clin. Lab. Sci. 1973; 4: 161
  • Mazur P. Physical and chemical basis of injured single-celled microorganisms subjected to freezing and thawing. Cryobiology, H. T. Meryman. Academic Press, London 1966; 213
  • Mazur P. The role of intracellular freezing in the death of cells cooled at suboptimal rates. Cryobiology 1977; 14: 251
  • Heckly R. J. Preservation of microorganisms. Adv. Appl. Microbiol. 1978; 24: 1
  • Leach R. H., Scott W. J. The influence of rehydration on the viability of dried microorganisms. J. Gen. Microbiol. 1959; 21: 295
  • de Valdez G. F., de Giori G. S., de Ruiz Holgado A. A. P., Oliver G. Rehydration conditions and viability of freeze-dried lactic acid bacteria. Cryobiology 1985; 22: 574
  • Bozoglu T. F., Ozilgen M., Bakir U. Survival kinetics of lactic acid starter cultures during and after freeze drying. Enzyme Microbiol. Technol. 1987; 9: 531
  • Brennan M., Wanismail B., Johnson M. C., Ray B. Cellular damage in dried Lactobacillus acidophilus. J. Food Protect. 1986; 49: 47
  • Champagne C. P. Effect of penicillin on free or immobilized lactococci: milk acidification and residual antibiotic level. J. Food Safety 1992; 12: 327
  • Necas O., Svoboda A. Cell wall regeneration and protoplast reversion. Fungal Protoplasts, J. F. Peberdy, L. Ferenczy. Marcel Dekker, Basel 1985; 115
  • Kearney L., Upton M., McLoughlin A. J. Enhancing the viability of Lactobacillus plantarum inoculum by immobilizing the cells in calcium-alginate beads incorporating cryoprotectants. Appl. Environ. Microbiol. 1990; 56: 3112
  • Metaxopoulos J., Genigeorgis C., Fanelli M. J., Franti C., Cosma E. Production of Italian dry salami: effect of starter culture and chemical acidulation on Staphylococcal growth in salami under commercial manufacturing conditions. Appl. Environ. Microbiol. 1981; 42: 863
  • Metaxopoulos J., Genigeorgis C., Fanelli M. J., Franti C., Cosma E. Production of Italian dry salami. I. Initiation of Staphylococcal growth in salami under commercial manufacturing conditions. J. Food Protect. 1981; 44: 347
  • Smith J. L., Palumbo S. A. Injury to Staphylococcus aureus during sausage fermentation. Appl. Environ. Microbiol. 1977; 36: 857
  • Labots H. Effect of nitrite on the development of Staphylococcus aureus in fermented sausages. Proceedings of the 2nd International Symposium on nitrite in meat products, B. J. Tinbergen, B. Krol. Pudoc, Wageningen 1977; 21
  • Schillinger U., Lucke F.-K. Antibacterial activity of Lactobacillus sake isolated from meat. Appl. Environ. Microbiol. 1989; 55: 1901
  • Babel F. J. Antibiosis of lactic culture bacteria. J. Dairy Sci. 1976; 60: 815
  • Mortvedt C. I., Nes I. F. Plasmid associated bacteriocin production by a Lactobacillus sake strain. J. Gen. Microbiol. 1990; 136: 1601
  • Rammelsberg M., Radler F. Antibacterial polypeptides of Lactobacillus species. J. Appl. Bacteriol. 1990; 69: 177
  • Daeschel M. A. Bacteriocins of lactic acid bacteria. Food Biopreservatives of Microbial Origin, M. A. Ray, Daeschel. CRC Press, Boca Raton, FL 1992; 323
  • Kumar P. K. R., Schugerl K. Immobilization of genetically engineered cells: a new strategy for higher stability. J. Biotechnoi 1990; 14: 255
  • Houle J.-F., LaFrance M., Julien J.-P., Brochu E., Champagne C. P. Selection of mixed cultures for meat fermentation. J. Food Sci. 1989; 54: 839
  • Geis A., Singh J., Teuber M. Potential of lactic streptococci to produce bacteriocin. Appl. Environ. Microbiol. 1983; 45: 205
  • Trevors K. E., Holley R. A., Kempton A. G. Effect of bacteriophage on the activity of lactic starter cultures used in the production of fermented sausages. J. Food Sci 1984; 49(2)605
  • Goetz F., Popp F., Schliefer K. H. Isolation and characterization of a virulent bacteriophage from Staphylococcus carnosus. FEMS Microbiol. Lett. 1984; 23(2/3)303
  • Nes I. F., Sorheim O. Effect of infection of a bacteriophage in a starter culture during the production of salami dry sausage: a model study. J. Food Sci. 1984; 49: 337
  • Steenson L. R., Klaenhammer T. R., Swaisgood H. E. Calcium alginate-immobilized cultures of lactic Streptococci are protected from bacteriophages. J. Dairy Sci 1987; 70: 1121
  • Champagne C. P., Girard F., Morin N. Bacteriophage development in an immobilized lactic acid bacterial system. Biotechnoi. Lett. 1988; 10: 463
  • Champagne C. P., Morin N., Couture R., Gagnon C., Jelen P., Lacroix C. The potential of immobilized cell technology to produce freeze-dried, phage-protected cultures of Lactococcus lactis. Food Res. Int. 1992; 25: 419
  • Roy D., Goulet J., LeDuy A. Continuous production of lactic acid from whey permeate by free and Ca-alginate entrapped Lactobacillus helveticus. J. Dairy Sci 1987; 70: 506

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.