290
Views
2
CrossRef citations to date
0
Altmetric
REVIEW

Array Comparative Genomic Hybridization in Pediatric Acute Leukemias

, MSc, , PhD, , MD & , PhD
Pages 677-687 | Received 18 Feb 2013, Accepted 17 Apr 2013, Published online: 12 Jun 2013

REFERENCES

  • Pui CH, Robison LL, Look AT. Acute lymphoblastic leukaemia. Lancet. 2008;371:1030–1043.
  • Al-Shehhi H, Konn ZJ, Schwab CJ, Abnormalities of the der(12)t(12;21) in ETV6-RUNX1 acute lymphoblastic leukemia. Genes Chromosomes Cancer. 2013;52:202–213.
  • Schrappe M, Hunger SP, Pui CH, Outcomes after induction failure in childhood acute lymphoblastic leukemia. N Engl J Med. 2012;366:1371–1381.
  • Kuiper RP, Schoenmakers EF, van Reijmersdal SV, High-resolution genomic profiling of childhood ALL reveals novel recurrent genetic lesions affecting pathways involved in lymphocyte differentiation and cell cycle progression. Leukemia. 2007;21:1258–1266.
  • van Vlierberghe P, Meijerink JP, Lee C, A new recurrent 9q34 duplication in pediatric T-cell acute lymphoblastic leukemia. Leukemia. 2006;20:1245–1253.
  • Dawson AJ, Yanofsky R, Vallente R, Array comparative genomic hybridization and cytogenetic analysis in pediatric acute leukemias. Curr Oncol. 2011;18:e210–e217.
  • Hollink IH, Zwaan CM, Zimmermann M, Favorable prognostic impact of NPM1 gene mutations in childhood acute myeloid leukemia, with emphasis on cytogenetically normal AML. Leukemia. 2009;23:262–270.
  • Ojeda-Uribe M, Schneider A, Luquet I, Therapy-related acute myeloid leukemia (t-AML) with poor-risk cytogenetics in two patients with persistent molecular complete remission of acute promyelocytic leukemia. Eur J Haematol. 2012;89:267–272.
  • Rubnitz JE, Inaba H. Childhood acute myeloid leukaemia. Br J Haematol. 2012;159:259–276.
  • Seewald L, Taub JW, Maloney KW, McCabe ER. Acute leukemias in children with Down syndrome. Mol Genet Metab. 2012;107:25–30.
  • Lo KC, Chalker J, Strehl S, Array comparative genome hybridization analysis of acute lymphoblastic leukaemia and acute megakaryoblastic leukaemia in patients with Down syndrome. Br J Haematol. 2008;142:934–945.
  • Gulley ML, Shea TC, Fedoriw Y. Genetic tests to evaluate prognosis and predict therapeutic response in acute myeloid leukemia. J Mol Diagn. 2010;12:3–16.
  • Walter RB, Othus M, Burnett AK, Significance of FAB subclassification of “Acute Myeloid Leukemia, NOS” in the 2008 WHO classification: analysis of 5,848 newly diagnosed patients. Blood. 2013;121:2424–2431.
  • Wei JS, Badgett TC, Khan J. New Technologies for diagnosing pediatric tumors expert opinion on medical diagnostics. Expert Opin Med Diagn. 2008;2:1205–1219.
  • Andrieux J, Sheth F. Comparative genomic hybridization array study and its utility in detection of constitutional and acquired anomalies. Indian J Exp Biol. 2009;47:779–791.
  • Kannan TP, Zilfalil BA. Cytogenetics: past, present and future. Malays J Med Sci. 2009;16:4–9.
  • Liu J, Bernier F, Lauzon J, Application of microarray-based comparative genomic hybridization in prenatal and postnatal settings: three case reports. Genet Res Int. 2011;2011:976398. doi:10.4061/2011/976398
  • Maciejewski JP, Mufti GJ. Whole genome scanning as a cytogenetic tool in hematologic malignancies. Blood. 2008;112:965–974.
  • Maciejewski JP, Tiu RV, O'Keefe C. Application of array-based whole genome scanning technologies as a cytogenetic tool in haematological malignancies. Br J Haematol. 2009;146:479–488.
  • Kuchinskaya E, Heyman M, Nordgren A, Array-CGH reveals hidden gene dose changes in children with acute lymphoblastic leukaemia and a normal or failed karyotype by G-banding. Br J Haematol. 2008;140:572–577.
  • Shao L, Kang SH, Li J, Array comparative genomic hybridization detects chromosomal abnormalities in hematological cancers that are not detected by conventional cytogenetics. J Mol Diagn. 2010;12:670–679.
  • Xu W, Lu X, Kim Y, Deletion of 14q24.1 approximately q24.3 in a patient with acute lymphoblastic leukemia: a hidden chromosomal anomaly detected by array-based comparative genomic hybridization. Cancer Genet Cytogenet. 2008;185:43–46.
  • Tchinda J, Dijkhuizen T, Vlies Pv P, Translocations involving 6p22 in acute myeloid leukaemia at relapse: breakpoint characterization using microarray-based comparative genomic hybridization. Br J Haematol. 2004;126:495–500.
  • Ballabio E, Regan R, Garimberti E, Genomic imbalances are confined to non-proliferating cells in paediatric patients with acute myeloid leukaemia and a normal or incomplete karyotype. PLoS One. 2011;6:e20607. doi:10.1371/journal.pone.0020607
  • Clappier E, Cuccuini W, Kalota A, The C-MYB locus is involved in chromosomal translocation and genomic duplications in human T-cell acute leukemia (T-ALL), the translocation defining a new T-ALL subtype in very young children. Blood. 2007;110:1251–1261.
  • Paulsson K, Heidenblad M, Morse H, Identification of cryptic aberrations and characterization of translocation breakpoints using array CGH in high hyperdiploid childhood acute lymphoblastic leukemia. Leukemia. 2006;20:2002–2007.
  • Lundin C, Davidsson J, Hjorth L, Tiling resolution array-based comparative genomic hybridisation analyses of acute lymphoblastic leukaemias in children with Down syndrome reveal recurrent gain of 8q and deletions of 7p and 9p. Br J Haematol. 2009;146:113–115.
  • Novara F, Beri S, Bernardo ME, Different molecular mechanisms causing 9p21 deletions in acute lymphoblastic leukemia of childhood. Hum Genet. 2009;126:511–520.
  • De Keersmaecker K, Real PJ, Gatta GD, The TLX1 oncogene drives aneuploidy in T cell transformation. Nat Med. 2010;16:1321–1327.
  • Wang Q, Qiu H, Jiang H, Mutations of PHF6 are associated with mutations of NOTCH1, JAK1 and rearrangement of SET-NUP214 in T-cell acute lymphoblastic leukemia. Haematologica. 2011;96:1808–1814.
  • Armengol G, Canellas A, Alvarez Y, Genetic changes including gene copy number alterations and their relation to prognosis in childhood acute myeloid leukemia. Leuk Lymphoma. 2010;51:114–124.
  • Goswami RS, Sukhai MA, Thomas M, Applications of microarray technology to acute myelogenous leukemia. Cancer Inform. 2009;7:13–28.
  • Usvasalo A, Elonen E, Saarinen-Pihkala UM, Prognostic classification of patients with acute lymphoblastic leukemia by using gene copy number profiles identified from array-based comparative genomic hybridization data. Leuk Res. 2010;34:1476–1482.
  • Zakaria Z, Md Ahid MF, Ismail A, Chromosomal Aberrations in ETV6/RUNX1-positive Childhood Acute Lymphoblastic Leukemia using 244 K Oligonucleotide Array Comparative Genomic Hybridization. Mol Cytogenet. 2012;5:41. doi:10.1186/1755-8166-5-41
  • Szczepanski T, van der Velden VH, Waanders E, Late recurrence of childhood T-cell acute lymphoblastic leukemia frequently represents a second leukemia rather than a relapse: first evidence for genetic predisposition. J Clin Oncol. 2011;29:1643–1649.
  • Steinemann D, Cario G, Stanulla M, Copy number alterations in childhood acute lymphoblastic leukemia and their association with minimal residual disease. Genes Chromosomes Cancer. 2008;47:471–480.
  • Den Boer ML, van Slegtenhorst M, De Menezes RX, A subtype of childhood acute lymphoblastic leukaemia with poor treatment outcome: a genome-wide classification study. Lancet Oncol. 2009;10:125–134.
  • Wouters BJ, Lowenberg B, Delwel R. A decade of genome-wide gene expression profiling in acute myeloid leukemia: flashback and prospects. Blood. 2009;113:291–298.
  • Itzhar N, Dessen P, Toujani S, Chromosomal minimal critical regions in therapy-related leukemia appear different from those of de novo leukemia by high-resolution aCGH. PLoS One. 2011;6:e16623. doi:10.1371/journal.pone.0016623
  • Gutierrez A, Dahlberg SE, Neuberg DS, Absence of biallelic TCRgamma deletion predicts early treatment failure in pediatric T-cell acute lymphoblastic leukemia. J Clin Oncol. 2010;28:3816–3823.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.