943
Views
1
CrossRef citations to date
0
Altmetric
Review article

Prognostic Biomarkers for Hodgkin Lymphoma

, , , &
Pages 433-454 | Received 15 Jun 2015, Accepted 09 Jul 2015, Published online: 18 Sep 2015

REFERENCES

  • Mauz-Körholz C, Hasenclever D, Dörffel W, et al. Procarbazine-free OEPA-COPDAC chemotherapy in boys and standard OPPA-COPP in girls have comparable effectiveness in pediatric Hodgkin's lymphoma: the GPOH-HD-2002 study. J Clin Oncol. 2010;28:3680–3686.
  • Dörffel W, Rühl U, Lüders H, et al. Treatment of children and adolescents with Hodgkin lymphoma without radiotherapy for patients in complete remission after chemotherapy: final results of the multinational trial GPOH-HD95. J Clin Oncol. 2013;31:1562–1568.
  • Schellong G, Riepenhausen M. Late effects after therapy of Hodgkin's disease: update 2003/04 on overwhelming post-splenectomy infections and secondary malignancies. Klin Padiatr. 2004;216:364–369.
  • Schellong G, Riepenhausen M. Spätfolgen nach Morbus Hodgkin bei Kindern und Jugendlichen. Ergebnisse der Studien DAL-HD-78 bis -HD-90. Projektbericht 2002. Münster, Germany: Eigenverlag; 2002:10–15.
  • Bhatia S, Yasui Y, Robison LL, et al. Late Effects Study Group. High risk of subsequent neoplasms continues with extended follow-up of childhood Hodgkin's lymphoma: report from the Late Effects Study Group. J Clin Oncol. 2003;21:4386–4394.
  • Hasenclever D. The disappearance of prognostic factors in Hodgkin's disease. Ann Oncol. 2002;13(Suppl 1):75–78.
  • Harris NL, Jaffe ES, Diebold J, et al. The World Health Organization classification of neoplastic diseases of the hematopoietic and lymphoid tissues. Report of the Clinical Advisory Committee meeting, Airlie House, Virginia, November, 1997. Ann Oncol. 1999;10:1419–1432.
  • Küppers R. Molecular biology of Hodgkin lymphoma. Hematology Am Soc Hematol Educ Program. 2009;2009:491–496.
  • Drexler HG, Minowada J. Hodgkin's disease derived cell lines: a review. Hum Cell. 1992;5:42–53.
  • Seitz V, Hummel M, Marafioti T, Anagnostopoulos I, Assaf C, Stein H. Detection of clonal T-cell receptor gamma-chain gene rearrangements in Reed-Sternberg cells of classic Hodgkin disease. Blood. 2000;95:3020–3024.
  • Carbone A, Gloghini A, Dotti G. EBV-associated lymphoproliferative disorders: classification and treatment. Oncologist. 2008;13:577–585.
  • Ambinder RF. Epstein-Barr virus and Hodgkin lymphoma. Hematology Am Soc Hematol Educ Program. 2007;2007:204–209.
  • Kapatai G, Murray P. Contribution of the Epstein Barr virus to the molecular pathogenesis of Hodgkin lymphoma. J Clin Pathol. 2007;60:1342–1349.
  • Vockerodt M, Cader FZ, Shannon-Lowe C, Murray P. Epstein-Barr virus and the origin of Hodgkin lymphoma. Chin J Cancer. 2014;33:591–759.
  • Benharroch D, Shemer-Avni Y, Myint YY, et al. Measles virus: evidence of an association with Hodgkin's disease. Br J Cancer. 2004;91:572–579.
  • Wilson KS, Freeland JM, Gallagher A, et al. Measles virus and classical Hodgkin lymphoma: no evidence for a direct association. Int J Cancer. 2007;121:442–447.
  • Huang G, Yan Q, Wang Z, et al. Human cytomegalovirus in neoplastic cells of Epstein-Barr virus negative Hodgkin's disease. Int J Oncol. 2002;21:31–36.
  • Figueiredo CP, Franz-Vasconcelos HC, Giunta GD, et al. Detection of Torque teno virus in Epstein-Barr virus positive and negative lymph nodes of patients with Hodgkin lymphoma. Leuk Lymphoma. 2007;48:731–735.
  • Lacroix A, Collot-Teixeira S, Mardivirin L, et al. Involvement of human herpesvirus-6 variant B in classic Hodgkin's lymphoma via DR7 oncoprotein. Clin Cancer Res. 2010;16: 4711–4721.
  • Chezzi C, Dettori G, Manzari V, Aglianò AM, Sanna A. Simultaneous detection of reverse transcriptase and high molecular weight RNA in tissue of patients with Hodgkin's disease and patients with leukemia. Proc Natl Acad Sci U S A. 1976;73:4649–4652.
  • Loutfy SA, Fawzy M, El-Wakil M, Moneer MM. Presence of human herpes virus 6 (HHV6) in pediatric lymphomas: impact on clinical course and association with cytomegalovirus infection. Virol J. 2010;7:287.
  • Kanakry JA, Li H, Gellert LL, et al. Plasma Epstein-Barr virus DNA predicts outcome in advanced Hodgkin lymphoma: correlative analysis from a large North American cooperative group trial. Blood. 2013;121:3547–3553.
  • Emmerich F, Meiser M, Hummel M, et al. Overexpression of I kappa B alpha without inhibition of NF-kappaB activity and mutations in the I kappa B alpha gene in Reed-Sternberg cells. Blood. 1999;94:3129–3134.
  • Jungnickel B, Staratschek-Jox A, Bräuninger A, et al. Clonal deleterious mutations in the IkappaBalpha gene in the malignant cells in Hodgkin's lymphoma. J Exp Med. 2000;191:395–402.
  • Lake A, Shield LA, Cordano P, et al. Mutations of NFKBIA, encoding IkappaB alpha, are a recurrent finding in classical Hodgkin lymphoma but are not a unifying feature of non-EBV-associated cases. Int J Cancer. 2009;125:1334–1342.
  • Kato M, Sanada M, Kato I, et al. Frequent inactivation of A20 in B-cell lymphomas. Nature. 2009;459:712–716.
  • Schmitz R, Hansmann ML, Bohle V, et al. TNFAIP3 (A20) is a tumor suppressor gene in Hodgkin lymphoma and primary mediastinal B cell lymphoma. J Exp Med. 2009;206:981–989.
  • Nomoto J, Hiramoto N, Kato M, et al. Deletion of the TNFAIP3/A20 gene detected by FICTION analysis in classical Hodgkin lymphoma. BMC Cancer. 2012;12:457.
  • Schmidt A, Schmitz R, Giefing M, et al. Rare occurrence of biallelic CYLD gene mutations in classical Hodgkin lymphoma. Genes Chromosomes Cancer. 2010;49:803–809.
  • Kewitz S, Volkmer I, Staege MS. Curcuma contra cancer? Curcumin and Hodgkin's lymphoma. Cancer Growth Metastasis. 2013;6:35–52
  • Enciso-Mora V, Broderick P, Ma Y, et al. A genome-wide association study of Hodgkin's lymphoma identifies new susceptibility loci at 2p16.1 (REL), 8q24.21 and 10p14 (GATA3). Nat Genet. 2010;42:1126–1130.
  • Slovak ML, Bedell V, Hsu YH, et al. Molecular karyotypes of Hodgkin and Reed-Sternberg cells at disease onset reveal distinct copy number alterations in chemosensitive versus refractory Hodgkin lymphoma. Clin Cancer Res. 2011;17:3443–3454.
  • Carswell EA, Old LJ, Kassel RL, Green S, Fiore N, Williamson B. An endotoxin-induced serum factor that causes necrosis of tumors. Proc Natl Acad Sci U S A. 1975;72:3666–3670.
  • Wiemann B, Starnes CO. Coley's toxins, tumor necrosis factor and cancer research: a historical perspective. Pharmacol Ther. 1994;64:529–564.
  • Igaki T, Kanda H, Yamamoto-Goto Y, et al. Eiger, a TNF superfamily ligand that triggers the Drosophila JNK pathway. EMBO J. 2002;21:3009–3018.
  • Moreno E, Yan M, Basler K. Evolution of TNF signaling mechanisms: JNK-dependent apoptosis triggered by Eiger, the Drosophila homolog of the TNF superfamily. Curr Biol. 2002;12:1263–1268.
  • Wang PH, Wan DH, Pang LR, et al. Molecular cloning, characterization and expression analysis of the tumor necrosis factor (TNF) superfamily gene, TNF receptor superfamily gene and lipopolysaccharide-induced TNF-α factor (LITAF) gene from Litopenaeus vannamei. Dev Comp Immunol. 2012;36:39–50.
  • Ottaviani E, Franchini A, Franceschi C. Presence of several cytokine-like molecules in molluscan hemocytes. Biochem Biophys Res Commun. 1993;195:984–988.
  • Franchini A, Perruzi E, Ottaviani E. Morphochemical age-related changes in the nematode Caenorhabditis elegans: immunoperoxidase localization of cytokine- and growth factor-like molecules. Eur J Histochem. 2003;47:75–80.
  • Croft M. The TNF family in T cell differentiation and function—unanswered questions and future directions. Semin Immunol. 2014;26:183–190.
  • Gause A, Jung W, Keymis S, et al. The clinical significance of cytokines and soluble forms of membrane-derived activation antigens in the serum of patients with Hodgkin's disease. Leuk Lymphoma. 1992;7:439–447.
  • Kalmanti M, Karamolengou K, Dimitriou H, et al. Serum levels of tumor necrosis factor and soluble interleukin 2 receptor as markers of disease activity and prognosis in childhood leukemia and lymphoma. Int J Hematol. 1993;57:147–152.
  • Warzocha K, Salles G, Bienvenu J, et al. Tumor necrosis factor ligand-receptor system can predict treatment outcome in lymphoma patients. J Clin Oncol. 1997;15:499–508.
  • Warzocha K, Bienvenu J, Ribeiro P, et al. Plasma levels of tumour necrosis factor and its soluble receptors correlate with clinical features and outcome of Hodgkin's disease patients. Br J Cancer. 1998;77:2357–2362.
  • Casasnovas RO, Mounier N, Brice P, et al. Groupe d'Etude des Lymphomes de l'Adulte. Plasma cytokine and soluble receptor signature predicts outcome of patients with classical Hodgkin's lymphoma: a study from the Groupe d'Etude des Lymphomes de l'Adulte. J Clin Oncol. 2007;25:1732–1740.
  • Marri PR, Hodge LS, Maurer MJ, et al. Prognostic significance of pretreatment serum cytokines in classical Hodgkin lymphoma. Clin Cancer Res. 2013;19:6812–6819.
  • Salles G, Bienvenu J, Bastion Y, et al. Elevated circulating levels of TNFalpha and its p55 soluble receptor are associated with an adverse prognosis in lymphoma patients. Br J Haematol. 1996;93:352–359.
  • Libura J, Bettens F, Radkowski A, Tiercy JM, Piguet PF. Polymorphic tumor necrosis factors microsatellite TNFa4 is associated with resistance of Hodgkin lymphoma to chemotherapy and with replapses after therapy. Anticancer Res. 2002;22:921–926.
  • Vener C, Guffanti A, Pomati M, et al. Soluble cytokine levels correlate with the activity and clinical stage of Hodgkin's disease at diagnosis. Leuk Lymphoma. 2000;37:333–339.
  • Sugarman BJ, Aggarwal BB, Hass PE, Figari IS, Palladino MA Jr, Shepard HM. Recombinant human tumor necrosis factor-alpha: effects on proliferation of normal and transformed cells in vitro. Science. 1985;230:943–945.
  • Digel W, Stefanic M, Schöniger W, et al. Tumor necrosis factor induces proliferation of neoplastic B cells from chronic lymphocytic leukemia. Blood. 1989;73:1242–1246.
  • Buck C, Digel W, Schöniger W, et al. Tumor necrosis factor-alpha, but not lymphotoxin, stimulates growth of tumor cells in hairy cell leukemia. Leukemia. 1990;4:431–434.
  • Xerri L, Birg F, Guigou V, Bouabdallah R, Poizot-Martin I, Hassoun J. In situ expression of the IL-1-alpha and TNF-alpha genes by Reed-Sternberg cells in Hodgkin's disease. Int J Cancer. 1992;50:689–693.
  • Klein S, Jücker M, Diehl V, Tesch H. Production of multiple cytokines by Hodgkin's disease derived cell lines. Hematol Oncol. 1992;10:319–329.
  • Foss HD, Herbst H, Oelmann E, et al. Lymphotoxin, tumour necrosis factor and interleukin-6 gene transcripts are present in Hodgkin and Reed-Sternberg cells of most Hodgkin's disease cases. Br J Haematol. 1993;84:627–635.
  • Malec M, Söderqvist M, Sirsjö A, et al. Real-time polymerase chain reaction determination of cytokine mRNA expression profiles in Hodgkin's lymphoma. Haematologica. 2004;89:679–685.
  • Cassaday RD, Malik JT, Chang JE. Regression of Hodgkin lymphoma after discontinuation of a tumor necrosis factor inhibitor for Crohn's disease: a case report and review of the literature. Clin Lymphoma Myeloma Leuk. 2011;11:289–292.
  • Vieites B, Avila R, Biscuola M, Carvajo F. Cutaneous Hodgkin-type lymphoproliferative lesion associated with immunomodulatory therapy for ulcerative colitis. J Cutan Pathol. 2011;38:443–447.
  • Kanda H, Igaki T, Kanuka H, Yagi T, Miura M. Wengen, a member of the Drosophila tumor necrosis factor receptor superfamily, is required for Eiger signaling. J Biol Chem. 2002;277:28372–28375.
  • Bell JH, Herrera AH, Li Y, Walcheck B. Role of ADAM17 in the ectodomain shedding of TNF-alpha and its receptors by neutrophils and macrophages. J Leukoc Biol. 2007;82:173–176.
  • Hsu SM, Waldron J, Xie SS, Hsu PL. Hodgkin's disease and anaplastic large cell lymphoma revisited. 1. Unique cytokine and cytokine receptor profile distinguished from that of non-Hodgkin's lymphomas. J Biomed Sci. 1995;2:302–313.
  • Vahdat AM, Reiners KS, Simhadri VL, et al. TNF-alpha-converting enzyme (TACE/ADAM17)-dependent loss of CD30 induced by proteasome inhibition through reactive oxygen species. Leukemia. 2010;24:51–57.
  • Baud'huin M, Duplomb L, Teletchea S, et al. Osteoprotegerin: multiple partners for multiple functions. Cytokine Growth Factor Rev. 2013;24:401–409.
  • Yu R, Albarenque SM, Cool RH, Quax WJ, Mohr A, Zwacka RM. DR4 specific TRAIL variants are more efficacious than wild-type TRAIL in pancreatic cancer. Cancer Biol Ther. 2014;15:1658–1666.
  • Chou AH, Tsai HF, Lin LL, Hsieh SL, Hsu PI, Hsu PN. Enhanced proliferation and increased IFN-gamma production in T cells by signal transduced through TNF-related apoptosis-inducing ligand. J Immunol. 2001;167:1347–1352.
  • Staege MS, Banning-Eichenseer U, Weissflog G, et al. Gene expression profiles of Hodgkin's lymphoma cell lines with different sensitivity to cytotoxic drugs. Exp Hematol. 2008;36:886–896.
  • Giaisi M, Köhler R, Fulda S, Krammer PH, Li-Weber M. Rocaglamide and a XIAP inhibitor cooperatively sensitize TRAIL-mediated apoptosis in Hodgkin's lymphomas. Int J Cancer. 2012;131:1003–1008.
  • Zhao X1, Qiu W, Kung J, et al. Bortezomib induces caspase-dependent apoptosis in Hodgkin lymphoma cell lines and is associated with reduced c-FLIP expression: a gene expression profiling study with implications for potential combination therapies. Leuk Res. 2008;32:275–285.
  • Heredia-Galvez B, Ruiz-Cosano J, Torres-Moreno D, et al. Association of polymorphisms in TRAIL1 and TRAILR1 genes with susceptibility to lymphomas. Ann Hematol. 2014;93:243–247.
  • Chiu A, Xu W, He B, et al. Hodgkin lymphoma cells express TACI and BCMA receptors and generate survival and proliferation signals in response to BAFF and APRIL. Blood. 2007;109:729–739.
  • Tecchio C, Nadali G, Scapini P, et al. High serum levels of B-lymphocyte stimulator are associated with clinical-pathological features and outcome in classical Hodgkin lymphoma. Br J Haematol. 2007;137:553–559.
  • Schwaller J, Went P, Matthes T, et al. Paracrine promotion of tumor development by the TNF ligand APRIL in Hodgkin's disease. Leukemia. 2007;21:1324–1327.
  • Moreaux J, Veyrune JL, De Vos J, Klein B. APRIL is overexpressed in cancer: link with tumor progression. BMC Cancer. 2009;9:83.
  • Nakayama M, Ishidoh K, Kayagaki N, et al. Multiple pathways of TWEAK-induced cell death. J Immunol. 2002;168:734–743.
  • Ikner A, Ashkenazi A. TWEAK induces apoptosis through a death-signaling complex comprising receptor-interacting protein 1 (RIP1), Fas-associated death domain (FADD), and caspase-8. J Biol Chem. 2011;286:21546–21554.
  • Tran NL, McDonough WS, Savitch BA, Sawyer TF, Winkles JA, Berens ME. The tumor necrosis factor-like weak inducer of apoptosis (TWEAK)-fibroblast growth factor-inducible 14 (Fn14) signaling system regulates glioma cell survival via NFkappaB pathway activation and BCL-XL/BCL-W expression. J Biol Chem. 2005;280:3483–3492.
  • Dai L, Gu L, Ding C, Qiu L, Di W. TWEAK promotes ovarian cancer cell metastasis via NF-kappaB pathway activation and VEGF expression. Cancer Lett. 2009;283:159–167.
  • Pradet-Balade B, Medema JP, López-Fraga M, et al. An endogenous hybrid mRNA encodes TWE-PRIL, a functional cell surface TWEAK-APRIL fusion protein. EMBO J. 2002;21:5711–5720.
  • Kühnöl C, Herbarth M, Föll J, Staege MS, Kramm C. CD137 stimulation and p38 MAPK inhibition improve reactivity in an in vitro model of glioblastoma immunotherapy. Cancer Immunol Immunother. 2013;62:1797–1809.
  • Pang WL, Ho WT, Schwarz H. Ectopic CD137 expression facilitates the escape of Hodgkin and Reed-Sternberg cells from immunosurveillance. Oncoimmunology. 2013;2:e23441.
  • Ho WT, Pang WL, Chong SM, et al. Expression of CD137 on Hodgkin and Reed-Sternberg cells inhibits T-cell activation by eliminating CD137 ligand expression. Cancer Res. 2013;73:652–661.
  • Fiumara P, Snell V, Li Y, et al. Functional expression of receptor activator of nuclear factor kappaB in Hodgkin disease cell lines. Blood. 2001;98:2784–2790.
  • Park HS, Lee A, Chae BJ, Bae JS, Song BJ, Jung SS. Expression of receptor activator of nuclear factor kappa-B as a poor prognostic marker in breast cancer. J Surg Oncol. 2014;110:807–812.
  • Bago-Horvath Z, Schmid K, Rössler F, Nagy-Bojarszky K, Funovics P, Sulzbacher I. Impact of RANK signalling on survival and chemotherapy response in osteosarcoma. Pathology. 2014;46:411–415.
  • Frisan T, Donati D, Cervenak L, Wilson J, Masucci MG, Bejarano MT. CD40 cross-linking enhances the immunogenicity of Burkitt's-lymphoma cell lines. Int J Cancer. 1999;83:772–779.
  • Hassan SB, Sørensen JF, Olsen BN, Pedersen AE. Anti-CD40-mediated cancer immunotherapy: an update of recent and ongoing clinical trials. Immunopharmacol Immunotoxicol. 2014;36:96–104.
  • Carbone A, Gloghini A, Gattei V, et al. Expression of functional CD40 antigen on Reed-Sternberg cells and Hodgkin's disease cell lines. Blood. 1995;85:780–789.
  • Clodi K, Asgari Z, Younes M, et al. Expression of CD40 ligand (CD154) in B and T lymphocytes of Hodgkin disease: potential therapeutic significance. Cancer. 2002;94:1–5.
  • Metkar SS, Manna PP, Anand M, Naresh KN, Advani SH, Nadkarni JJ. CD40 Ligand—an anti-apoptotic molecule in Hodgkin's disease. Cancer Biother Radiopharm. 2001;16:85–92.
  • Fanale M, Assouline S, Kuruvilla J, et al. Phase IA/II, multicentre, open-label study of the CD40 antagonistic monoclonal antibody lucatumumab in adult patients with advanced non-Hodgkin or Hodgkin lymphoma. Br J Haematol. 2014;164:258–265.
  • Contin C, Pitard V, Itai T, Nagata S, Moreau JF, Déchanet-Merville J. Membrane-anchored CD40 is processed by the tumor necrosis factor-alpha-converting enzyme. Implications for CD40 signaling. J Biol Chem. 2003;278:32801–3289.
  • Hock BD, McKenzie JL, Patton NW, et al. Circulating levels and clinical significance of soluble CD40 in patients with hematologic malignancies. Cancer. 2006;106:2148–2157.
  • Ansell SM, Horwitz SM, Engert A, et al. Phase I/II study of an anti-CD30 monoclonal antibody (MDX-060) in Hodgkin's lymphoma and anaplastic large-cell lymphoma. J Clin Oncol. 2007;25:2764–2769.
  • Schnell R, Borchmann P, Staak JO, et al. Clinical evaluation of ricin A-chain immunotoxins in patients with Hodgkin's lymphoma. Ann Oncol. 2003;14:729–736.
  • Younes A, Connors JM, Park SI, et al. Brentuximab vedotin combined with ABVD or AVD for patients with newly diagnosed Hodgkin's lymphoma: a phase 1, open-label, dose-escalation study. Lancet Oncol. 2013;14:1348–1356.
  • Gopal AK, Chen R, Smith SE, et al. Durable remissions in a pivotal phase 2 study of brentuximab vedotin in relapsed or refractory Hodgkin lymphoma. Blood. 2015;125:1236–1243.
  • Locatelli F, Neville K, Rosolen A, et al. Phase 1/2 study of Brentuximab Vedotin in pediatric pts with relapsed/refractory (R/R) Hodgkin lymphoma (HL) or systemic anaplastic large-cell lymphoma (sALCL): preliminary phase 2 HL data. Klin Padiatr. 2014;226:115.
  • Pettit GR, Kamano Y, Herald CL, et al. The isolation and structure of a remarkable marine animal antineoplastic constituent: dolastatin 10. J Am Chem Soc. 1987;109:6883–6885.
  • König R, Hopp J, Glöckner W, eds. C. Plinii Secundi naturalis historiae libri XXXVII. Liber XXXII. Munich: Artemis & Winkler; 1995:78.
  • Luesch H, Moore RE, Paul VJ, Mooberry SL, Corbett TH. Isolation of dolastatin 10 from the marine cyanobacterium Symploca species VP642 and total stereochemistry and biological evaluation of its analogue symplostatin 1. J Nat Prod. 2001;64:907–910.
  • Hansen HP, Dietrich S, Kisseleva T, et al. CD30 shedding from Karpas 299 lymphoma cells is mediated by TNF-alpha-converting enzyme. J Immunol. 2000;165:6703–6709.
  • Gause A, Pohl C, Tschiersch A, et al. Clinical significance of soluble CD30 antigen in the sera of patients with untreated Hodgkin's disease. Blood. 1991;77:1983–1988.
  • Pizzolo G, Vinante F, Chilosi M, et al. Serum levels of soluble CD30 molecule (Ki-1 antigen) in Hodgkin's disease: relationship with disease activity and clinical stage. Br J Haematol. 1990;75:282–284.
  • Gause A, Jung W, Schmits R, et al. Soluble CD8, CD25 and CD30 antigens as prognostic markers in patients with untreated Hodgkin's lymphoma. Ann Oncol. 1992;3(Suppl 4):49–52.
  • Nadali G, Vinante F, Ambrosetti A, et al. Serum levels of soluble CD30 are elevated in the majority of untreated patients with Hodgkin's disease and correlate with clinical features and prognosis. J Clin Oncol. 1994;12:793–797.
  • Nadali G, Tavecchia L, Zanolin E, et al. Serum level of the soluble form of the CD30 molecule identifies patients with Hodgkin's disease at high risk of unfavorable outcome. Blood. 1998;91:3011–3016.
  • Axdorph U, Sjöberg J, Grimfors G, Landgren O, Porwit-MacDonald A, Björkholm M. Biological markers may add to prediction of outcome achieved by the International Prognostic Score in Hodgkin's disease. Ann Oncol. 2000;11:1405–1411.
  • Zanotti R, Trolese A, Ambrosetti A, et al. Serum levels of soluble CD30 improve International Prognostic Score in predicting the outcome of advanced Hodgkin's lymphoma. Ann Oncol. 2002;13:1908–1914.
  • Visco C, Nadali G, Vassilakopoulos TP, et al. Very high levels of soluble CD30 recognize the patients with classical Hodgkin's lymphoma retaining a very poor prognosis. Eur J Haematol. 2006;77:387–394.
  • Hargreaves PG, Al-Shamkhani A. Soluble CD30 binds to CD153 with high affinity and blocks transmembrane signaling by CD30. Eur J Immunol. 2002;32:163–173.
  • Saraiva M, Smith P, Fallon PG, Alcami A. Inhibition of type 1 cytokine-mediated inflammation by a soluble CD30 homologue encoded by ectromelia (mousepox) virus. J Exp Med. 2002;196: 829–839.
  • Chen JY, Fu LS, Chu JJ, Chen HC, Chi CS. Plasma soluble CD30 level correlates negatively with age in children. J Microbiol Immunol Infect. 2007;40:168–172.
  • Chrul S, Polakowska E. Age-dependent changes of serum soluble CD30 concentration in children. Pediatr Transplant. 2011;15:515–518.
  • Kewitz S, Bernig T, Staege MS. Histone deacetylase inhibition and gene expression in Hodgkin's lymphoma. Leuk Res. 2012;36:773–778.
  • Hasanali ZS, Epner EM, Feith DJ, Loughran TP Jr, Sample CE. Vorinostat downregulates CD30 and decreases brentuximab vedotin efficacy in human lymphocytes. Mol Cancer Ther. 2014;13:2784–2792.
  • Yang DR, Ding XF, Luo J, et al. Increased chemosensitivity via targeting testicular nuclear receptor 4 (TR4)-Oct4-interleukin 1 receptor antagonist (IL1Ra) axis in prostate cancer CD133+ stem/progenitor cells to battle prostate cancer. J Biol Chem. 2013;288:16476–16483.
  • Di Mitri D, Toso A, Chen JJ, et al. Tumour-infiltrating Gr-1+ myeloid cells antagonize senescence in cancer. Nature. 2014;515:134–137.
  • Tesch H, Feller AC, Jücker M, Klein S, Merz H, Diehl V. Activation of cytokines in Hodgkin's disease. Ann Oncol. 1992;3(Suppl 4):13–16.
  • Gaiolla RD, Domingues MA, Niéro-Melo L, de Oliveira DE. Serum levels of interleukins 6, 10, and 13 before and after treatment of classic Hodgkin lymphoma. Arch Pathol Lab Med. 2011;135:483–489.
  • Biggar RJ, Johansen JS, Smedby KE, et al. Serum YKL-40 and interleukin 6 levels in Hodgkin lymphoma. Clin Cancer Res. 2008;14:6974–6978.
  • Jones K, Vari F, Keane C, et al. Serum CD163 and TARC as disease response biomarkers in classical Hodgkin lymphoma. Clin Cancer Res. 2013;19:731–742.
  • Bedewy M, El-Maghraby S, Bedewy A. CD163 and c-Met expression in the lymph node and the correlations between elevated levels of serum free light chain and the different clinicopathological parameters of advanced classical Hodgkin's lymphoma. Blood Res. 2013;48:121–127.
  • Haase R, Vilser C, Mauz-Körholz C, et al. Evaluation of the prognostic meaning of C-reactive protein (CRP) in children and adolescents with classical Hodgkin's lymphoma (HL). Klin Padiatr. 2012;224:377–381.
  • Bover LC, Cardó-Vila M, Kuniyasu A, et al. A previously unrecognized protein-protein interaction between TWEAK and CD163: potential biological implications. J Immunol. 2007;178:8183–8194.
  • Nielsen AR1, Plomgaard P, Krabbe KS, Johansen JS, Pedersen BK. IL-6, but not TNF-α, increases plasma YKL-40 in human subjects. Cytokine. 2011;55:152–155.
  • He CH, Lee CG, Dela Cruz CS, et al. Chitinase 3-like 1 regulates cellular and tissue responses via IL-13 receptor α2. Cell Rep. 2013;4:830–841.
  • Kapp U, Yeh WC, Patterson B, et al. Interleukin 13 is secreted by and stimulates the growth of Hodgkin and Reed-Sternberg cells. J Exp Med. 1999;189:1939–1946.
  • Trieu Y, Wen XY, Skinnider BF, Bray MR, Li Z, Claudio JO, Masih-Khan E, Zhu YX, Trudel S, McCart JA, Mak TW, Stewart AK. Soluble interleukin-13Ralpha2 decoy receptor inhibits Hodgkin's lymphoma growth in vitro and in vivo. Cancer Res. 2004;64:3271–3275.
  • Skinnider BF, Elia AJ, Gascoyne RD, et al. Interleukin 13 and interleukin 13 receptor are frequently expressed by Hodgkin and Reed-Sternberg cells of Hodgkin lymphoma. Blood. 2001;97:250–255.
  • Fiumara P, Cabanillas F, Younes A. Interleukin-13 levels in serum from patients with Hodgkin disease and healthy volunteers. Blood. 2001;98:2877–2878.
  • Tsai SC, Lin SJ, Chen PW, et al. EBV Zta protein induces the expression of interleukin-13, promoting the proliferation of EBV-infected B cells and lymphoblastoid cell lines. Blood. 2009;114:109–118.
  • Stanelle J, Döring C, Hansmann ML, Küppers R. Mechanisms of aberrant GATA3 expression in classical Hodgkin lymphoma and its consequences for the cytokine profile of Hodgkin and Reed/Sternberg cells. Blood. 2010;116:4202–4211.
  • Natoli A, Lüpertz R, Merz C, et al. Targeting the IL-4/IL-13 signaling pathway sensitizes Hodgkin lymphoma cells to chemotherapeutic drugs. Int J Cancer. 2013;133:1945–1954.
  • Navarro A, Diaz T, Martinez A, et al. Regulation of JAK2 by miR-135a: prognostic impact in classic Hodgkin lymphoma. Blood. 2009;114:2945–2951.
  • Hohaus S, Santangelo R, Giachelia M, et al. The viral load of Epstein-Barr virus (EBV) DNA in peripheral blood predicts for biological and clinical characteristics in Hodgkin lymphoma. Clin Cancer Res. 2011;17:2885–2892.
  • Niedobitek G, Päzolt D, Teichmann M, Devergne O. Frequent expression of the Epstein-Barr virus (EBV)-induced gene, EBI3, an IL-12 p40-related cytokine, in Hodgkin and Reed-Sternberg cells. J Pathol. 2002;198:310–316.
  • Bohlen H, Kessler M, Sextro M, Diehl V, Tesch H. Poor clinical outcome of patients with Hodgkin's disease and elevated interleukin-10 serum levels. Clinical significance of interleukin-10 serum levels for Hodgkin's disease. Ann Hematol. 2000;79:110–113.
  • Viviani S, Notti P, Bonfante V, Verderio P, Valagussa P, Bonadonna G. Elevated pretreatment serum levels of Il-10 are associated with a poor prognosis in Hodgkin's disease, the milan cancer institute experience. Med Oncol. 2000;17:59–63.
  • Sarris AH, Kliche KO, Pethambaram P, et al. Interleukin-10 levels are often elevated in serum of adults with Hodgkin's disease and are associated with inferior failure-free survival. Ann Oncol. 1999;10:433–440.
  • Vassilakopoulos TP, Nadali G, Angelopoulou MK, et al. Serum interleukin-10 levels are an independent prognostic factor for patients with Hodgkin's lymphoma. Haematologica. 2001;86:274–281.
  • Rautert R, Schinköthe T, Franklin J, et al. Elevated pretreatment interleukin-10 serum level is an International Prognostic Score (IPS)-independent risk factor for early treatment failure in advanced stage Hodgkin lymphoma. Leuk Lymphoma. 2008;49:2091–2098.
  • Bien E, Balcerska A, Adamkiewicz-Drozynska E, Rapala M, Krawczyk M, Stepinski J. Pre-treatment serum levels of interleukin-10, interleukin-12 and their ratio predict response to therapy and probability of event-free and overall survival in childhood soft tissue sarcomas, Hodgkin's lymphomas and acute lymphoblastic leukemias. Clin Biochem. 2009;42:1144–1157.
  • Föll JL, Max D, Giersberg C, Körholz D, Staege MS. Sensitivity of Hodgkin's lymphoma cell lines to the cell cycle inhibitor roscovitine. Anticancer Res. 2008;28:887–894.
  • Knappe A, Hör S, Wittmann S, Fickenscher H. Induction of a novel cellular homolog of interleukin-10, AK155, by transformation of T lymphocytes with herpesvirus saimiri. J Virol. 2000;74:3881–3887.
  • Merz H, Houssiau FA, Orscheschek K, et al. Interleukin-9 expression in human malignant lymphomas: unique association with Hodgkin's disease and large cell anaplastic lymphoma. Blood. 1991;78:1311–1317.
  • Fischer M, Bijman M, Molin D, et al. Increased serum levels of interleukin-9 correlate to negative prognostic factors in Hodgkin's lymphoma. Leukemia. 2003;17:2513–2516.
  • Imai T, Baba M, Nishimura M, Kakizaki M, Takagi S, Yoshie O. The T cell-directed CC chemokine TARC is a highly specific biological ligand for CC chemokine receptor 4. J Biol Chem. 1997;272:15036–15042.
  • Imai T, Chantry D, Raport CJ, et al. Macrophage-derived chemokine is a functional ligand for the CC chemokine receptor 4. J Biol Chem. 1998;273:1764–1768.
  • Bernardini G, Hedrick J, Sozzani S, et al. Identification of the CC chemokines TARC and macrophage inflammatory protein-1 beta as novel functional ligands for the CCR8 receptor. Eur J Immunol. 1998;28:582–588.
  • Nomiyama H, Imai T, Kusuda J, Miura R, Callen DF, Yoshie O. Human chemokines fractalkine (SCYD1), MDC (SCYA22) and TARC (SCYA17) are clustered on chromosome 16q13. Cytogenet Cell Genet. 1998;81:10–11.
  • Imai T, Nagira M, Takagi S, et al. Selective recruitment of CCR4-bearing Th2 cells toward antigen-presenting cells by the CC chemokines thymus and activation-regulated chemokine and macrophage-derived chemokine. Int Immunol. 1999;11:81–88.
  • Riezu-Boj JI, Larrea E, Aldabe R, et al. Hepatitis C virus induces the expression of CCL17 and CCL22 chemokines that attract regulatory T cells to the site of infection. J Hepatol. 2011;54:422–431.
  • Maruyama T, Kono K, Izawa S, et al. CCL17 and CCL22 chemokines within tumor microenvironment are related to infiltration of regulatory T cells in esophageal squamous cell carcinoma. Dis Esophagus. 2010;23:422–429.
  • Mizukami Y, Kono K, Kawaguchi Y, et al. CCL17 and CCL22 chemokines within tumor microenvironment are related to accumulation of Foxp3+ regulatory T cells in gastric cancer. Int J Cancer. 2008;122:2286–2293.
  • Niens M, Visser L, Nolte IM, et al. Serum chemokine levels in Hodgkin lymphoma patients: highly increased levels of CCL17 and CCL22. Br J Haematol. 2008;140:527–536.
  • Weihrauch MR, Manzke O, Beyer M, et al. Elevated serum levels of CC thymus and activation-related chemokine (TARC) in primary Hodgkin's disease: potential for a prognostic factor. Cancer Res. 2005;65:5516–5519.
  • Sauer M, Plütschow A, Jachimowicz RD, et al. Baseline serum TARC levels predict therapy outcome in patients with Hodgkin lymphoma. Am J Hematol. 2013;88:113–115.
  • Plattel WJ, van den Berg A, Visser L, et al. Plasma thymus and activation-regulated chemokine as an early response marker in classical Hodgkin's lymphoma. Haematologica. 2012;97:410–415.
  • Fehniger TA, Larson S, Trinkaus K, et al. A phase 2 multicenter study of lenalidomide in relapsed or refractory classical Hodgkin lymphoma. Blood. 2011;118:5119–5125.
  • Ferretti E, Pistoia V, Corcione A. Role of fractalkine/CX3CL1 and its receptor in the pathogenesis of inflammatory and malignant diseases with emphasis on B cell malignancies. Mediators Inflamm. 2014;2014:480941.
  • Scott DW, Chan FC, Hong F, et al. Gene expression-based model using formalin-fixed paraffin-embedded biopsies predicts overall survival in advanced-stage classical Hodgkin lymphoma. J Clin Oncol. 2013;31:692–700.
  • Inngjerdingen M, Damaj B, Maghazachi AA. Human NK cells express CC chemokine receptors 4 and 8 and respond to thymus and activation-regulated chemokine, macrophage-derived chemokine, and I-309. J Immunol. 2000;164:4048–4054.
  • Lavergne E, Combadière B, Bonduelle O, et al. Fractalkine mediates natural killer-dependent antitumor responses in vivo. Cancer Res. 2003;63:7468–7474.
  • Semmling V, Lukacs-Kornek V, Thaiss CA, et al. Alternative cross-priming through CCL17-CCR4-mediated attraction of CTLs toward NKT cell-licensed DCs. Nat Immunol. 2010;11:313–320.
  • Staege MS. A multi-component model for Hodgkin's lymphoma. PLoS ONE 2015; 10:e0124614.
  • Mizia-Malarz A, Sobol G, Janowska J, Wos H, Zahorska-Markiewicz B. Prognostic value of proangiogenic cytokines in children with lymphomas. Pediatr Blood Cancer. 2009;53:1195–1199.
  • Ben Arush MW, Ben Barak A, Maurice S, Livne E. Serum VEGF as a significant marker of treatment response in Hodgkin lymphoma. Pediatr Hematol Oncol. 2007;24:111–115.
  • Reiners KS, Gossmann A, von Strandmann EP, Böll B, Engert A, Borchmann P. Effects of the anti-VEGF monoclonal antibody bevacizumab in a preclinical model and in patients with refractory and multiple relapsed Hodgkin lymphoma. J Immunother. 2009;32:508–512.
  • Kowalska M, Tajer J, Chechlinska M, et al. Discriminant analysis involving serum cytokine levels and prediction of the response to therapy of patients with Hodgkin lymphoma. Tumour Biol. 2012;33:1733–1738.
  • Mestre F, Gutierrez A, Ramos R, et al. Expression of COX-2 on Reed-Sternberg cells is an independent unfavorable prognostic factor in Hodgkin lymphoma treated with ABVD. Blood. 2012;119:6072–6079.
  • Koh YW, Park C, Yoon DH, Suh C, Huh J. Prognostic significance of COX-2 expression and correlation with Bcl-2 and VEGF expression, microvessel density, and clinical variables in classical Hodgkin lymphoma. Am J Surg Pathol. 2013;37:1242–12451.
  • Ohsawa M, Fukushima H, Ikura Y, et al. Expression of cyclooxygenase-2 in Hodgkin's lymphoma: its role in cell proliferation and angiogenesis. Leuk Lymphoma. 2006;47:1863–1871.
  • Kowalska M, Tajer J, Chechlinska M, et al. Serum macrophage colony-stimulating factor (M-CSF) in patients with Hodgkin lymphoma. Med Oncol. 2012;29:2143–2147.
  • Ullrich K, Wurster KD, Lamprecht B, et al. BAY 43-9006/Sorafenib blocks CSF1R activity and induces apoptosis in various classical Hodgkin lymphoma cell lines. Br J Haematol. 2011;155:398–402.
  • Koh YW, Park C, Yoon DH, Suh C, Huh J. CSF-1R expression in tumor-associated macrophages is associated with worse prognosis in classical Hodgkin lymphoma. Am J Clin Pathol. 2014;141:573–583.
  • Lamprecht B, Walter K, Kreher S, et al. Derepression of an endogenous long terminal repeat activates the CSF1R proto-oncogene in human lymphoma. Nat Med. 2010;16:571–579.
  • Kewitz S, Staege MS. Expression and regulation of the endogenous retrovirus 3 (ERV3) in Hodgkin's lymphoma cells. Front Oncol. 2013;3:179.
  • Staege MS, Müller K, Kewitz S, et al. Expression of dual-specificity phosphatase 5 pseudogene 1 (DUSP5P1) in Hodgkin's lymphoma cells. PLoS ONE. 2014;9:e89577.
  • van den Berg A, Tayari M, Kortman G, et al. Long non-coding RNAs are commonly deregulated in Hodgkin lymphoma. Klin Padiatr. 2014;226:100.
  • Viviani S, Camerini E, Bonfante V, et al. Soluble interleukin-2 receptors (sIL-2R) in Hodgkin's disease: outcome and clinical implications. Br J Cancer. 1998;77:992–997.
  • Andersson B, Tullgren O, Giscombe R, Holm G, Johansson B, Björkholm M. Increased serum CD8 soluble antigen level is associated with blood lymphocyte abnormalities and other established indicators of a poor prognosis in adult Hodgkin's disease. Br J Haematol. 1992;80:166–171.
  • Verpoort K, Roschansky V, Tschiersch A, et al. The clinical significance of serum CD8 antigen levels in adult patients with Hodgkin's disease. Ann Oncol. 1991;2:579–583.
  • Ip SH, Thompson E, Dodge RK, et al. Increased serum CD8 antigen level in childhood Hodgkin's disease relates to advanced stage and poor treatment outcome. Blood. 1989;73:209–213.
  • Sundström C, Enblad G, Tötterman TH. Soluble vascular cell adhesion molecule–1 (sVCAM-1) is an independent prognostic marker in Hodgkin's disease. Br J Haematol. 1998;102:701–709.
  • Syrigos KN, Salgami E, Karayiannakis AJ, Katirtzoglou N, Sekara E, Roussou P. Prognostic significance of soluble adhesion molecules in Hodgkin's disease. Anticancer Res. 2004;24:1243–1247.
  • Yavuz G, Gozdasoglu S, Unal E, et al. Serum levels and differential expression of intercellular adhesion molecule-1 in childhood leukemia and malignant lymphoma: prognostic importance and relationship with survival. Pediatr Hematol Oncol. 1999;16:149–158.
  • Enblad G, Kälkner KM, Gidlöf C, Glimelius B, Tötterman TH. Soluble ICAM-1 in Hodgkin's disease: a promising independent predictive marker for survival. Leuk Lymphoma. 1995;19:243–251.
  • Vinante F, Rigo A, Tecchio C, et al. Correlation between clinical features and circulating levels of soluble intercellular adhesion molecule-1 in Hodgkin's disease. Int J Clin Lab Res. 1995;25:84–87.
  • Chadburn A, Lee P, Hsu M, et al. Expression of cancer testis antigen CT45 in classical Hodgkin lymphoma and other B-cell lymphomas. Proc Natl Acad Sci U S A. 2010;107:3093–3098.
  • Claviez A, Kruse ML, Pollmann M, et al. Characterization and expression of CT45 in Hodgkin's lymphoma. Clin Cancer Res. 2006;12:4804–4811.
  • Kewitz S, Staege MS. Knock-down of PRAME increases retinoic acid signaling and cytotoxic drug sensitivity of Hodgkin lymphoma cells. PLoS ONE. 2013;8:e55897.
  • Lastoria S, Svanera G, Capobianco G, et al. Long-term follow-up study on the role of serum CA-125 as a prognostic factor in 221 newly diagnosed patients with Hodgkin's lymphoma. Leuk Lymphoma. 2007;48:723–730.
  • Beguin Y, Fassotte MF, Seidel L, Luyckx F, Fillet G. Limited usefulness of CA125 measurement in the management of Hodgkin's and non-Hodgkin's lymphoma. Eur J Haematol. 2007;78:399–404.
  • Sansoni V, Casas-Delucchi CS, Rajan M, et al. The histone variant H2A.Bbd is enriched at sites of DNA synthesis. Nucleic Acid Res. 2014;42:6405–6420.
  • Reichel J, Chadburn A, Rubinstein PG, et al. Flow sorting and exome sequencing reveal the oncogenome of primary Hodgkin and Reed-Sternberg cells. Blood. 2015;125:1061–1072.
  • Giulino-Roth L, Reichel J, Teruya-Feldstein J, et al. Beta-2 microglobulin (B2 M) genomic alterations and absent protein expression in pediatric and adolescent classical Hodgkin lymphoma. Klin Padiatr. 2014;226:101.
  • Kloor M, Michel S, Buckowitz B, et al. Beta2-microglobulin mutations in microsatellite unstable colorectal tumors. Int J Cancer. 2007;121:454–458.
  • Tikidzhieva A1, Benner A, Michel S, et al. Microsatellite instability and Beta2-Microglobulin mutations as prognostic markers in colon cancer: results of the FOGT-4 trial. Br J Cancer. 2012;106:1239–1245.
  • Ikeda H, Lethé B, Lehmann F, et al. Characterization of an antigen that is recognized on a melanoma showing partial HLA loss by CTL expressing an NK inhibitory receptor. Immunity. 1997;6:199–208.
  • Yan M, Himoudi N, Basu BP, et al. Increased PRAME antigen-specific killing of malignant cell lines by low avidity CTL clones, following treatment with 5-aza-2’-deoxycytidine. Cancer Immunol Immunother. 2011;60:1243–1255.
  • Epping MT, Bernards R. A causal role for the human tumor antigen preferentially expressed antigen of melanoma in cancer. Cancer Res. 2006;66:10639–10642.
  • van ‘t Veer LJ, Dai H, van de Vijver MJ, et al. Gene expression profiling predicts clinical outcome of breast cancer. Nature. 2002;415:530–536.
  • Winkler C, Steingrube DS, Altermann W, et al. Hodgkin's lymphoma RNA-transfected dendritic cells induce cancer/testis antigen specific immune responses. Cancer Immunol Immunother. 2012;61:1769–1779.
  • Steidl C, Diepstra A, Lee T, et al. Gene expression profiling of microdissected Hodgkin Reed-Sternberg cells correlates with treatment outcome in classical Hodgkin lymphoma. Blood. 2012;120:3530–3540.
  • Muenst S, Hoeller S, Dirnhofer S, Tzankov A. Increased programmed death-1 +tumor-infiltrating lymphocytes in classical Hodgkin lymphoma substantiate reduced overall survival. Hum Pathol. 2009;40:1715–1722.
  • Barros M, Segges P, Hassan R, Niedobitek G. PD1+ cells in pediatric classical Hodgkin lymphoma is associated with better outcome. Klin Padiatr. 2014;226:102.
  • Ansell SM, Lesokhin AM, Borrello I, et al. PD-1 blockade with nivolumab in relapsed or refractory Hodgkin's lymphoma. N Engl J Med. 2015;372:311–319.
  • Plütschow A, Pogge von Strandmann E, Reiners KS, et al. Galectin-1 serum levels reflect tumor burden and adverse clinical features in classical Hodgkin lymphoma. Blood. 2013;121:3431–3433.
  • Venkataraman G, Mirza MK, Eichenauer DA, Diehl V. Current status of prognostication in classical Hodgkin lymphoma. Br J Haematol. 2014;165:287–299.
  • Juszczynski P, Ouyang J, Monti S, et al. The AP1-dependent secretion of galectin-1 by Reed Sternberg cells fosters immune privilege in classical Hodgkin lymphoma. Proc Natl Acad Sci U S A. 2007;104:13134–13139.
  • Rodig SJ, Ouyang J, Juszczynski P, et al. AP1-dependent galectin-1 expression delineates classical hodgkin and anaplastic large cell lymphomas from other lymphoid malignancies with shared molecular features. Clin Cancer Res. 2008;14:3338–3344.
  • Kamper P, Ludvigsen M, Bendix K, et al. Proteomic analysis identifies galectin-1 as a predictive biomarker for relapsed/refractory disease in classical Hodgkin lymphoma. Blood. 2011;117:6638–6649.
  • Suzuki O, Hirsch B, Abe M, Dürkop H, Stein H. Galectin-1-mediated cell death is increased by CD30-induced signaling in anaplastic large cell lymphoma cells but not in Hodgkin lymphoma cells. Lab Invest. 2012;92:191–199.
  • Gandhi MK, Moll G, Smith C, et al. Galectin-1 mediated suppression of Epstein-Barr virus specific T-cell immunity in classic Hodgkin lymphoma. Blood. 2007;110:1326–1329.
  • Ouyang J, Plütschow A, Pogge von Strandmann E, et al. Galectin-1 serum levels reflect tumor burden and adverse clinical features in classical Hodgkin lymphoma. Blood. 2013;121:3431–3433.
  • Hasenclever D, Diehl V. A prognostic score for advanced Hodgkin's disease. International Prognostic Factors Project on Advanced Hodgkin's Disease. N Engl J Med. 1998;339:1506–1514.
  • Natkunam Y, Hsi ED, Aoun P, et al. Expression of the human germinal center-associated lymphoma (HGAL) protein identifies a subset of classic Hodgkin lymphoma of germinal center derivation and improved survival. Blood. 2007;109:298–305.
  • Romero-Camarero I, Jiang X, Natkunam Y, et al. Germinal centre protein HGAL promotes lymphoid hyperplasia and amyloidosis via BCR-mediated Syk activation. Nat Commun. 2013;4:1338.
  • Herbeck R, Teodorescu Brînzeu D, Giubelan M, Lazăr E, Dema A, Ioniţă H. B-cell transcription factors Pax-5, Oct-2, BOB.1, Bcl-6, and MUM1 are useful markers for the diagnosis of nodular lymphocyte predominant Hodgkin lymphoma. Rom J Morphol Embryol. 2011;52:69–74.
  • Valsami S, Pappa V, Rontogianni D, et al. A clinicopathological study of B-cell differentiation markers and transcription factors in classical Hodgkin's lymphoma: a potential prognostic role of MUM1/IRF4. Haematologica. 2007;92:1343–1350.
  • Cretney E, Xin A, Shi W, et al. The transcription factors Blimp-1 and IRF4 jointly control the differentiation and function of effector regulatory T cells. Nat Immunol. 2011;12:304–311.
  • Nie K, Gomez M, Landgraf P, et al. MicroRNA-mediated down-regulation of PRDM1/Blimp-1 in Hodgkin/Reed-Sternberg cells: a potential pathogenetic lesion in Hodgkin lymphomas. Am J Pathol. 2008;173:242–252.
  • Buettner M, Greiner A, Avramidou A, Jäck HM, Niedobitek G. Evidence of abortive plasma cell differentiation in Hodgkin and Reed-Sternberg cells of classical Hodgkin lymphoma. Hematol Oncol. 2005;23:127–132.
  • Garcia JF, Roncador G, García JF, et al. PRDM1/BLIMP-1 expression in multiple B and T-cell lymphoma. Haematologica. 2006;91:467–474.
  • Huang X, Zhou X, Wang Z, et al. CD99 triggers upregulation of miR-9-modulated PRDM1/BLIMP1 in Hodgkin/Reed-Sternberg cells and induces redifferentiation. Int J Cancer. 2012;131:E382–394.
  • Vogel MJ, Xie L, Guan H, et al. FOXO1 repression contributes to block of plasma cell differentiation in classical Hodgkin lymphoma. Blood. 2014;124:3118–3129.
  • Best T, Li D, Skol AD, et al. Variants at 6q21 implicate PRDM1 in the etiology of therapy-induced second malignancies after Hodgkin's lymphoma. Nat Med. 2011;17:941–943.
  • Jones K, Nourse JP, Keane C, Bhatnagar A, Gandhi MK. Plasma microRNA are disease response biomarkers in classical Hodgkin lymphoma. Clin Cancer Res. 2014;20:253–264.
  • Kewitz S, Stiefel M, Kramm CM, Staege MS. Impact of O6-methylguanine-DNA methyltransferase (MGMT) promoter methylation and MGMT expression on dacarbazine resistance of Hodgkin's lymphoma cells. Leuk Res. 2014;38:138–143.
  • Staege MS, Hattenhorst UE, Neumann I, Hutter C, Foja S, Burdach S. DNA-Microarrays as tools for the identification of tumor specific gene expression profiles: applications in tumor biology, diagnosis and therapy. Klin Padiatr. 2003;215:135–138.
  • Sánchez-Aguilera A, Montalbán C, de la Cueva P, et al.; Spanish Hodgkin Lymphoma Study Group. Tumor microenvironment and mitotic checkpoint are key factors in the outcome of classic Hodgkin lymphoma. Blood. 2006;108:662–668.
  • Chetaille B, Bertucci F, Finetti P, et al. Molecular profiling of classical Hodgkin lymphoma tissues uncovers variations in the tumor microenvironment and correlations with EBV infection and outcome. Blood. 2009;113:2765–2775.
  • Steidl C, Lee T, Shah SP, et al. Tumor-associated macrophages and survival in classic Hodgkin's lymphoma. N Engl J Med. 2010;362:875–885.
  • Bertucci F, Chetaille B, Xerri L. Gene expression profiling for in silico microdissection of Hodgkin's lymphoma microenvironment and identification of prognostic features. Adv Hematol. 2011;2011:485310.
  • Kamper P, Bendix K, Hamilton-Dutoit S, Honoré B, Nyengaard JR, d'Amore F. Tumor-infiltrating macrophages correlate with adverse prognosis and Epstein-Barr virus status in classical Hodgkin's lymphoma. Haematologica. 2011;96:269–276.
  • Koh YW, Park CS, Yoon DH, Suh C, Huh J. CD163 expression was associated with angiogenesis and shortened survival in patients with uniformly treated classical Hodgkin lymphoma. PLoS ONE. 2014;9:e87066.
  • Tan KL, Scott DW, Hong F, Kahl BS, et al. Tumor-associated macrophages predict inferior outcomes in classic Hodgkin lymphoma: a correlative study from the E2496 Intergroup trial. Blood. 2012;120:3280–3287.
  • Zaki MA, Wada N, Ikeda J, et al. Prognostic implication of types of tumor-associated macrophages in Hodgkin lymphoma. Virchows Arch. 2011;459:361–366.
  • Jakovic LR, Mihaljevic BS, Perunicic Jovanovic MD, Bogdanovic AD, Andjelic BM, Bumbasirevic VZ. The prognostic relevance of tumor associated macrophages in advanced stage classical Hodgkin lymphoma. Leuk Lymphoma. 2011;52:1913–1919.
  • Sánchez-Espiridión B, Martin-Moreno AM, Montalbán C, et al. Immunohistochemical markers for tumor associated macrophages and survival in advanced classical Hodgkin's lymphoma. Haematologica. 2012;97:1080–1084.
  • Kayal S, Mathur S, Karak AK, et al. CD68 tumor-associated macrophage marker is not prognostic of clinical outcome in classical Hodgkin lymphoma. Leuk Lymphoma. 2014;55:1031–1037.
  • Agur A, Amir G, Paltiel O, et al. CD68 staining correlates with the size of residual mass but not with survival in classical Hodgkin lymphoma. Leuk Lymphoma. 2015;56:1315–1319.
  • Panico L, Tenneriello V, Ronconi F, et al. High CD20+ background cells predict a favorable outcome in classical Hodgkin lymphoma and antagonize CD68 +macrophages. Leuk Lymphoma. 2015;56:1636–1642.
  • Casulo C, Arcila M, Bohn OL, Teruya-Feldstein J, Maragulia J, Moskowitz CH. Tumor associated macrophages in relapsed and refractory Hodgkin lymphoma. Leuk Res. 2013;37:1178–1183.
  • Gupta S, Yeh S, Chami R, Punnett A, Chung C. The prognostic impact of tumour-associated macrophages and Reed-Sternberg cells in paediatric Hodgkin lymphoma. Eur J Cancer. 2013;49:3255–3261.
  • Barros M, Segges P, Vera-Lozada G, Hassan R, Niedobitek G. M2 macrophages but not M1 macrophages are associated with worst outcome in classical Hodgkin lymphoma. Klin Padiatr. 2014;226:102.
  • Kurch L, Mauz-Körholz C, Bertling S, et al. The EuroNet paediatric Hodgkin network—modern imaging data management for real time central review in multicentre trials. Klin Padiatr. 2013;225:357–361.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.