1,450
Views
18
CrossRef citations to date
0
Altmetric
Research Article

The synthesis of (Z)-4-oxo-4-(arylamino)but-2-enoic acids derivatives and determination of their inhibition properties against human carbonic anhydrase I and II isoenzymes

, , , , &
Pages 939-945 | Received 25 Jun 2015, Accepted 08 Jul 2015, Published online: 24 Aug 2015

References

  • Boros M, Kosi1 JK, Vamos J, et al. Methods for syntheses of N-methyl-DL-aspartic acid derivatives. Amino Acids 2007;33:709–17
  • Faturacı Y, Coskun N. Substituent effects on the regioselectivity of maleamic acid formation and hydrogen chloride addition to N-aryl maleimides. Turk J Chem 2012;36:749–58
  • Saedi H. Solvent-free preparation of N-substituted maleanilic acid. Bull Chem Soc Eth 2013;27:137–41
  • Khattab MK, Ragab F, Galal SA, El Diwani HI. Synthesis of 4-(1H-benzo[d]imidazol-2-yl)aniline derivatives of expected anti-HCV activity. Int J Res Pharm Chem 2012;2:937–46
  • Kumar PP, Devi BR, Dubey PK. A facile and green synthesis of N-substituted imides. Ind J Chem 2013;62:1166–71
  • Li K, Yuan C, Zhang S, Fang Q. A facile and economical procedure for the synthesis of maleimide derivatives using an acidic ionic liquid as a catalyst. Tetrahedron Lett 2012;53:4245–7
  • El-Gaby MSA, Gaber AM, Atalla AA, Abd Al-Wahab KA. Novel synthesis and antifungal activity of pyrrole and pyrrolo[2,3-d]pyrimidine derivatives containing sulfonamido moieties. II Farmaco 2002;57:613–17
  • Isobe Y, Onimura K, Tsutsumi H, Oishi T. Asymmetric polymerization of n-1-naphthylmaleimide with chiral anionic initiator:  preparation of highly optically active poly(N-1-naphthylmaleimide). Macromolecules 2001;34:7617–23
  • Kaur A, Singh B, Singh Jaggi AS. Synthesis and evaluation of novel 2,3,5-triaryl-4H,2,3,3a,5,6,6a-hexahydropyrrolo[3,4-d]isoxazole-4,6-diones for advanced glycation end product formation inhibitory activity. Bioorg Med Chem Lett 2013;23:797–801
  • Ol'shevskaya A, Luzgina VN, Kurakina YA, et al. Synthesis and antitumor properties of carborane conjugates of 5-(4-aminophenyl)-10,15,20-triphenylporphyrin. Doklady Chem 2012;443:91–6
  • Haval KP, Mhaske SB, Argade NP. Cyanuric chloride: decent dehydrating agent for an exclusive and efficient synthesis of kinetically controlled isomaleimides. Tetrahedron, 2006;62:937–42
  • Mohammed IA, Mustapha A. Synthesis of new azo compounds based on N-(4-hydroxypheneyl)maleimide and N-(4-methylpheneyl)maleimide. Molecules 2010;15:7498–508
  • Molla MR, Ghosh S. Exploring versatile sulfhydryl chemistry in the chain end of a synthetic polylactide. Macromolecules 2012;45:8561–70
  • Gülçin İ, Beydemir Ş, Büyükokuroğlu ME. In vitro and in vivo effects of dantrolene on carbonic anhydrase enzyme activities. Biol Pharm Bull 2004;27:613–16
  • Beydemir Ş, Gülçin İ. Effect of melatonin on carbonic anhydrase from human erythrocyte in vitro and from rat erythrocyte in vivo. J Enzyme Inhib Med Chem 2004;19:193–7
  • ArasHisar Ş, Hisar O, Beydemir Ş, et al. Effect of vitamin E on carbonic anhydrase enzyme activity in rainbow trout (Oncorhynchus mykiss) erythrocytes in vitro and in vivo. Acta Vet Hung 2004;52:413–22
  • Supuran CT. Carbonic anhydrases: from biomedical applications of the inhibitors and activators to biotechnological use for CO2 capture. J Enzyme Inhib Med Chem 2013;28:229–30
  • Carta F, Di Cesare Mannelli L, Pinard M, et al. A class of sulfonamide carbonic anhydrase inhibitors with neuropathic pain modulating effects. Bioorg Med Chem 2015;23:1828–40
  • Hisar O, Beydemir Ş, Gülçin İ, et al. Effect of low molecular weight plasma inhibitors of rainbow trout (Oncorhyncytes mykiss) on human erythrocytes carbonic anhydrase-II isozyme activity in vitro and rat erythrocytes in vivo. J Enzyme Inhib Med Chem 2005;20:35–9
  • Hisar O, Beydemir Ş, Gülçin İ, et al. The effect of melatonin hormone on carbonic anhydrase enzyme activity in rainbow trout (Oncorhynchus mykiss) erythrocytes in vitro and in vivo. Turk J Vet Anim Sci 2005;29:841–5
  • Supuran CT. Carbonic anhydrases: novel therapeutic applications for inhibitors and activators. Nat Rev Drug Discov 2008;7:168–81
  • Innocenti A, Öztürk Sarıkaya SB, Gülçin İ, Supuran CT. Carbonic anhydrase inhibitors. Inhibition of mammalian isoforms I-XIV with a series of natural product polyphenols and phenolic acids. Bioorg Med Chem 2010;18:2159–64
  • Innocenti A, Gülçin İ, Scozzafava A, Supuran CT. Carbonic anhydrase inhibitors. Antioxidant polyphenol natural products effectively inhibit mammalian isoforms I-XV. Bioorg Med Chem Lett 2010;20:5050–3
  • Gülçin İ, Beydemir S. Phenolic compounds as antioxidants: Carbonic anhydrase isoenzymes inhibitors. Mini Rev Med Chem 2013;13:408–30
  • Polat Kose L, Gülçin İ, Özdemir H, et al. The effects of some avermectins on bovine carbonic anhydrase enzyme. J Enzyme Inhib Med Chem 2015. [Epub ahead of print]. https://doi.org/http://dx.doi.org/10.3109/14756366.2015.1064406
  • Taslimi P, Gülçin İ, Öztaşkın N, et al. The effects of some bromophenol derivatives on human carbonic anhydrase isoenzymes. J Enzyme Inhib Med Chem 2015. [Epub ahead of print]. https://doi.org/http://dx.doi.org/10.3109/14756366.2015.1054820
  • Taslimi P, Gulcin İ, Ozgeris B, et al. The human carbonic anhydrase isoenzymes I and II (hCA I and II) inhibition effects of trimethoxyindane derivatives. J Enzyme Inhib Med Chem 2015. [Epub ahead of print]. doi:10.3109/14756366.2015.1014476
  • Gocer H, Aslan A, Gülçin İ, Supuran CT. Spirobisnaphthalenes effectively inhibit carbonic anhydrase. J Enzyme Inhib Med Chem 2015. [Epub ahead of print]. https://doi.org/http://dx.doi.org/10.3109/14756366.2015.1047359
  • Gocer H, Topal F, Topal M, et al. Acetylcholinesterase and carbonic anhydrase isoenzymes I and II inhibition profiles of taxifolin. J Enzyme Inhib Med Chem 2015. [Epub ahead of print]. https://doi.org/http://dx.doi.org/10.3109/14756366.2015.1036051
  • Scozzafava A, Kalın P, Supuran CT, et al. The impact of hydroquinone on acetylcholine esterase and certain human carbonic anhydrase isoenzymes (hCA I, II, IX, and XII). J Enzyme Inhib Med Chem 2015. [Epub ahead of print]. http://dx.doi:10.3109/14756366.2014.999236
  • Scozzafava A, Passaponti M, Supuran CT, Gülçin İ. Carbonic anhydrase inhibitors: guaiacol and catechol derivatives effectively inhibit certain human carbonic anhydrase isoenzymes (hCA I, II, IX, and XII). J Enzyme Inhib Med Chem 2015;30:586–91
  • Gül Hİ, Kucukoglu K, Yamali C, et al. Synthesis of 4-(2-substitutedhydrazinyl)benzenesulfonamides and their carbonic anhydrase inhibitory effects. J Enzyme Inhib Med Chem 2015. [Epub ahead of print]. https://doi.org/http://dx.doi.org/10.3109/14756366.2015.1047359
  • Alterio V, Di Fiore A, D'Ambrosio K, et al. Multiple binding modes of inhibitors to carbonic anhydrases: how to design specific drugs targeting 15 different isoforms. Chem Rev 2012;112:4421–68
  • Ceruso M, Vullo D, Scozzafava A, Supuran CT. Sulfonamides incorporating fluorine and 1,3,5-triazine moieties are effective inhibitors of three β-class carbonic anhydrases from Mycobacterium tuberculosis. J Enzyme Inhib Med Chem 2014;29:686–9
  • Akıncıoğlu A, Akıncıoğlu H, Gülçin I, et al. Discovery of potent carbonic anhydrase and acetylcholine esterase inhibitors: novel sulfamoylcarbamates and sulfamides derived from acetophenones. Bioorg Med Chem 2015;23:3592–602
  • Supuran CT, Scozzafava A. Applications of carbonic anhydrase inhibitors and activators in therapy. Expert Opin Ther Pat 2002;12:217–42
  • Bozdag M, Carta F, Vullo D, et al. Synthesis of a new series of dithiocarbamates with effective human carbonic anhydrase inhibitory activity and antiglaucoma action. Bioorg Med Chem 2015;23:2368–76
  • Yıldırım A, Atmaca U, Keskin A, et al. N-Acylsulfonamides strongly inhibit human carbonic anhydrase isoenzymes I and II. Bioorg Med Chem 2015;23:2598–605
  • Boztaş M, Çetinkaya Y, Topal M, et al. Synthesis and carbonic anhydrase isoenzymes I, II, IX, and XII inhibitory effects of dimethoxy-bromophenol derivatives incorporating cyclopropane moieties. J Med Chem 2015;58:640–50
  • Akbaba Y, Bastem E, Topal F, et al. Synthesis and carbonic anhydrase inhibitory effects of novel sulfamides derived from 1-aminoindanes and anilines. Arch Pharm 2014;347:950–7
  • Göksu S, Naderi A, Akbaba Y, et al. Carbonic anhydrase inhibitory properties of novel benzylsulfamides using molecular modeling and experimental studies. Bioorg Chem 2014;56:75–82
  • Supuran CT. Carbonic anhydrases as drug targets. Curr Pharm Des 2008;14:601–2
  • Supuran CT. Structure-based drug discovery of carbonic anhydrase inhibitors. J Enzyme Inhib Med Chem 2012;27:759–72
  • Supuran CT. Carbonic anhydrase inhibitors: an editorial. Expert Opin Ther Pat 2013;23:677–9
  • Harju AK, Bootorabi F, Kuuslahti M, et al. Carbonic anhydrase III: a neglected isozyme is stepping into the limelight. J Enzyme Inhib Med Chem 2013;28:231–9
  • Del Prete S, De Luca V, Vullo D, et al. Biochemical characterization of the γ-carbonic anhydrase from the oral pathogen Porphyromonas gingivalis, PgiCA. J Enzyme Inhib Med Chem 2014;29:532–7
  • Carta F, Osman SM, Vullo D, et al. Poly(amidoamine) dendrimers with carbonic anhydrase inhibitory activity and antiglaucoma action. J Med Chem 2015;58:4039–45
  • Arabaci B, Gülçin İ, Alwasel S. Capsaicin: a potent inhibitor of carbonic anhydrase isoenzymes. Molecules 2015;19:10103–14
  • Göçer H, Akıncıoğlu A, Göksu S, et al. Carbonic anhydrase and acetylcholine esterase inhibitory effects of carbamates and sulfamoylcarbamates. J Enzyme Inhib Med Chem 2015;30:316–20
  • Güney M, Coşkun A, Topal F, et al. Oxidation of cyanobenzocycloheptatrienes: synthesis, photooxygenation reaction and carbonic anhydrase isoenzymes inhibition properties of some new benzotropone derivatives. Bioorg Med Chem 2014;22:3537–43
  • Topal M, Gülçin İ. Rosmarinic acid: a potent carbonic anhydrase isoenzymes inhibitor. Turk J Chem 2014;38:894–902
  • Çetinkaya Y, Göçer H, Gülçin İ, Menzek A. Synthesis and carbonic anhydrase isoenzymes inhibitory effects of brominated diphenylmethanone and its derivatives. Arch Pharm 2014;347:354–9
  • Neri D, Supuran CT. Interfering with pH regulation in tumours as a therapeutic strategy. Nat Rev Drug Discov 2011;10:767–77
  • Pacchiano F, Carta F, McDonald PC, et al. Ureido-substituted benzenesulfonamides potently inhibit carbonic anhydrase IX and show antimetastatic activity in a model of breast cancer metastasis. J Med Chem 2011;54:1896–902
  • Supuran CT. Structure-based drug discovery of carbonic anhydrase inhibitors. J Enzyme Inhib Med Chem 2012;27:759–72
  • Akıncıoğlu A, Topal M, Gülçin İ, Göksu S. Novel sulfamides and sulfonamides incorporating tetralin scaffold as carbonic anhydrase and acetylcholine esterase inhibitors. Arch Pharm 2014;347:68–76
  • Çetinkaya Y, Göçer H, Göksu S, Gülçin İ. Synthesis and carbonic anhydrase isoenzymes inhibitory effects of novel benzylamine derivatives. J Enzyme Inhib Med Chem 2014;29:168–74
  • Aksu K, Nar M, Tanç M, et al. The synthesis of sulfamide analogues of dopamine related compounds and their carbonic anhydrase inhibitory properties. Bioorg Med Chem 2013;21:2925–31
  • Akbaba Y, Akıncıoğlu A, Göçer H, et al. Carbonic anhydrase inhibitory properties of novel sulfonamide derivatives of aminoindanes and aminotetralins. J Enzyme Inhib Med Chem 2014;29:35–42
  • Patil SV, Mahale KA, Gosavi KS, et al. Solvent-mediated one-pot synthesis of cyclic N-substituted imides. Org Prep Proc Int 2013;45:314–20
  • Samgina TY, Gorshkov VA, Vorontsov EA, et al. New cysteine-modifying reagents: efficiency of derivatization and influence on the signals of the protonated molecules of disulfide-containing peptides in matrix-assisted laser desorption/ionization mass spectrometry. J Anal Chem 2010;65:1320–7
  • Patel MV, Balasubramaniyan V. Maleamic acids from maleic anhydride and aromatic amines. Ind J Chem 1977;15B:1142–3
  • Deshpande SR, Maybhate SP, Likhite AP, Chaudhary PM. A facile synthesis of N-substituted maleimides. Ind J Chem 2010;49B:487–8
  • Gaina C, Gaina V. Versatile preparation of ester bismaleimides by dehydrochlorination-condensation reactions. Des Monom Polym 2005;50:655–61
  • Hiran BL, Paliwal SN, Chaudhary J, Meena S. Industrial chemistry and chemical engineering – preparation, polymerization and characterization of some new maleimides. J Ind Chem Soc 2007;84:385–8
  • Kumar B, Verma RK, Singh H. Esterification of maleanilic acids: intramolecular esterification through imidate ester. Ind J Chem 1986;25B:692–6
  • Ravinder V, Rani PU, Balaswamy G. Ind J Heterocyclic Chem 2004;14:73–4
  • Lindgren AEG, Karlberg T, Ekblad T, et al. Chemical probes to study ADP-ribosylation: synthesis and biochemical evaluation of inhibitors of the human ADP-ribosyltransferase ARTD3/PARP3. J Med Chem 2013;56:9556–68
  • Janson JC. Protein purification: principles, high resolution methods, and applications. 3rd ed. Hoboken (NJ): John Wiley & Sons, Inc.; 2011
  • Ahirwar R, Nahar P. Development of an aptamer-affinity chromatography for efficient single step purification of Concanavalin A from Canavalia ensiformis. J Chromatogr B 2015;997:105–9
  • Atasaver A, Özdemir H, Gülçin İ, Küfrevioğlu Öİ. One-step purification of lactoperoxidase from bovine milk by affinity chromatography. Food Chem 2013;136:864–70
  • Gülçin İ. Antioxidant activity of food constituents – an overview. Arch Toxicol 2012;86:345–91
  • Çoban TA, Beydemir Ş, Gülçin İ, Ekinci D. Morphine inhibits erythrocyte carbonic anhydrase in vitro and in vivo. Biol Pharm Bull 2007;30:2257–61
  • Çoban TA, Beydemir Ş, Gülçin İ, Ekinci D. The inhibitory effect of ethanol on carbonic anhydrase isoenzymes: in vivo and in vitro studies. J Enzyme Inhib Med Chem 2008;23:266–70
  • Coban TA, Beydemir S, Gücin İ, et al. Sildenafil is a strong activator of mammalian carbonic anhydrase isoforms I-XIV. Bioorg Med Chem 2009;17:5791–5
  • Şentürk M, Gülçin İ, Daştan A, et al. Carbonic anhydrase inhibitors. Inhibition of human erythrocyte isozymes I and II with a series of antioxidant phenols. Bioorg Med Chem 2009;17:3207–11
  • Öztürk Sarıkaya SB, Gülçin İ, Supuran CT. Carbonic anhydrase inhibitors. Inhibition of human erythrocyte isozymes I and II with a series of phenolic acids. Chem Biol Drug Des 2010;75:515–20
  • Öztürk Sarıkaya SB, Topal F, Şentürk M, et al. In vitro inhibition of α-carbonic anhydrase isozymes by some phenolic compounds. Bioorg Med Chem Lett 2011;21:4259–62
  • Şentürk M, Gülçin İ, Beydemir Ş, et al. In vitro inhibition of human carbonic anhydrase I and II isozymes with natural phenolic compounds. Chem Biol Drug Des 2011;77:494–9
  • Nar M, Çetinkaya Y, Gülçin İ, Menzek A. (3,4-Dihydroxyphenyl)(2,3,4-trihydroxyphenyl)methanone and its derivatives as carbonic anhydrase isoenzymes inhibitors. J Enzyme Inhib Med Chem 2013;28:402–6
  • Akıncıoğlu A, Akbaba Y, Göçer H, et al. Novel sulfamides as potential carbonic anhydrase isoenzymes inhibitors. Bioorg Med Chem 2013;21:1379–85
  • Gülçin İ, Beydemir Ş, Hisar O. The effect of α-tocopherol on the antioxidant enzymes activities and lipid peroxidation of rainbow trout (Oncorhynchus mykiss). Acta Vet Hung 2005;53:425–33
  • Köksal E, Gülçin İ. Purification and characterization of peroxidase from cauliflower (Brassica oleracea L.) buds. Protein Peptide Lett 2008;15:320–6
  • Şentürk M, Gülçin İ, Çiftci M, Küfrevioğlu Öİ. Dantrolene inhibits human erythrocyte glutathione reductase. Biol Pharm Bull 2008;31:2036–9
  • Gülçin İ, Beydemir Ş, Çoban TA, Ekinci D. The inhibitory effect of dantrolene sodium and propofol on 6-phosphogluconate dehydrogenase from rat erythrocyte. Fresen Environ Bull 2008;17:1283–7
  • Şişecioğlu M, Çankaya M, Gülçin İ, Özdemir M. The inhibitory effect of propofol on lactoperoxidase. Protein Peptide Lett 2009;16:46–9
  • Şişecioğlu M, Çankaya M, Gülçin İ, Özdemir M. Interactions of melatonin and serotonin to lactoperoxidase enzyme. J Enzyme Inhib Med Chem 2010;25:779–83
  • Şişecioğlu M, Gülçin İ, Çankaya M, et al. Purification and characterization of peroxidase from Turkish black radish (Raphanus sativus L.). J Med Plants Res 2010;4:1187–96
  • Şişecioğlu M, Kireçci E, Çankaya M, et al. The prohibitive effect of lactoperoxidase system (LPS) on some pathogen fungi and bacteria. Afr J Pharm Pharmacol 2010;4:671–7
  • Gülçin İ, Küfrevioğlu Öİ, Oktay M. Purification and characterization of polyphenol oxidase from nettle (Urtica dioica L.) and inhibition effects of some chemicals on the enzyme activity. J Enzyme Inhib Med Chem 2005;20:297–302
  • Şişecioğlu M, Gülçin İ, Çankaya M, et al. The effects of norepinephrine on lactoperoxidase enzyme (LPO). Sci Res Essay 2010;5:1351–6
  • Şişecioğlu M, Uguz MT, Çankaya M, et al. Effects of Ceftazidime pentahydrate, prednisolone, amikacin sulfate, ceftriaxone sodium and teicoplanin on bovine milk lactoperoxidase activity. Int J Pharmacol 2011;7:79–83
  • Köksal E, Ağgül AG, Bursal E, Gülçin İ. Purification and characterization of peroxidase from sweet gourd (Cucurbita moschata Lam. Poiret). Int J Food Propert 2012;15:1110–19
  • Şişecioğlu M, Gülçin İ, Çankaya M, Özdemir H. The inhibitory effects of L-Adrenaline on lactoperoxidase enzyme (LPO) purified from buffalo milk. Int J Food Propert 2012;15:1182–9
  • Verpoorte JA, Mehta S, Edsall JT. Esterase activities of human 616 carbonic anhydrases B and C. J Biol Chem 1967;242:4221–9
  • Bradford MM. Rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 1976;72:248–54
  • Lineweaver H, Burk D. The determination of enzyme dissociation constants. J Am Chem Soc 1934;56:658–66
  • Calder JA, Schachter M, Sever PS, Potassium channel opening properties of thiazide diuretics in isolated guinea pig resistance arteries. J Cardiovasc Pharmacol 1994;24:158–64
  • Pickkers P, Garcha RS, Schachte M, et al. Inhibition of carbonic anhydrase accounts for the direct vascular effects of hydrochlorothiazide. Hypertension 1999;33:1043–8
  • Coleman JE. Mechanism of action of carbonic anhydrase. J Biol Chem 1967;242:5212–19
  • Lanir A, Navon G. Interaction of bovine carbonic anhydrase with acetate ions. Biochim Biophys Acta 1974;341:65–74

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.