1,614
Views
4
CrossRef citations to date
0
Altmetric
Review Articles

LDL biochemical modifications: a link between atherosclerosis and aging

, , &
Article: 29240 | Received 22 Jul 2015, Accepted 12 Nov 2015, Published online: 03 Dec 2015

References

  • Chisolm GM, Steinberg D. The oxidative modification hypothesis of atherogenesis: an overview. Free Radic Biol Med. 2000; 28(12): 1815–26.
  • Itabe H. Oxidative modification of LDL: its pathological role in atherosclerosis. Clin Rev Allergy Immunol. 2009; 37(1): 4–11.
  • Apostolov EO, Ray D, Savenka AV, Shah SV, Basnakian AG. Chronic uremia stimulates LDL carbamylation and atherosclerosis. J Am Soc Nephrol. 2010; 21(11): 1852–7.
  • Apostolov EO, Basnakian AG, Ok E, Shah SV. Carbamylated low-density lipoprotein: nontraditional risk factor for cardiovascular events in patients with chronic kidney disease. J Ren Nutr. 2012; 22(1): 134–8.
  • Berenson GS, Srinivasan SR, Bao W, Newman WP, Tracy RE, Wattigney WA. Association between multiple cardiovascular risk factors and atherosclerosis in children and young adults. The Bogalusa Heart Study. N Engl J Med. 1998; 338(23): 1650–6.
  • Lansky AJ, Ng VG, Maehara A, Weisz G, Lerman A, Mintz GS, etal. Gender and the extent of coronary atherosclerosis, plaque composition, and clinical outcomes in acute coronary syndromes. JACC Cardiovasc Imaging. 2012; 5(3 Suppl): S62–72.
  • Lusis AJ, Fogelman AM, Fonarow GC. Genetic basis of atherosclerosis: part I: new genes and pathways. Circulation. 2004; 110(13): 1868–73.
  • Najemnik C, Sinzinger H, Kritz H. Endothelial dysfunction, atherosclerosis and diabetes. Acta Med Austriaca. 1999; 26(5): 148–53. [PubMed Abstract].
  • Paoletti R, Gotto AM, Hajjar DP. Inflammation in atherosclerosis and implications for therapy. Circulation. 2004; 109(23 Suppl 1): III20–6. [PubMed Abstract].
  • Davignon J, Ganz P. Role of endothelial dysfunction in atherosclerosis. Circulation. 2004; 109(23 Suppl 1): III27–32. [PubMed Abstract].
  • Ehara S, Ueda M, Naruko T, Haze K, Itoh A, Otsuka M, etal. Elevated levels of oxidized low density lipoprotein show a positive relationship with the severity of acute coronary syndromes. Circulation. 2001; 103(15): 1955–60.
  • Carracedo J, Merino A, Briceño C, Soriano S, Buendía P, Calleros L, etal. Carbamylated low-density lipoprotein induces oxidative stress and accelerated senescence in human endothelial progenitor cells. FASEB J. 2011; 25(4): 1314–22.
  • Millán J, Pintó X, Muñoz A, Zúñiga M, Rubiés-Prat J, Pallardo LF, etal. Lipoprotein ratios: physiological significance and clinical usefulness in cardiovascular prevention. Vasc Health Risk Manag. 2009; 5: 757–65.
  • Schuh J, Fairclough GF, Haschemeyer RH. Oxygen-mediated heterogeneity of apo-low-density lipoprotein. Proc Natl Acad Sci USA. 1978; 75(7): 3173–7.
  • Sawamura T, Kume N, Aoyama T, Moriwaki H, Hoshikawa H, Aiba Y, etal. An endothelial receptor for oxidized low-density lipoprotein. Nature. 1997; 386(6620): 73–7.
  • Goldstein JL, Ho YK, Basu SK, Brown MS. Binding site on macrophages that mediates uptake and degradation of acetylated low density lipoprotein, producing massive cholesterol deposition. Proc Natl Acad Sci USA. 1979; 76(1): 333–7.
  • Steinbrecher UP, Fisher M, Witztum JL, Curtiss LK. Immunogenicity of homologous low density lipoprotein after methylation, ethylation, acetylation, or carbamylation: generation of antibodies specific for derivatized lysine. J Lipid Res. 1984; 25(10): 1109–16. [PubMed Abstract].
  • Vlassara H. The AGE-receptor in the pathogenesis of diabetic complications. Diabetes Metab Res Rev. 2001; 17(6): 436–43.
  • Ross R. Atherosclerosis – an inflammatory disease. N Engl J Med. 1999; 340(2): 115–26.
  • Avogaro P, Cazzolato G, Bittolo-Bon G. Some questions concerning a small, more electronegative LDL circulating in human plasma. Atherosclerosis. 1991; 91(1–2): 163–71.
  • Orekhov AN, Bobryshev YV, Sobenin IA, Melnichenko AA, Chistiakov DA. Modified low density lipoprotein and lipoprotein-containing circulating immune complexes as diagnostic and prognostic biomarkers of atherosclerosis and type 1 diabetes macrovascular disease. Int J Mol Sci. 2014; 15(7): 12807–41.
  • Henriksen T, Mahoney EM, Steinberg D. Enhanced macrophage degradation of low density lipoprotein previously incubated with cultured endothelial cells: recognition by receptors for acetylated low density lipoproteins. Proc Natl Acad Sci USA. 1981; 78(10): 6499–503.
  • Steinbrecher UP, Parthasarathy S, Leake DS, Witztum JL, Steinberg D. Modification of low density lipoprotein by endothelial cells involves lipid peroxidation and degradation of low density lipoprotein phospholipids. Proc Natl Acad Sci USA. 1984; 81(12): 3883–7.
  • Witztum JL, Steinberg D. Role of oxidized low density lipoprotein in atherogenesis. J Clin Invest. 1991; 88(6): 1785–92.
  • Itabe H. Oxidized phospholipids as a new landmark in atherosclerosis. Prog Lipid Res. 1998; 37(2–3): 181–207.
  • Steinberg D. Atherogenesis in perspective: hypercholesterolemia and inflammation as partners in crime. Nat Med. 2002; 8(11): 1211–17.
  • Kruth HS, Jones NL, Huang W, Zhao B, Ishii I, Chang J, etal. Macropinocytosis is the endocytic pathway that mediates macrophage foam cell formation with native low density lipoprotein. J Biol Chem. 2005; 280(3): 2352–60.
  • Leitinger N. Oxidized phospholipids as triggers of inflammation in atherosclerosis. Mol Nutr Food Res. 2005; 49(11): 1063–71.
  • Schober A, Nazari-Jahantigh M, Weber C. MicroRNA-mediated mechanisms of the cellular stress response in atherosclerosis. Nat Rev Cardiol. 2015; 12(6): 361–74.
  • Bucala R, Makita Z, Koschinsky T, Cerami A, Vlassara H. Lipid advanced glycosylation: pathway for lipid oxidation in vivo. Proc Natl Acad Sci USA. 1993; 90(14): 6434–8.
  • Brownlee M, Cerami A, Vlassara H. Advanced glycosylation end products in tissue and the biochemical basis of diabetic complications. N Engl J Med. 1988; 318(20): 1315–21.
  • Bucala R, Makita Z, Vega G, Grundy S, Koschinsky T, Cerami A, etal. Modification of low density lipoprotein by advanced glycation end products contributes to the dyslipidemia of diabetes and renal insufficiency. Proc Natl Acad Sci USA. 1994; 91(20): 9441–5.
  • Witztum JL, Mahoney EM, Branks MJ, Fisher M, Elam R, Steinberg D. Nonenzymatic glucosylation of low-density lipoprotein alters its biologic activity. Diabetes. 1982; 31(4 Pt 1): 283–91.
  • Steinbrecher UP, Witztum JL. Glucosylation of low-density lipoproteins to an extent comparable to that seen in diabetes slows their catabolism. Diabetes. 1984; 33(2): 130–4.
  • Klein RL, Laimins M, Lopes-Virella MF. Isolation, characterization, and metabolism of the glycated and nonglycated subfractions of low-density lipoproteins isolated from type I diabetic patients and nondiabetic subjects. Diabetes. 1995; 44(9): 1093–8.
  • Laakso M. Hyperglycemia and cardiovascular disease in type 2 diabetes. Diabetes. 1999; 48(5): 937–42.
  • Grundy SM, Benjamin IJ, Burke GL, Chait A, Eckel RH, Howard BV, etal. Diabetes and cardiovascular disease: a statement for healthcare professionals from the American Heart Association. Circulation. 1999; 100(10): 1134–46.
  • Nishikawa T, Edelstein D, Du XL, Yamagishi S, Matsumura T, Kaneda Y, etal. Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage. Nature. 2000; 404(6779): 787–90.
  • Sobal G, Menzel J, Sinzinger H. Why is glycated LDL more sensitive to oxidation than native LDL? A comparative study. Prostaglandins Leukot Essent Fatty Acids. 2000; 63(4): 177–86.
  • Bucala R, Mitchell R, Arnold K, Innerarity T, Vlassara H, Cerami A. Identification of the major site of apolipoprotein B modification by advanced glycosylation end products blocking uptake by the low density lipoprotein receptor. J Biol Chem. 1995; 270(18): 10828–32.
  • Bowie A, Owens D, Collins P, Johnson A, Tomkin GH. Glycosylated low density lipoprotein is more sensitive to oxidation: implications for the diabetic patient?. Atherosclerosis. 1993; 102(1): 63–7.
  • Kobayashi K, Watanabe J, Umeda F, Nawata H. Glycation accelerates the oxidation of low density lipoprotein by copper ions. Endocr J. 1995; 42(4): 461–5.
  • Rabini RA, Fumelli P, Galassi R, Dousset N, Taus M, Ferretti G, etal. Increased susceptibility to lipid oxidation of low-density lipoproteins and erythrocyte membranes from diabetic patients. Metabolism. 1994; 43(12): 1470–4.
  • Nilsson L, Lundquist P, Kågedal B, Larsson R. Plasma cyanate concentrations in chronic renal failure. Clin Chem. 1996; 42(3): 482–3.
  • Kraus LM, Kraus AP. Carbamoylation of amino acids and proteins in uremia. Kidney Int Suppl. 2001; 78: S102–7.
  • Park KD, Mun KC, Chang EJ, Park SB, Kim HC. Inhibition of erythropoietin activity by cyanate. Scand J Urol Nephrol. 2004; 38(1): 69–72.
  • Ramirez R, Carracedo J, Nogueras S, Buendia P, Merino A, Cañadillas S, etal. Carbamylated darbepoetin derivative prevents endothelial progenitor cell damage with no effect on angiogenesis. J Mol Cell Cardiol. 2009; 47(6): 781–8.
  • Reis SE, Olson MB, Fried L, Reeser V, Mankad S, Pepine CJ, etal. Mild renal insufficiency is associated with angiographic coronary artery disease in women. Circulation. 2002; 105(24): 2826–9.
  • Foley RN, Parfrey PS, Sarnak MJ. Clinical epidemiology of cardiovascular disease in chronic renal disease. Am J Kidney Dis. 1998; 32(5 Suppl 3): S112–19.
  • Chade AR, Lerman A, Lerman LO. Kidney in early atherosclerosis. Hypertension. 2005; 45(6): 1042–9.
  • Steinbrecher UP, Zhang HF, Lougheed M. Role of oxidatively modified LDL in atherosclerosis. Free Radic Biol Med. 1990; 9(2): 155–68.
  • Jialal I, Fuller CJ. Oxidatively modified LDL and atherosclerosis: an evolving plausible scenario. Crit Rev Food Sci Nutr. 1996; 36(4): 341–55.
  • Ok E, Basnakian AG, Apostolov EO, Barri YM, Shah SV. Carbamylated low-density lipoprotein induces death of endothelial cells: a link to atherosclerosis in patients with kidney disease. Kidney Int. 2005; 68(1): 173–8.
  • Wang Z, Nicholls SJ, Rodriguez ER, Kummu O, Hörkkö S, Barnard J, etal. Protein carbamylation links inflammation, smoking, uremia and atherogenesis. Nat Med. 2007; 13(10): 1176–84.
  • Guthikonda S, Sinkey C, Barenz T, Haynes WG. Xanthine oxidase inhibition reverses endothelial dysfunction in heavy smokers. Circulation. 2003; 107(3): 416–21.
  • Imanishi T, Tsujioka H, Akasaka T. Endothelial progenitor cells dysfunction and senescence: contribution to oxidative stress. Curr Cardiol Rev. 2008; 4(4): 275–86.
  • Higashi Y, Kihara Y, Noma K. Endothelial dysfunction and hypertension in aging. Hypertens Res. 2012; 35(11): 1039–47.
  • Shi Q, Aida K, Vandeberg JL, Wang XL. Passage-dependent changes in baboon endothelial cells – relevance to in vitro aging. DNA Cell Biol. 2004; 23(8): 502–9.
  • Khaidakov M, Wang X, Mehta JL. Potential involvement of LOX-1 in functional consequences of endothelial senescence. PLoS One. 2011; 6(6): e20964.
  • Sato I, Morita I, Kaji K, Ikeda M, Nagao M, Murota S. Reduction of nitric oxide producing activity associated with in vitro aging in cultured human umbilical vein endothelial cell. Biochem Biophys Res Commun. 1993; 195(2): 1070–6.
  • Donato AJ, Gano LB, Eskurza I, Silver AE, Gates PE, Jablonski K, etal. Vascular endothelial dysfunction with aging: endothelin-1 and endothelial nitric oxide synthase. Am J Physiol Heart Circ Physiol. 2009; 297(1): H425–32.
  • Hasegawa Y, Saito T, Ogihara T, Ishigaki Y, Yamada T, Imai J, etal. Blockade of the nuclear factor-κB pathway in the endothelium prevents insulin resistance and prolongs life spans. Circulation. 2012; 125(9): 1122–33.
  • Zhou X, Perez F, Han K, Jurivich DA. Clonal senescence alters endothelial ICAM-1 function. Mech Ageing Dev. 2006; 127(10): 779–85.
  • Carracedo J, Buendía P, Merino A, Soriano S, Esquivias E, Martín-Malo A, etal. Cellular senescence determines endothelial cell damage induced by uremia. Exp Gerontol. 2013; 48(8): 766–73.
  • Sessa WC, Harrison JK, Barber CM, Zeng D, Durieux ME, D'Angelo DD, etal. Molecular cloning and expression of a cDNA encoding endothelial cell nitric oxide synthase. J Biol Chem. 1992; 267(22): 15274–76.
  • Xie QW, Cho HJ, Calaycay J, Mumford RA, Swiderek KM, Lee TD, etal. Cloning and characterization of inducible nitric oxide synthase from mouse macrophages. Science. 1992; 256(5054): 225–8.
  • Cooke JP. NO and angiogenesis. Atheroscler Suppl. 2003; 4(4): 53–60.
  • Harrison D, Griendling KK, Landmesser U, Hornig B, Drexler H. Role of oxidative stress in atherosclerosis. Am J Cardiol. 2003; 91(3A): 7A–11A.
  • Tejovathi B, Suchitra MM, Suresh V, Reddy VS, Sachan A, Srinivas Rao PV, etal. Association of lipid peroxidation with endothelial dysfunction in patients with overt hypothyroidism. Exp Clin Endocrinol Diabetes. 2013; 121(5): 306–9.
  • Haribabu A, Reddy VS, Pallavi C, Sachan A, Pullaiah P, Suresh V, etal. Evaluation of protein oxidation and its association with lipid peroxidation and thyrotropin levels in overt and subclinical hypothyroidism. Endocrine. 2013; 44(1): 152–7.
  • Hayashi T, Matsui-Hirai H, Miyazaki-Akita A, Fukatsu A, Funami J, Ding QF, etal. Endothelial cellular senescence is inhibited by nitric oxide: implications in atherosclerosis associated with menopause and diabetes. Proc Natl Acad Sci USA. 2006; 103(45): 17018–23.
  • Kim KS, Seu YB, Baek SH, Kim MJ, Kim KJ, Kim JH, etal. Induction of cellular senescence by insulin-like growth factor binding protein-5 through a p53-dependent mechanism. Mol Biol Cell. 2007; 18(11): 4543–52.
  • Spagnoli LG, Orlandi A, Mauriello A, Santeusanio G, de Angelis C, Lucreziotti R, etal. Aging and atherosclerosis in the rabbit. 1. Distribution, prevalence and morphology of atherosclerotic lesions. Atherosclerosis. 1991; 89(1): 11–24.
  • McEwen JE, Zimniak P, Mehta JL, Shmookler Reis RJ. Molecular pathology of aging and its implications for senescent coronary atherosclerosis. Curr Opin Cardiol. 2005; 20(5): 399–406.
  • Finkel T, Holbrook NJ. Oxidants, oxidative stress and the biology of ageing. Nature. 2000; 408(6809): 239–47.
  • Zhang X, Qi R, Xian X, Yang F, Blackstein M, Deng X, etal. Spontaneous atherosclerosis in aged lipoprotein lipase-deficient mice with severe hypertriglyceridemia on a normal chow diet. Circ Res. 2008; 102(2): 250–6.
  • Csiszar A, Labinskyy N, Zhao X, Hu F, Serpillon S, Huang Z, etal. Vascular superoxide and hydrogen peroxide production and oxidative stress resistance in two closely related rodent species with disparate longevity. Aging Cell. 2007; 6(6): 783–97.
  • Kuro-o M. Klotho as a regulator of oxidative stress and senescence. Biol Chem. 2008; 389(3): 233–41.
  • Ferguson M, Rebrin I, Forster MJ, Sohal RS. Comparison of metabolic rate and oxidative stress between two different strains of mice with varying response to caloric restriction. Exp Gerontol. 2008; 43(8): 757–63.
  • Huffman DM, Moellering DR, Grizzle WE, Stockard CR, Johnson MS, Nagy TR. Effect of exercise and calorie restriction on biomarkers of aging in mice. Am J Physiol Regul Integr Comp Physiol. 2008; 294(5): R1618–27.
  • Meyers MR, Gokce N. Endothelial dysfunction in obesity: etiological role in atherosclerosis. Curr Opin Endocrinol Diabetes Obes. 2007; 14(5): 365–9.
  • Segura J, Ruilope LM. Obesity, essential hypertension and renin-angiotensin system. Public Health Nutr. 2007; 10(10A): 1151–5.
  • MacMahon S, Peto R, Cutler J, Collins R, Sorlie P, Neaton J, etal. Blood pressure, stroke, and coronary heart disease. Part 1, prolonged differences in blood pressure: prospective observational studies corrected for the regression dilution bias. Lancet. 1990; 335(8692): 765–74.
  • Landmesser U, Hornig B, Drexler H. Endothelial function: a critical determinant in atherosclerosis?. Circulation. 2004; 109(21 Suppl 1): II27–33.
  • Chang HJ, Chung J, Choi SY, Yoon MH, Hwang GS, Shin JH, etal. Endothelial dysfunction in patients with exaggerated blood pressure response during treadmill test. Clin Cardiol. 2004; 27(7): 421–5.
  • Higashi Y, Yoshizumi M. [Endothelial function]. Nihon Rinsho. 2003; 61(7): 1138–44.
  • Järvisalo MJ, Raitakari M, Toikka JO, Putto-Laurila A, Rontu R, Laine S, etal. Endothelial dysfunction and increased arterial intima-media thickness in children with type 1 diabetes. Circulation. 2004; 109(14): 1750–5.
  • Maggi FM, Raselli S, Grigore L, Redaelli L, Fantappiè S, Catapano AL. Lipoprotein remnants and endothelial dysfunction in the postprandial phase. J Clin Endocrinol Metab. 2004; 89(6): 2946–50.
  • Saini HK, Arneja AS, Dhalla NS. Role of cholesterol in cardiovascular dysfunction. Can J Cardiol. 2004; 20(3): 333–46.
  • Liu L, Zhao SP, Gao M. [Influence of postprandial hypertriglyceridemia on the endothelial function in elderly patients with coronary heart disease]. Hunan Yi Ke Da Xue Xue Bao. 2002; 27(3): 259–62.
  • Ambrose JA, Barua RS. The pathophysiology of cigarette smoking and cardiovascular disease: an update. J Am Coll Cardiol. 2004; 43(10): 1731–7.
  • Poreba R, Skoczyńska A, Derkacz A. [Effect of tobacco smoking on endothelial function in patients with coronary arteriosclerosis]. Pol Arch Med Wewn. 2004; 111(1): 27–36.
  • Lyon CJ, Law RE, Hsueh WA. Mini review: adiposity, inflammation, and atherogenesis. Endocrinology. 2003; 144(6): 2195–200.
  • Mitu F, Mitu M. [Physical exercise and vascular endothelium]. Rev Med Chir Soc Med Nat Iasi. 2003; 107(3): 487–93.
  • Farhat N, Thorin-Trescases N, Voghel G, Villeneuve L, Mamarbachi M, Perrault LP, etal. Stress-induced senescence predominates in endothelial cells isolated from atherosclerotic chronic smokers. Can J Physiol Pharmacol. 2008; 86(11): 761–9.
  • Niemann B, Chen Y, Teschner M, Li L, Silber RE, Rohrbach S. Obesity induces signs of premature cardiac aging in younger patients: the role of mitochondria. J Am Coll Cardiol. 2011; 57(5): 577–85.
  • Steinberg D. The LDL modification hypothesis of atherogenesis: an update. J Lipid Res. 2009; 50(Suppl): S376–81.
  • Itabe H. Oxidized low-density lipoproteins: what is understood and what remains to be clarified. Biol Pharm Bull. 2003; 26(1): 1–9.
  • Hevonoja T, Pentikäinen MO, Hyvönen MT, Kovanen PT, Ala-Korpela M. Structure of low density lipoprotein (LDL) particles: basis for understanding molecular changes in modified LDL. Biochim Biophys Acta. 2000; 1488(3): 189–210.
  • Virmani R, Avolio AP, Mergner WJ, Robinowitz M, Herderick EE, Cornhill JF, etal. Effect of aging on aortic morphology in populations with high and low prevalence of hypertension and atherosclerosis. Comparison between occidental and Chinese communities. Am J Pathol. 1991; 139(5): 1119–29.
  • O'Rourke MF, Hashimoto J. Mechanical factors in arterial aging: a clinical perspective. J Am Coll Cardiol. 2007; 50(1): 1–13.