236
Views
5
CrossRef citations to date
0
Altmetric
Perspective

Accelerator Mass Spectrometry-Enabled Studies: Current Status and Future Prospects

Pages 519-541 | Published online: 16 Mar 2010

Bibliography

  • Frey EF . The earliest medical texts. Clio. Med. 20(1–4), 79–90 (1985).
  • Elmore D , PhillipsFM. Accelerator mass spectrometry for measurement of long-lived radioisotopes. Science236(4801), 543–550 (1987).
  • Turteltaub KW , FeltonJS, GledhillBLet al. Accelerator mass spectrometry in biomedical dosimetry. relationship between low-level exposure and covalent binding of heterocyclic amine carcinogens to DNA. Proc. Natl Acad. Sci. USA87(14), 5288–5292 (1990).
  • Gilman SD , GeeSJ, HammockBDet al. Analytical performance of accelerator mass spectrometry and liquid scintillation counting for detection of 14C-labeled atrazine metabolites in human urine. Anal. Chem. 70(16), 3463–3469 (1998).
  • Garner RC , BarkerJ, FlavellCet al. A validation study comparing accelerator MS and liquid scintillation counting for analysis of 14C-labelled drugs in plasma, urine and faecal extracts. J. Pharm. Biomed. Anal. 24(2), 197–209 (2000).
  • Brown P , GarnerC, GlassR, RidgwayC, HartA. Comparison of accelerator mass spectrometry with gas chromatography for the determination of pesticide residues in individual items in the diets of wild birds and mammals. J. Agric. Food Chem. 52(12), 3693–3701 (2004).
  • Liberman RG , TannenbaumSR, HugheyBJet al. An interface for direct analysis of 14C in nonvolatile samples by accelerator mass spectrometry. Anal. Chem. 76(2), 328–334 (2004).
  • Flarakos J , LibermanRG, TannenbaumSR, SkipperPL. Integration of continuous-flow accelerator mass spectrometry with chromatography and mass-selective detection. Anal. Chem. 80(13), 5079–5085 (2008).
  • Mcintyre CP , SylvaSP, RobertsML. Gas chromatograph–combustion system for (14)C-accelerator mass spectrometry. Anal. Chem. 81(15), 6 (2009).
  • Zoppi U , CryeJ, SongQ, ArjomandA. Performance evaluation of the new AMS system at Accium BioSciences. Radiocarbon49(1), 10 (2007).
  • Young GC , CorlessS, FelgateCC, ColthupPV. Comparison of a 250 KV single-stage accelerator mass spectrometer with a 5 MV tandem accelerator mass spectrometer – fitness for purpose in bioanalysis. Rapid Commun. Mass Spectrom. 22(24), 4035–4042 (2008).
  • Salehpour M , PossnertG, BryhniH. Subattomole sensitivity in biological accelerator mass spectrometry. Anal. Chem. 80(10), 3515–3521 (2008).
  • Salehpour M , PossnertG, BryhniH, Palminger-HallenI, StahleL. Biological accelerator mass spectrometry at Uppsala University. Appl. Radiat. Isot. 67(3), 495–499 (2009).
  • Salehpour M , ForsgardN, PossnertG. Femtomolar measurements using accelerator mass spectrometry. Rapid Commun. Mass Spectrom. 23(5), 557–563 (2009).
  • Vogel JS , TurteltaubKW, FinkelR, NelsonDE. Accelerator mass spectrometry. Anal. Chem. 67(11), 353A–359A (1995).
  • Brown K , DingleyKH, TurteltaubKW. Accelerator mass spectrometry for biomedical research. Methods Enzymol. 402, 423–443 (2005).
  • Hellborg R , SkogG. Accelerator mass spectrometry. Mass Spectrom. Rev. 27(5), 398–427 (2008).
  • Vogel JS . Rapid production of graphite without contamination for biomedical AMS. Radiocarbon34, 344–350 (1992).
  • Ognibene TJ , BenchG, VogelJS, PeasleeGF, MurovS. A high-throughput method for the conversion of CO2 obtained from biochemical samples to graphite in septa-sealed vials for quantification of 14C via accelerator mass spectrometry. Anal. Chem. 75(9), 2192–2196 (2003).
  • Kim SH , KellyPB, CliffordAJ. Biological/biomedical accelerator mass spectrometry targets. 2. Physical, morphological, and structural characteristics. Anal. Chem. 80(20), 7661–7669 (2008).
  • Kim SH , KellyPB, CliffordAJ. Biological/biomedical accelerator mass spectrometry targets. 1. Optimizing the CO2 reduction step using zinc dust. Anal. Chem. 80(20), 7651–7660 (2008).
  • Kim SH , KellyPB, CliffordAJ. Accelerator mass spectrometry targets of submilligram carbonaceous samples using the high-throughput Zn reduction method. Anal. Chem. 81(14), 5949–5954 (2009).
  • Salehpour M , ForsgardN, PossnertG. Accelerator mass spectrometry of small biological samples. Rapid Commun. Mass Spectrom. 22(23), 3928–3934 (2008).
  • Buchholz BA , DuekerSR, LinY, CliffordAJ, VogelJ. Methods and applications of HPLC-AMS. Nucl. Instrum. Methods Phys. Res. B (192), 5 (2000).
  • Lappin G , SimpsonM, ShishikuraY, GarnerC. High-performance liquid chromatography accelerator mass spectrometry. Correcting for losses during analysis by internal standardization. Anal. Biochem. 378(1), 93–95 (2008).
  • Dingley KH , UbickEA, VogelJS, HaackKW. DNA isolation and sample preparation for quantification of adduct levels by accelerator mass spectrometry. Methods Mol. Biol. 291, 21–27 (2005).
  • Vogel JS , LoveAH. Quantitating isotopic molecular labels with accelerator mass spectrometry. Methods Enzymol. 402, 402–422 (2005).
  • Shan G , HuangW, GeeSJ, BuchholzBA, VogelJS, HammockBD. Isotope-labeled immunoassays without radiation waste. Proc. Natl Acad. Sci. USA97(6), 2445–2449 (2000).
  • Hah SS , MundtJM, KimHM, SumbadRA, TurteltaubKW, HendersonPT. Measurement of 7,8-dihydro-8-oxo-2´-deoxyguanosine metabolism in MCF-7 cells at low concentrations using accelerator mass spectrometry. Proc. Natl Acad. Sci. USA104(27), 11203–11208 (2007).
  • Stites TE , BaileyLB, ScottKC, TothJP, FisherWP, GregoryJF3rd. Kinetic modeling of folate metabolism through use of chronic administration of deuterium-labeled folic acid in men. Am. J. Clin. Nutr. 65(1), 53–60 (1997).
  • Stenstrom K , Leide-SvegbornS, ErlandssonBet al. Application of accelerator mass spectrometry (AMS) for high-sensitivity measurements of 14CO2 in long-term studies of fat metabolism. Appl. Radiat. Isot. 47(4), 417–422 (1996).
  • Clifford AJ , ArjomandA, DuekerSR, SchneiderPD, BuchholzBA, VogelJS. The dynamics of folic acid metabolism in an adult given a small tracer dose of 14C-folic acid. Adv. Exp. Med. Biol. 445, 239–251 (1998).
  • Buchholz BA , ArjomandA, DuekerSR, SchneiderPD, CliffordAJ, VogelJS. Intrinsic erythrocyte labeling and attomole pharmacokinetic tracing of 14C-labeled folic acid with accelerator mass spectrometry. Anal. Biochem. 269(2), 348–352 (1999).
  • Lin Y , DuekerSR, FollettJRet al. Quantitation of in vivo human folate metabolism. Am. J. Clin. Nutr. 80(3), 680–691 (2004).
  • Dueker SR , LinY, BuchholzBAet al. Long-term kinetic study of β-carotene, using accelerator mass spectrometry in an adult volunteer. J. Lipid Res. 41(11), 1790–1800 (2000).
  • Hickenbottom SJ , LemkeSL, DuekerSRet al. Dual isotope test for assessing β-carotene cleavage to vitamin A in humans. Eur. J. Nutr. 41(4), 141–147 (2002).
  • Lemke SL , DuekerSR, FollettJRet al. Absorption and retinol equivalence of β-carotene in humans is influenced by dietary vitamin A intake. J. Lipid Res. 44(8), 1591–1600 (2003).
  • Ho CC , DE Moura FF, Kim SH, Clifford AJ. Excentral cleavage of β-carotene in vivo in a healthy man. Am. J. Clin. Nutr. 85(3), 770–777 (2007).
  • Ho CC , De Moura FF, Kim SH, Burri BJ, Clifford AJ. A minute dose of 14C–β-carotene is absorbed and converted to retinoids in humans. J. Nutr. 139(8), 1480–1486 (2009).
  • De Moura FF , HoCC, GetachewG, HickenbottomS, CliffordAJ. Kinetics of 14C distribution after tracer dose of 14C-lutein in an adult woman. Lipids40(10), 1069–1073 (2005).
  • Carkeet C , DuekerSR, LangoJet al. Human vitamin B12 absorption measurement by accelerator mass spectrometry using specifically labeled (14)C-cobalamin. Proc. Natl Acad. Sci. USA103(15), 5694–5699 (2006).
  • Clifford AJ , De Moura FF, Ho CCet al. A feasibility study quantifying in vivo human α-tocopherol metabolism. Am. J. Clin. Nutr. 84(6), 1430–1441 (2006).
  • Garner RC , LightfootTJ, CupidBCet al. Comparative biotransformation studies of MeIQx and PhIP in animal models and humans. Cancer Lett. 143(2), 161–165 (1999).
  • Dingley KH , CurtisKD, NowellS, FeltonJS, LangNP, TurteltaubKW. DNA and protein adduct formation in the colon and blood of humans after exposure to a dietary-relevant dose of 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine. Cancer Epidemiol. Biomarkers Prev. 8(6), 507–512 (1999).
  • Turteltaub KW , DingleyKH, CurtisKDet al. Macromolecular adduct formation and metabolism of heterocyclic amines in humans and rodents at low doses. Cancer Lett. 143(2), 149–155 (1999).
  • Malfatti MA , DingleyKH, Nowell-KadlubarSet al. The urinary metabolite profile of the dietary carcinogen 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine is predictive of colon DNA adducts after a low-dose exposure in humans. Cancer Res. 66(21), 10541–10547 (2006).
  • Cupid BC , LightfootTJ, RussellDet al. The formation of AFB(1)-macromolecular adducts in rats and humans at dietary levels of exposure. Food Chem. Toxicol. 42(4), 559–569 (2004).
  • Mauthe RJ , DingleyKH, LevesonSHet al. Comparison of DNA-adduct and tissue-available dose levels of MeIQx in human and rodent colon following administration of a very low dose. Int. J. Cancer80(4), 539–545 (1999).
  • Dingley KH , FreemanSP, NelsonDO, GarnerRC, TurteltaubKW. Covalent binding of 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline to albumin and hemoglobin at environmentally relevant doses. Comparison of human subjects and F344 rats. Drug Metab. Dispos. 26(8), 825–828 (1998).
  • Turteltaub KW , MautheRJ, DingleyKHet al. MeIQx-DNA adduct formation in rodent and human tissues at low doses. Mutat. Res. 376(1–2), 243–252 (1997).
  • Mauthe RJ , SnyderwineEG, GhoshalA, FreemanSP, TurteltaubKW. Distribution and metabolism of 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PHiP) in female rats and their pups at dietary doses. Carcinogenesis19(5), 919–924 (1998).
  • Cheng Y , LiHL, WangHFet al. Inhibition of nicotine-DNA adduct formation in mice by six dietary constituents. Food Chem. Toxicol. 41(7), 1045–1050 (2003).
  • Li H , ChengY, WangHet al. Inhibition of nitrobenzene-induced DNA and hemoglobin adductions by dietary constituents. Appl. Radiat. Isot. 58(3), 291–298 (2003).
  • Rickert DE , DingleyK, UbickE, DixKJ, MolinaL. Determination of the tissue distribution and excretion by accelerator mass spectrometry of the nonadecapeptide 14C-Moli1901 in beagle dogs after intratracheal instillation. Chem. Biol. Interact. 155(1–2), 55–61 (2005).
  • DeGregorio MW , DingleyKH, WurzGT, UbickE, TurteltaubKW. Accelerator mass spectrometry allows for cellular quantification of doxorubicin at femtomolar concentrations. Cancer Chemother. Pharmacol. 57(3), 335–342 (2006).
  • Leide-Svegborn S , StenstromK, OlofssonMet al. Biokinetics and radiation doses for carbon-14 urea in adults and children undergoing the Helicobacter pylori breath test. Eur. J. Nucl. Med. 26(6), 573–580 (1999).
  • Gunnarsson M , Leide-SvegbornS, StenstromKet al. No radiation protection reasons for restrictions on 14C urea breath tests in children. Br. J. Radiol. 75(900), 982–986 (2002).
  • Combes RD , BerridgeT, ConnellyJet al. Early microdose drug studies in human volunteers can minimise animal testing. Proceedings of a workshop organised by volunteers in research and testing. Eur. J. Pharm. Sci. 19(1), 1–11 (2003).
  • Lappin G , GarnerRC. Big physics, small doses. The use of AMS and PET in human microdosing of development drugs. Nat. Rev. Drug Discov. 2(3), 233–240 (2003).
  • Buchan P . Smarter candidate selection – utilizing microdosing in exploratory clinical studies. Ernst Schering Res. Found Workshop59, 7–27 (2007).
  • Butz RF , MorelliG. Innovative strategies for early clinical R&D. IDrugs11(1), 36–41 (2008).
  • Carpenter AP , PontecorvoMJ, HeftiFF, SkovronskyDM. The use of the exploratory IND in the evaluation and development of 18F-PET radiopharmaceuticals for amyloid imaging in the brain. A review of one company’s experience. Q. J. Nucl. Med. Mol. Imaging53(4), 387–393 (2009).
  • Jacobson-Kram D , MillsG. Leveraging exploratory investigational new drug studies to accelerate drug development. Clin. Cancer Res. 14(12), 3670–3674 (2008).
  • Kummar S , RubinsteinL, KindersRet al. Phase 0 clinical trials. Conceptions and misconceptions. Cancer J. 14(3), 133–137 (2008).
  • Sarapa N . Exploratory IND. A new regulatory strategy for early clinical drug development in the United States. Ernst Schering Res. Found. Workshop (59), 151–163 (2007).
  • Balani SK , NagarajaNV, QianMGet al. Evaluation of microdosing to assess pharmacokinetic linearity in rats using liquid chromatography–tandem mass spectrometry. Drug Metab. Dispos. 34(3), 384–388 (2006).
  • Bauer M , LangerO, Dal-BiancoPet al. A positron emission tomography microdosing study with a potential antiamyloid drug in healthy volunteers and patients with Alzheimer’s disease. Clin. Pharmacol. Ther. 80(3), 216–227 (2006).
  • Bauer M , WagnerCC, LangerO. Microdosing studies in humans. The role of positron emission tomography. Drugs RD9(2), 73–81 (2008).
  • Sandhu P , VogelJS, RoseMJet al. Evaluation of microdosing strategies for studies in preclinical drug development. Demonstration of linear pharmacokinetics in dogs of a nucleoside analog over a 50-fold dose range. Drug Metab. Dispos. 32(11), 1254–1259 (2004).
  • Lappin G , KuhnzW, JochemsenRet al. Use of microdosing to predict pharmacokinetics at the therapeutic dose. Experience with 5 drugs. Clin. Pharmacol. Ther. 80(3), 203–215 (2006).
  • Vuong L , RuckleJL, BloodABet al. Use of accelerator mass spectrometry to measure the pharmacokinetics and peripheral blood mononuclear cell concentrations of zidovudine. J Pharm Sci97(7), 2833–2843 (2008).
  • Garner C . New paradigm of early clinical research – EUMAPP. Parliament Magazine238, 1 (2007).
  • Zhou XJ , GarnerRC, NicholsonS, KisslingCJ, MayersD. Microdose pharmacokinetics of IDX899 and IDX989, candidate HIV-1 non-nucleoside reverse transcriptase inhibitors, following oral and intravenous administration in healthy male subjects. J. Clin. Pharmacol. (2009).
  • Young G , EllisW, AyrtonJ, HusseyE, AdamkiewiczB. Accelerator mass spectrometry (AMS). Recent experience of its use in a clinical study and the potential future of the technique. Xenobiotica31(8–9), 619–632 (2001).
  • Garner RC , GarnerJV, GregoryS, WhattamM, CalamA, LeongD. Comparison of the absorption of micronized (Daflon 500 mg) and nonmicronized 14C-diosmin tablets after oral administration to healthy volunteers by accelerator mass spectrometry and liquid scintillation counting. J. Pharm. Sci. 91(1), 32–40 (2002).
  • Boddy AV , SluddenJ, GriffinMJet al. Pharmacokinetic investigation of imatinib using accelerator mass spectrometry in patients with chronic myeloid leukemia. Clin. Cancer Res. 13(14), 4164–4169 (2007).
  • Garner RC , GorisI, LaenenAAet al. Evaluation of accelerator mass spectrometry in a human mass balance and pharmacokinetic study-experience with 14C-labeled (r)-6-[amino(4- chlorophenyl)(1-methyl-1h-imidazol-5-yl)methyl]-4-(3-chlorophenyl)-1- methyl-2(1h)-quinolinone (r115777), a farnesyl transferase inhibitor. Drug Metab. Dispos. 30(7), 823–830 (2002).
  • Sarapa N , HsyuPH, LappinG, GarnerRC. The application of accelerator mass spectrometry to absolute bioavailability studies in humans. Simultaneous administration of an intravenous microdose of 14C-nelfinavir mesylate solution and oral nelfinavir to healthy volunteers. J. Clin. Pharmacol. 45(10), 1198–1205 (2005).
  • Miyaji Y , IshizukaT, KawaiKet al. Use of an intravenous microdose of 14C-labeled drug and accelerator mass spectrometry to measure absolute oral bioavailability in dogs; cross-comparison of assay methods by accelerator mass spectrometry and liquid chromatography-tandem mass spectrometry. Drug Metab. Pharmacokinet. 24(2), 130–138 (2009).
  • Klem B , LappinG, NicholsonSet al. Determination of the bioavailability of [14C]-hexaminolevulinate using accelerator mass spectrometry after intravesical administration to human volunteers. J. Clin. Pharmacol. 46(4), 456–460 (2006).
  • Beumer JH , GarnerRC, CohenMBet al. Human mass balance study of the novel anticancer agent ixabepilone using accelerator mass spectrometry. Invest. New Drugs25(4), 327–334 (2007).
  • Prakash C , ShafferCL, TremaineLMet al. Application of liquid chromatography–accelerator mass spectrometry (LC–AMS) to evaluate the metabolic profiles of a drug candidate in human urine and plasma. Drug Metab. Lett. 1(3), 226–231 (2007).
  • Lappin G , GarnerRC, MeyersT, PowellJ, VarleyP. Novel use of accelerator mass spectrometry for the quantification of low levels of systemic therapeutic recombinant protein. J. Pharm. Biomed. Anal. 41(4), 1299–1302 (2006).
  • Nakamura T . [Applications of low-abundance-radioisotope measurements with accelerator mass spectrometry to the biomedical sciences]. Tanpakushitsu Kakusan Koso39(11), 2011–2020 (1994).
  • Kaye B , GarnerRC, MautheRJ, FreemanSP, TurteltaubKW. A preliminary evaluation of accelerator mass spectrometry in the biomedical field. J. Pharm. Biomed. Anal. 16(3), 541–543 (1997).
  • Barker J , GarnerRC. Biomedical applications of accelerator mass spectrometry-isotope measurements at the level of the atom. Rapid Commun. Mass Spectrom. 13(4), 285–293 (1999).
  • Garner RC . Accelerator mass spectrometry in pharmaceutical research and development – a new ultrasensitive analytical method for isotope measurement. Curr. Drug Metab. 1(2), 205–213 (2000).
  • Turteltaub KW , VogelJS. Bioanalytical applications of accelerator mass spectrometry for pharmaceutical research. Curr. Pharm. Des. 6(10), 991–1007 (2000).
  • Papac DI , ShahrokhZ. Mass spectrometry innovations in drug discovery and development. Pharm Res18(2), 131–145 (2001).
  • Lappin G , GarnerRC. Current perspectives of 14C-isotope measurement in biomedical accelerator mass spectrometry. Anal. Bioanal. Chem. 378(2), 356–364 (2004).
  • White IN , BrownK. Techniques. The application of accelerator mass spectrometry to pharmacology and toxicology. Trends Pharmacol. Sci. 25(8), 442–447 (2004).
  • Lappin G , GarnerRC. The use of accelerator mass spectrometry to obtain early human ADME/PK data. Expert Opin. Drug Metab. Toxicol. 1(1), 23–31 (2005).
  • Palmblad M , BuchholzBA, HillegondsDJ, VogelJS. Neuroscience and accelerator mass spectrometry. J. Mass Spectrom. 40(2), 154–159 (2005).
  • Vogel JS . Accelerator mass spectrometry for quantitative in vivo tracing. Biotechniques (Suppl.) 25–29 (2005).
  • Brown K , TompkinsEM, WhiteIN. Applications of accelerator mass spectrometry for pharmacological and toxicological research. Mass Spectrom. Rev. 25(1), 127–145 (2006).
  • Lappin G , StevensL. Biomedical accelerator mass spectrometry. Recent applications in metabolism and pharmacokinetics. Expert Opin. Drug Metab. Toxicol. 4(8), 1021–1033 (2008).
  • Larsson M . Editorial. Accelerator mass spectrometry. Mass Spectrom. Rev. 27(5), 397 (2008).
  • Hah SS . Recent advances in biomedical applications of accelerator mass spectrometry. J. Biomed. Sci. 16, 54 (2009).
  • Gunnarsson M , StenstromK, Leide-SvegbornSet al. Biokinetics and radiation dosimetry for patients undergoing a glycerol tri[1–14C]oleate fat malabsorption breath test. Appl. Radiat. Isot. 58(4), 517–526 (2003).
  • Gunnarsson M , Leide-SvegbornS, StenstromKet al. Long-term biokinetics and radiation exposure of patients undergoing 14C-glycocholic acid and 14C-xylose breath tests. Cancer Biother. Radiopharm. 22(6), 762–771 (2007).
  • Shapiro SD , EndicottSK, ProvinceMA, PierceJA, CampbellEJ. Marked longevity of human lung parenchymal elastic fibers deduced from prevalence of D-aspartate and nuclear weapons-related radiocarbon. J. Clin. Invest. 87(5), 1828–1834 (1991).
  • Bergmann O , BhardwajRD, BernardSet al. Evidence for cardiomyocyte renewal in humans. Science324(5923), 98–102 (2009).
  • Bhardwaj RD , CurtisMA, SpaldingKLet al. Neocortical neurogenesis in humans is restricted to development. Proc. Natl Acad. Sci. USA103(33), 12564–12568 (2006).
  • Spalding KL , ArnerE, WestermarkPOet al. Dynamics of fat cell turnover in humans. Nature453(7196), 783–787 (2008).
  • Spalding KL , BuchholzBA, BergmanLE, DruidH, FrisenJ. Forensics. Age written in teeth by nuclear tests. Nature437(7057), 333–334 (2005).
  • Record RD , HillegondsD, SimmonsCet al. In vivo degradation of 14C-labeled small intestinal submucosa (sis) when used for urinary bladder repair. Biomaterials22(19), 2653–2659 (2001).
  • Gilbert TW , Stewart-AkersAM, BadylakSF. A quantitative method for evaluating the degradation of biologic scaffold materials. Biomaterials28(2), 147–150 (2007).
  • Li Y , ShawgoRS, TylerBet al. In vivo release from a drug delivery MEMS device. J. Control Release100(2), 211–219 (2004).
  • Buchholz BA , FreemanS, HaackK, VogelJ. Tips and traps in the 14C Bio-AMS preparation laboratory. Nucl. Instrum. Methods Phys. Res. B172, 5 (2000).
  • Hah SS . Determination of protein-ligand interactions using accelerator mass spectrometry. Modified crosslinking assay. Anal. Sci. 25(5), 731–733 (2009).
  • Minamimoto R , HamabeY, MiyaokaTet al. Accelerator mass spectrometry analysis of background 14C-concentrations in human blood. Aiming at reference data for further microdosing studies. Ann. Nucl. Med. 22(10), 883–889 (2008).
  • Nelson DE . A new method for carbon isotopic analysis of protein. Science251(4993), 552–554 (1991).
  • Palmblad M , BenchG, VogelJS. Mass by energy loss quantitation as a practical submicrogram balance. Anal. Chem. 77(3), 952–953 (2005).
  • Palmblad M , VogelJS. Quantitation of binding, recovery and desalting efficiency of peptides and proteins in solid phase extraction micropipette tips. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 814(2), 309–313 (2005).
  • Veltkamp AC . Radiochromatography in pharmaceutical and biomedical analysis. J. Chromatogr. 531, 101–129 (1990).
  • Bogen KT , KeatingGA, MeissnerS, VogelJS. Initial uptake kinetics in human skin exposed to dilute aqueous trichloroethylene in vitro. J. Expo. Anal. Environ. Epidemiol. 8(2), 253–271 (1998).
  • Turteltaub KW , VogelJS, FrantzCE, ShenN. Fate and distribution of 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine mice at a human dietary equivalent dose. Cancer Res. 52(17), 4682–4687 (1992).
  • Frantz CE , BangerterC, FultzE, MayerKM, VogelJS, TurteltaubKW. Dose-response studies of MeIQx in rat liver and liver DNA at low doses. Carcinogenesis16(2), 367–373 (1995).
  • Turteltaub KW , VogelJS, FrantzC, FeltonJS, McmanusM. Assessment of the DNA adduction and pharmacokinetics of PHiP and MeIQx in rodents at doses approximating human exposure using the technique of accelerator mass spectrometry (AMS) and 32P-postlabeling. Princess Takamatsu Symp. 23, 93–102 (1995).
  • Creek MR , ManiC, VogelJS, TurteltaubKW. Tissue distribution and macromolecular binding of extremely low doses of [14C]-benzene in B6C3F1 mice. Carcinogenesis18(12), 2421–2427 (1997).
  • Martin EA , CarthewP, WhiteINet al. Investigation of the formation and accumulation of liver DNA adducts in mice chronically exposed to tamoxifen. Carcinogenesis18(11), 2209–2215 (1997).
  • White IN , MartinEA, MautheRJ, VogelJS, TurteltaubKW, SmithLI. Comparisons of the binding of [14C]radiolabelled tamoxifen or toremifene to rat DNA using accelerator mass spectrometry. Chem. Biol. Interact. 106(2), 149–160 (1997).
  • Garner RC . The role of DNA adducts in chemical carcinogenesis. Mutat. Res. 402(1–2), 67–75 (1998).
  • Buchholz BA , FultzE, HaackKWet al. HPLC-accelerator MS measurement of atrazine metabolites in human urine after dermal exposure. Anal. Chem. 71(16), 3519–3525 (1999).
  • Kwok ES , BuchholzBA, VogelJS, TurteltaubKW, EastmondDA. Dose-dependent binding of ortho-phenylphenol to protein but not DNA in the urinary bladder of male F344 rats. Toxicol. Appl. Pharmacol. 159(1), 18–24 (1999).
  • Lang NP , NowellS, MalfattiMAet al. In vivo human metabolism of [2–14C]2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PHiP). Cancer Lett. 143(2), 135–138 (1999).
  • Mani C , FreemanS, NelsonDO, VogelJS, TurteltaubKW. Species and strain comparisons in the macromolecular binding of extremely low doses of [14C]benzene in rodents, using accelerator mass spectrometry. Toxicol. Appl. Pharmacol. 159(2), 83–90 (1999).
  • Goldman R , DayBW, CarverTA, MautheRJ, TurteltaubKW, ShieldsPG. Quantitation of benzo[a]pyrene-DNA adducts by postlabeling with 14C-acetic anhydride and accelerator mass spectrometry. Chem. Biol. Interact. 126(3), 171–183 (2000).
  • Boocock DJ , BrownK, GibbsAH, SanchezE, TurteltaubKW, WhiteIN. Identification of human CYP forms involved in the activation of tamoxifen and irreversible binding to DNA. Carcinogenesis23(11), 1897–1901 (2002).
  • Vogel JS , KeatingGA2nd, BuchholzBA. Protein binding of isofluorophate in vivo after coexposure to multiple chemicals. Environ. Health Perspect. 110(Suppl. 6), 1031–1036 (2002).
  • Williams KE , CarverTA, MirandaJJet al. Attomole detection of in vivo protein targets of benzene in mice. Evidence for a highly reactive metabolite. Mol. Cell. Proteomics1(11), 885–895 (2002).
  • Li H , WangH, SunH, LiuY, LiuK, PengS. Binding of nitrobenzene to hepatic DNA and hemoglobin at low doses in mice. Toxicol. Lett. 139(1), 25–32 (2003).
  • Martin EA , BrownK, GaskellMet al. Tamoxifen DNA damage detected in human endometrium using accelerator mass spectrometry. Cancer Res. 63(23), 8461–8465 (2003).
  • Turteltaub KW , ManiC. Benzene metabolism in rodents at doses relevant to human exposure from urban air. Res. Rep. Health Eff. Inst. (113), 1–26; discussion 27–35 (2003).
  • Mally A , ZepnikH, WanekPet al. Ochratoxin A. Lack of formation of covalent DNA adducts. Chem. Res. Toxicol. 17(2), 234–242 (2004).
  • Du HF , XuLH, WangHFet al. Formation of MTBE-DNA adducts in mice measured with accelerator mass spectrometry. Environ. Toxicol. 20(4), 397–401 (2005).
  • Malfatti MA , UbickEA, FeltonJS. The impact of glucuronidation on the bioactivation and DNA adduction of the cooked-food carcinogen 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine in vivo. Carcinogenesis26(11), 2019–2028 (2005).
  • Mally A , DekantW. DNA adduct formation by ochratoxin a. Review of the available evidence. Food Addit. Contam. 22(Suppl. 1), 65–74 (2005).
  • Hillier SM , MarquisJC, ZayasBet al. DNA adducts formed by a novel antitumor agent 11β-dichloro in vitro and in vivo. Mol. Cancer Ther. 5(4), 977–984 (2006).
  • Skipper PL , TrudelLJ, KenslerTWet al. DNA adduct formation by 2,6-dimethyl-, 3,5-dimethyl-, and 3-ethylaniline in vivo in mice. Chem. Res. Toxicol. 19(8), 1086–1090 (2006).
  • Xie Q , SunH, LiuY, DingX, FuD, LiuK. Adduction of biomacromolecules with acrylamide (AA) in mice at environmental dose levels studied by accelerator mass spectrometry. Toxicol. Lett. 163(2), 101–108 (2006).
  • Brown K , TompkinsEM, BoocockDJet al. Tamoxifen forms DNA adducts in human colon after administration of a single [14C]-labeled therapeutic dose. Cancer Res. 67(14), 6995–7002 (2007).
  • Hah SS , SumbadRA, De Vere White RW, Turteltaub KW, Henderson PT. Characterization of oxaliplatin–DNA adduct formation in DNA and differentiation of cancer cell drug sensitivity at microdose concentrations. Chem. Res. Toxicol. 20(12), 1745–1751 (2007).
  • Watanabe K , LibermanRG, SkipperPL, TannenbaumSR, GuengerichFP. Analysis of DNA adducts formed in vivo in rats and mice from 1,2-dibromoethane, 1,2-dichloroethane, dibromomethane, and dichloromethane using HPLC/accelerator mass spectrometry and relevance to risk estimates. Chem. Res. Toxicol. 20(11), 1594–1600 (2007).
  • Yuan Y , WangHF, SunHFet al. Adduction of DNA with MTBE and TBA in mice studied by accelerator mass spectrometry. Environ. Toxicol. 22(6), 630–635 (2007).
  • Coldwell KE , CuttsSM, OgnibeneTJ, HendersonPT, PhillipsDR. Detection of adriamycin-DNA adducts by accelerator mass spectrometry at clinically relevant adriamycin concentrations. Nucleic Acids Res. 36(16), e100 (2008).
  • Knutson CG , SkipperPL, LibermanRG, TannenbaumSR, MarnettLJ. Monitoring in vivo metabolism and elimination of the endogenous DNA adduct, M1DG {3-(2-deoxy-β-D-erythro-pentofuranosyl)pyrimido[1,2-α]purin-10(3h)-one}, by accelerator mass spectrometry. Chem. Res. Toxicol. 21(6), 1290–1294 (2008).
  • Xie Q , LiuY, SunHet al. Inhibition of acrylamide toxicity in mice by three dietary constituents. J. Agric. Food Chem. 56(15), 6054–6060 (2008).
  • Marsden DA , JonesDJ, BrittonRGet al. Dose-response relationships for n7-(2-hydroxyethyl)guanine induced by low-dose [14C]ethylene oxide. Evidence for a novel mechanism of endogenous adduct formation. Cancer Res. 69(7), 3052–3059 (2009).
  • Eap CB , BuclinT, CucchiaGet al. Oral administration of a low dose of midazolam (75 microg) as an in vivo probe for CYP3A activity. Eur. J. Clin. Pharmacol. 60(4), 237–246 (2004).
  • Beumer JH , BeijnenJH, SchellensJH. Mass balance studies, with a focus on anticancer drugs. Clin. Pharmacokinet. 45(1), 33–58 (2006).
  • Lappin G , RowlandM, GarnerRC. The use of isotopes in the determination of absolute bioavailability of drugs in humans. Expert Opin. Drug Metab. Toxicol. 2(3), 419–427 (2006).

Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.