10
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Cu-promoted synthesis of triclosan-Mannich and Glaser adducts: anti-mycobacterial evaluation with in silico validations

, , , , & ORCID Icon
Received 12 Oct 2023, Accepted 26 Mar 2024, Published online: 17 May 2024

References

  • Saxena S, Spaink HP, Forn-Cuní G. Drug resistance in nontuberculous mycobacteria: mechanisms and models. Biology (Basel) 2021;10(2):1–22. doi:10.3390/biology10020096
  • Kakkar AK, Dahiya N. Bedaquiline for the treatment of resistant tuberculosis: promises and pitfalls. Tuberculosis 2014;94(4):357–362. doi:10.1016/j.tube.2014.04.001
  • Dheda K, Gumbo T, Maartens G et al. The epidemiology, pathogenesis, transmission, diagnosis, and management of multidrug-resistant, extensively drug-resistant, and incurable tuberculosis. Lancet Respir. Med. 2017;5(4):291–360. doi:10.1016/S2213-2600(17)30079-6
  • WHO. Global Tuberculosis Report 2022, World Health Organization. www.who.int/teams/global-tuberculosis-programme/tb-reports/global-tuberculosis-report-2022
  • Johansen MD, Herrmann JL, Kremer L. Non-tuberculous mycobacteria and the rise of Mycobacterium Abscessus. Nat. Rev. Microbiol. 2020;18(7):392–407. doi:10.1038/s41579-020-0331-1
  • Ratnatunga CN, Lutzky VP, Kupz A et al. The rise of non-tuberculosis mycobacterial lung disease. Front Immunol. 2020;11(3):1–12. doi:10.3389/fimmu.2020.00303
  • Johnson MM, Odell JA. Nontuberculous mycobacterial pulmonary infections. J. Thorac. Dis. 2014;6(3):210–220. doi:10.3978/j.issn.2072-1439.2013.12.24
  • Falkinham JO. Ecology of nontuberculous mycobacteria-where do human infections come from semin respir. Crit. Care Med. 2013;34(1):95–102. doi:10.1055/s-0033-1333568
  • Griffith DE, Aksamit T, Brown-Elliott BA et al. An official ATS/IDSA statement: diagnosis, treatment, and prevention of nontuberculous mycobacterial diseases. Am. J. Respir. Crit. Care Med. 2007;175(4):367–416. doi:10.1164/rccm.200604-571ST
  • Campbell IA, Petrie G, Pirret MF et al. Pulmonary disease caused by M. Malmoense in HIV negative patients: 5-yr follow-up of patients receiving standardised treatment. Eur. Respir. J. 2003;21(3):478–482. doi:10.1183/09031936.03.00299903
  • Gopalaswamy R, Shanmugam S, Mondal R et al. Of tuberculosis and non-tuberculous mycobacterial infections – a comparative analysis of epidemiology, diagnosis and treatment. J. Biomed. Sci. 2020;27(1):1–17. doi:10.1186/s12929-020-00667-6
  • Bhargava HN, Leonard PA. Triclosan: applications and safety. Am. J. Infect. Control 1996;24(3):209–218. doi:10.1016/S0196-6553(96)90017-6
  • Jones RD, Jampani HB, Newman JL et al. Triclosan: a review of effectiveness and safety in health care settings. Am. J. Infect. Control 2000;28(2):184–196. doi:10.1067/mic.2000.102378
  • Vosatka R, Kratky M, Vinsova J. Triclosan and its derivatives as antimycobacterial active agents. Eur. J. Pharm. Sci. 2018;114:318–331. doi:10.1016/j.ejps.2017.12.013
  • Banerjee A, Dubnau E, Quemard A et al. InhA, a gene encoding a target for isoniazid and ethionamide in Mycobacterium tuberculosis. Science 1993;263(5144):227–230. doi:10.1126/science.8284673
  • Morlock GP, Metchock B, Sikes D et al. EthA, InhA, and KatG loci of ethionamide-resistant clinical Mycobacterium tuberculosis isolates. Antimicrob. Agents Chemother. 2003;47(12):3799–3805. doi:10.1128/AAC.47.12.3799-3805.2003
  • Pan P, Tonge JP. Targeting InhA, the FASII enoyl-ACP reductase: SAR studies on novel inhibitor scaffolds. Curr. Top. Med. Chem. 2012;12(7):672–693. doi:10.2174/156802612799984535
  • Wang LQ, Falany CN, James MO. Triclosan as a substrate and inhibitor of 3′-phosphoadenosine 5′-phosphosulfate-sulfotransferase and UDP-glucuronosyl transferase in human liver fractions. Drug Metab. Dispos. 2004;32(10):1162–1169. doi:10.1124/dmd.104.000273
  • Stec J, Vilcheze C, Lun S et al. Biological Evaluation of Potent Triclosan-Derived Inhibitors of the Enoyl-Acyl Carrier Protein Reductase InhA in Drug-Sensitive and Drug-Resistant Strains of Mycobacterium Tuberculosis. ChemMedChem. 2014;9(11):2528–2537. doi:10.1002/cmdc.201402255
  • Rozman K, Sosic I, Fernandez R et al. A new ‘golden age’ for the antitubercular target InhA. Drug Discov. Today 2017;22(3):492–502. doi:10.1016/j.drudis.2016.09.009
  • Chetty S, Armstrong T, Sharma Kharkwal S et al. New Inha inhibitors based on expanded triclosan and di-triclosan analogues to develop a new treatment for tuberculosis. Pharmaceuticals 2021;14(4):361. doi:10.3390/ph14040361
  • Güzel O, Karali N, Salman A. Synthesis and antituberculosis activity of 5-methyl/trifluoromethoxy-1h-indole-2,3-dione 3-thiosemicarbazone derivatives. Bioorg. Med. Chem. 2008;16(19):8976–8987. doi:10.1016/j.bmc.2008.08.050
  • Rani A, Johansen MD, Roquet-Baneres F et al. Design and synthesis of 4-aminoquinoline-isoindoline-dione-isoniazid triads as potential anti-mycobacterials. Bioorg. Med. Chem. Lett. 2020;30(22):127576. doi:10.1016/j.bmcl.2020.127576
  • Johansen MD, Shalini, Kumar S et al. Biological and biochemical evaluation of isatin-isoniazid hybrids as bactericidal candidates against Mycobacterium tuberculosis. Antimicrob. Agents Chemother. 2021;65(8):e00011-21. doi:10.1128/AAC.00011-21
  • Sharma B, Kumar S, Preeti et al. 1H-1,2,3-triazole embedded isatin-benzaldehyde-bis(heteronuclearhydrazones): design, synthesis, antimycobacterial, and cytotoxic evaluation. Chem. Biol. Drug Des. 2022;99(2):301–307. doi:10.1111/cbdd.13984
  • Alcaraz M, Sharma B, Roquet-Baneres F et al. Designing quinoline-isoniazid hybrids as potent anti-tubercular agents inhibiting mycolic acid biosynthesis. Eur. J. Med. Chem. 2022;239:114531. doi:10.1016/j.ejmech.2022.114531
  • Ripoll F, Pasek S, Schenowitz C et al. Non mycobacterial virulence genes in the genome of the emerging pathogen Mycobacterium abscessus. PLOS ONE 2009;4(6):e5660. doi:10.1371/journal.pone.0005660
  • Pawlik A, Garnier G, Orgeur M et al. Identification and characterization of the genetic changes responsible for the characteristic smooth-to-rough morphotype alterations of clinically persistent Mycobacterium abscessus. Mol. Microbiol. 2013;90(3):612–629. doi:10.1111/mmi.12387
  • Woods GL, Brown-Elliott BA, Conville PS et al. Clinical and Laboratory Standards Institute. Susceptibility Testing of Mycobacteria, Nocardiae, and Other Aerobic Actinomycetes. 2nd Ed, PA, USA, 2011.
  • Bernut A, Le Moigne V, Lesne T et al. In vivo assessment of drug efficacy against Mycobacterium abscessus using the embryonic zebrafish test system. Antimicrob. Agents Chemother. 2014;58(7):4054–4063. doi:10.1128/AAC.00142-14
  • Iskar M, Zeller G, Zhao XM et al. Drug discovery in the age of systems biology: the rise of computational approaches for data integration. Curr. Opin. Biotechnol. 2012;23(4):609–616. doi:10.1016/j.copbio.2011.11.010
  • Al Sheikh Ali A, Khan D, Naqvi A et al. Design, synthesis, molecular modeling, anticancer studies, and density functional theory calculations of 4-(1,2,4-Triazol-3-Ylsulfanylmethyl)-1,2,3-triazole derivatives. ACS Omega 2021;6(1):301–316. doi:10.1021/acsomega.0c04595
  • Alcaraz M, Roquet-Baneres F, Leon-Icaza SA et al. Efficacy and mode of action of a direct inhibitor of Mycobacterium abscessus InhA. ACS Infect. Dis. 2022;8(10):2171–2186. doi:10.1021/acsinfecdis.2c00314

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.