1,298
Views
20
CrossRef citations to date
0
Altmetric
Review

Dendritic cell interactions with Histoplasma and Paracoccidioides

, &
Pages 424-432 | Received 05 Feb 2014, Accepted 10 Sep 2014, Published online: 01 May 2015

References

  • Janeway CA Jr, Travers P, Walport M, Shlomchik MJ. Immunology. New York: Garland Science, 2001.
  • Janeway CA Jr, Medzhitov R. Innate immune recognition. Annu Rev Immunol 2002; 20:197-216; PMID:11861602; http://dx.doi.org/10.1146/annur-ev.immunol.20.083001.084359
  • Kopp E, Medzhitov R. Recognition of microbial infection by Toll-like receptors. Curr Opin Immunol 2003; 15:396-401; PMID:12900270; http://dx.doi.org/10.1016/S0952-7915(03)00080-3
  • Villamon E, Gozalbo D, Roig P, O’Connor JE, Fradelizi D, Gil ML. Toll-like receptor-2 is essential in murine defenses against Candida albicans infections. Microbes Infect 2004; 6:1-7; PMID:14738887; http://dx.doi.org/10.1016/j.micinf.2003.09.020
  • Braedel S, Radsak M, Einsele H, Latge JP, Michan A, Loeffler J, Haddad Z, Grigoleit U, Schild H, Hebart H. Aspergillus fumigatus antigens activate innate immune cells via toll-like receptors 2 and 4. Br J Haematol 2004; 125:392-9; PMID:15086422; http://dx.doi.org/10.1111/j.1365-2141.2004.04922.x
  • Shoham S, Huang C, Chen JM, Golenbock DT, Levitz SM. Toll-like receptor 4 mediates intracellular signaling without TNF-alpha release in response to Cryptococcus neoformans polysaccharide capsule. J Immunol 2001; 166:4620-6; PMID:11254720; http://dx.doi.org/10.4049/jimmunol.166.7.4620
  • Awasthi S. Susceptibility of TLR4-defective C3HHeJ mice to Coccidioides posadasii infection. Med Mycol 2010; 48:470-5; PMID:20370361; http://dx.doi.org/10.3109/13693780903226019
  • Clark R, Kupper T. Old meets new: the interaction between innate and adaptive immunity. J Invest Dermatol 2005; 125:629-37; PMID:16185260; http://dx.doi.org/10.1111/j.0022-202X.2005.23856.x
  • Steinman RM. Decisions about dendritic cells: past, present, and future. Annu Rev Immunol 2012; 30:1-22; PMID:22136168; http://dx.doi.org/10.1146/annurev-immunol-100311-102839
  • Wuthrich M, Deepe GS Jr, Klein B. Adaptive immunity to fungi. Annu Rev Immunol 2012; 30:115-48; PMID:22224780; http://dx.doi.org/10.1146/annur-ev-immunol-020711-074958
  • Pulendran B, Palucka K, Banchereau J. Sensing pathogens and tuning immune responses. Science 2001; 293:253-6; PMID:11452116; http://dx.doi.org/10.1126/science.1062060
  • Buentke E, Scheynius A. Dendritic cells and fungi. APMIS 2003; 111:789-96; PMID:12974780; http://dx.doi.org/10.1034/j.1600-0463.2003.11107810.x
  • Sertl K, Takemura T, Tschachler E, Ferrans VJ, Kaliner MA, Shevach EM. Dendritic cells with antigen-presenting capability reside in airway epithelium, lung parenchyma, and visceral pleura. J Exp Med 1986; 163:436-51; PMID:3511172; http://dx.doi.org/10.1084/jem.163.2.436
  • Holt PG, Schon-Hegrad MA. Localization of T cells, macrophages and dendritic cells in rat respiratory tract tissue: implications for immune function studies. Immunology 1987; 62:349-56; PMID:3499375
  • Silvana dos Santos S, Ferreira KS, Almeida SR. Paracoccidioides brasilinsis-induced migration of dendritic cells and subsequent T-cell activation in the lung-draining lymph nodes. PLoS One 2011; 6:e19690; http://dx.doi.org/10.1371/journal.pone.0019690
  • Bozza S, Gaziano R, Spreca A, Bacci A, Montagnoli C, di Francesco P, Romani L. Dendritic cells transport conidia and hyphae of Aspergillus fumigatus from the airways to the draining lymph nodes and initiate disparate Th responses to the fungus. J Immunol 2002; 168:1362-71; PMID:11801677; http://dx.doi.org/10.4049/jimmunol.168.3.1362
  • Marino S, Pawar S, Fuller CL, Reinhart TA, Flynn JL, Kirschner DE. Dendritic cell trafficking and antigen presentation in the human immune response to Mycobacterium tuberculosis. J Immunol 2004; 173:494-506; PMID:15210810; http://dx.doi.org/10.4049/jimmunol.173.1.494
  • Nambiar JK, Ryan AA, Kong CU, Britton WJ, Triccas JA. Modulation of pulmonary DC function by vaccine-encoded GM-CSF enhances protective immunity against Mycobacterium tuberculosis infection. Eur J Immunol 2010; 40:153-61; PMID:19830735; http://dx.doi.org/10.1002/eji.200939665
  • Wozniak KL, Vyas JM, Levitz SM. In vivo role of dendritic cells in a murine model of pulmonary cryptococcosis. Infect Immun 2006; 74:3817-24; PMID:16790753; http://dx.doi.org/10.1128/IAI.00317-06
  • Pina A, de Araujo EF, Felonato M, Loures FV, Feriotti C, Bernardino S, Barbuto JA, Calich VL. Myeloid dendritic cells (DCs) of mice susceptible to paracoccidioidomycosis suppress T cell responses whereas myeloid and plasmacytoid DCs from resistant mice induce effector and regulatory T cells. Infect Immun 2013; 81:1064-77; PMID:23340311; http://dx.doi.org/10.1128/IAI.00736-12
  • Gildea LA, Morris RE, Newman SL. Histoplasma capsulatum yeasts are phagocytosed via very late antigen-5, killed, and processed for antigen presentation by human dendritic cells. J Immunol 2001; 166:1049-56; PMID:11145684; http://dx.doi.org/10.4049/jimmunol.166.2.1049
  • Roake JA, Rao AS, Morris PJ, Larsen CP, Hankins DF, Austyn JM. Dendritic cell loss from nonlymphoid tissues after systemic administration of lipopolysaccharide, tumor necrosis factor, and interleukin 1. J Exp Med 1995; 181:2237-47; PMID:7760009; http://dx.doi.org/10.1084/jem.181.6.2237
  • O’Doherty U, Steinman RM, Peng M, Cameron PU, Gezelter S, Kopeloff I, Swiggard WJ, Pope M, Bhardwaj N. Dendritic cells freshly isolated from human blood express CD4 and mature into typical immunostimulatory dendritic cells after culture in monocyte-conditioned medium. J Exp Med 1993; 178:1067-76; http://dx.doi.org/10.1084/jem.178.3.1067
  • Larsen CP, Steinman RM, Witmer-Pack M, Hankins DF, Morris PJ, Austyn JM. Migration and maturation of Langerhans cells in skin transplants and explants. J Exp Med 1990; 172:1483-93; PMID:2230654; http://dx.doi.org/10.1084/jem.172.5.1483
  • Cumberbatch M, Kimber I. Dermal tumour necrosis factor-alpha induces dendritic cell migration to draining lymph nodes, and possibly provides one stimulus for Langerhans’ cell migration. Immunology 1992; 75:257-63; PMID:1551688
  • Rescigno M, Citterio S, Thery C, Rittig M, Medaglini D, Pozzi G, Amigorena S, Ricciardi-Castagnoli P. Bacteria-induced neo-biosynthesis, stabilization, and surface expression of functional class I molecules in mouse dendritic cells. Proc Natl Acad Sci U S A 1998; 95:5229-34; PMID:9560258; http://dx.doi.org/10.1073/pnas.95.9.5229
  • Guermonprez P, Saveanu L, Kleijmeer M, Davoust J, Van Endert P, Amigorena S. ER-phagosome fusion defines an MHC class I cross-presentation compartment in dendritic cells. Nature 2003; 425:397-402; PMID:14508489; http://dx.doi.org/10.1038/nature-01911
  • Heath WR, Carbone FR. Cross-presentation, dendritic cells, tolerance and immunity. Annu Rev Immunol 2001; 19:47-64; PMID:11244030; http://dx.doi.org/10.1146/annurev.immunol.19.1.47
  • Kapsenberg ML. Dendritic-cell control of pathogen-driven T-cell polarization. Nat Rev Immunol 2003; 3:984-93; PMID:14647480; http://dx.doi.org/10.1038/nri1246
  • Deepe GS Jr, Seder RA. Molecular and cellular determinants of immunity to Histoplasma capsulatum. Res Immunol 1998; 149:397-406; discussion 509-10; PMID:9720957; http://dx.doi.org/10.1016/S0923-2494(98)80763-3
  • Wheat LJ, Connolly-Stringfield PA, Baker RL, Curfman MF, Eads ME, Israel KS, Norris SA, Webb DH, Zeckel ML. Disseminated histoplasmosis in the acquired immune deficiency syndrome: clinical findings, diagnosis and treatment, and review of the literature. Medicine (Baltimore) 1990; 69:361-74; PMID:2233233
  • Wood KL, Hage CA, Knox KS, Kleiman MB, Sannuti A, Day RB, Wheat LJ, Twigg HL, 3rd. Histoplasmosis after treatment with anti-tumor necrosis factor-alpha therapy. Am J Respir Crit Care Med 2003; 167:1279-82; PMID:12615627; http://dx.doi.org/10.1164/rccm.200206-563OC
  • Wheat LJ, Slama TG, Norton JA, Kohler RB, Eitzen HE, French ML, Sathapatayavongs B. Risk factors for disseminated or fatal histoplasmosis. Analysis of a large urban outbreak. Ann Intern Med 1982; 96:159-63; PMID:7059062; http://dx.doi.org/10.7326/0003-4819-96-2-159
  • Larrabee WF, Ajello L, Kaufman L. An epidemic of histoplasmosis on the Isthmus of Panama. Am J Trop Med Hyg 1978; 27:281-5; PMID:565597
  • Goodwin RA Jr, Shapiro JL, Thurman GH, Thurman SS, Des Prez RM. Disseminated histoplasmosis: clinical and pathologic correlations. Medicine (Baltimore) 1980; 59:1-33; PMID:7356773; http://dx.doi.org/10.1097/00005792-198001000-00001
  • Deepe GS Jr Immune response to early and late Histoplasma capsulatum infections. Curr Opin Microbiol 2000; 3:359-62; PMID:10972494; http://dx.doi.org/10.1016/S1369-5274(00)00104-1
  • Newman SL, Lemen W, Smulian AG. Dendritic cells restrict the transformation of Histoplasma capsulatum conidia into yeasts. Med Mycol 2011; 49:356-64; PMID:21039309; http://dx.doi.org/10.3109/13693-786.2010.531295
  • Schlitzer RL, Chandler FW, Larsh HW. Primary acute histoplasmosis in guinea pigs exposed to aerosolized Histoplasma capsulatum. Infect Immun 1981; 33:575-82; PMID:7275317
  • Maresca B, Kobayashi GS. Dimorphism in Histoplasma capsulatum: a model for the study of cell differentiation in pathogenic fungi. Microbiol Rev 1989; 53:186-209; PMID:2666842
  • Deepe GS Jr, Gibbons RS, Smulian AG. Histoplasma capsulatum manifests preferential invasion of phagocytic subpopulations in murine lungs. J Leukoc Biol 2008; 84:669-78; PMID:18577715; http://dx.doi.org/10.1189/jlb.0308154
  • Newman SL. Macrophages in host defense against Histoplasma capsulatum. Trends Microbiol 1999; 7:67-71; PMID:10081083; http://dx.doi.org/10.1016/S0966-842X(98)01431-0
  • Newman SL, Bucher C, Rhodes J, Bullock WE. Phagocytosis of Histoplasma capsulatum yeasts and microconidia by human cultured macrophages and alveolar macrophages. Cellular cytoskeleton requirement for attachment and ingestion. J Clin Invest 1990; 85:223-30; PMID:2104879; http://dx.doi.org/10.1172/JCI114416
  • Gomez FJ, Pilcher-Roberts R, Alborzi A, Newman SL. Histoplasma capsulatum cyclophilin A mediates attachment to dendritic cell VLA-5. J Immunol 2008; 181:7106-14; PMID:18981131; http://dx.doi.org/10.4049/jimmunol.181.10.7106
  • Long KH, Gomez FJ, Morris RE, Newman SL. Identification of heat shock protein 60 as the ligand on Histoplasma capsulatum that mediates binding to CD18 receptors on human macrophages. J Immunol 2003; 170:487-94; PMID:12496435; http://dx.doi.org/10.4049/jimmunol.170.1.487
  • Gildea LA, Ciraolo GM, Morris RE, Newman SL. Human dendritic cell activity against Histoplasma capsulatum is mediated via phagolysosomal fusion. Infect Immun 2005; 73:6803-11; PMID:16177358; http://dx.doi.org/10.1128/IAI.73.10.6803-6811.2005
  • Allendoerfer R, Deepe GS Jr. Regulation of infection with Histoplasma capsulatum by TNFR1 and -2. J Immunol 2000; 165:2657-64; PMID:10946295; http://dx.doi.org/10.4049/jimmunol.165.5.2657
  • Allendoerfer R, Deepe GS Jr. Intrapulmonary response to Histoplasma capsulatum in gamma interferon knockout mice. Infect Immun 1997; 65:2564-9; PMID:9199420
  • Szymczak WA, Deepe GS Jr. The CCL7-CCL2-CCR2 axis regulates IL-4 production in lungs and fungal immunity. J Immunol 2009; 183:1964-74; PMID:19587014; http://dx.doi.org/10.4049/jimm-unol.0901316
  • Maroof A, Penny M, Kingston R, Murray C, Islam S, Bedford PA, Knight SC. Interleukin-4 can induce interleukin-4 production in dendritic cells. Immunology 2006; 117:271-9; PMID:16423063; http://dx.doi.org/10.1111/j.1365-2567.2005.02305.x
  • Serbina NV, Pamer EG. Monocyte emigration from bone marrow during bacterial infection requires signals mediated by chemokine receptor CCR2. Nat Immunol 2006; 7:311-7; PMID:16462739; http://dx.doi.org/10.1038/ni1309
  • Szymczak WA, Deepe GS Jr. Antigen-presenting dendritic cells rescue CD4-depleted CCR2- mice from lethal Histoplasma capsulatum infection. Infect Immun 2010; 78:2125-37; PMID:20194586; http://dx.doi.org/10.1128/IAI.00065-10
  • Lin JS, Yang CW, Wang DW, Wu-Hsieh BA. Dendritic cells cross-present exogenous fungal antigens to stimulate a protective CD8 T cell response in infection by Histoplasma capsulatum. J Immunol 2005; 174:6282-91; PMID:15879127; http://dx.doi.org/10.4049/jimmunol.174.10.6282
  • Wuthrich M, Filutowicz HI, Warner T, Deepe GS Jr, Klein BS. Vaccine immunity to pathogenic fungi overcomes the requirement for CD4 help in exogenous antigen presentation to CD8+ T cells: implications for vaccine development in immune-deficient hosts. J Exp Med 2003; 197:1405-16; PMID:12782709; http://dx.doi.org/10.1084/jem.20030109
  • Deepe GS Jr. Role of CD8+ T cells in host resistance to systemic infection with Histoplasma capsulatum in mice. J Immunol 1994; 152:3491-500; PMID:8144930
  • Allendorfer R, Brunner GD, Deepe GS Jr. Complex requirements for nascent and memory immunity in pulmonary histoplasmosis. J Immunol 1999; 162:7389-96; PMID:10358191
  • Hsieh SH, Lin JS, Huang JH, Wu SY, Chu CL, Kung JT, Wu-Hsieh BA. Immunization with apoptotic phagocytes containing Histoplasma capsulatum activates functional CD8(+) T cells to protect against histoplasmosis. Infect Immun 2011; 79:4493-502; PMID:21911464; http://dx.doi.org/10.1128/IAI.05350-11
  • Gorocica P, Taylor ML, Alvarado-Vasquez N, Perez-Torres A, Lascurain R, Zenteno E. The interaction between Histoplasma capsulatum cell wall carbohydrates and host components: relevance in the immunomodulatory role of histoplasmosis. Mem Inst Oswaldo Cruz 2009; 104:492-6; PMID:19547878; http://dx.doi.org/10.1590/S0074-02762009000300016
  • Janusz MJ, Austen KF, Czop JK. Isolation of soluble yeast beta-glucans that inhibit human monocyte phagocytosis mediated by beta-glucan receptors. J Immunol 1986; 137:3270-6; PMID:3021849
  • Underhill DM, Rossnagle E, Lowell CA, Simmons RM. Dectin-1 activates Syk tyrosine kinase in a dynamic subset of macrophages for reactive oxygen production. Blood 2005; 106:2543-50; PMID:15956283; http://dx.doi.org/10.1182/blood-2005-03-1239
  • Lin JS, Huang JH, Hung LY, Wu SY, Wu-Hsieh BA. Distinct roles of complement receptor 3, Dectin-1, and sialic acids in murine macrophage interaction with Histoplasma yeast. J Leukoc Biol 2010; 88:95-106; PMID:20360401; http://dx.doi.org/10.1189/jlb.1109717
  • Klimpel KR, Goldman WE. Cell walls from avirulent variants of Histoplasma capsulatum lack alpha-(1,3)-glucan. Infect Immun 1988; 56:2997-3000; PMID:3169995
  • San-Blas G, San-Blas F, Serrano LE. Host-parasite relationships in the yeastlike form of Paracoccidioides brasiliensis strain IVIC Pb9. Infect Immun 1977; 15:343-6; PMID:844899
  • Rappleye CA, Eissenberg LG, Goldman WE. Histoplasma capsulatum alpha-(1,3)-glucan blocks innate immune recognition by the beta-glucan receptor. Proc Natl Acad Sci U S A 2007; 104:1366-70; PMID:17227865; http://dx.doi.org/10.1073/pnas.0609848104
  • Edwards JA, Alore EA, Rappleye CA. The yeast-phase virulence requirement for alpha-glucan synthase differs among Histoplasma capsulatum chemotypes. Eukaryot Cell 2011; 10:87-97; PMID:21037179; http://dx.doi.org/10.1128/EC.00214-10
  • Korn T, Bettelli E, Oukka M, Kuchroo VK. IL-17 and Th17 Cells. Annu Rev Immunol 2009; 27:485-517; PMID:19132915; http://dx.doi.org/10.1146/annurev.immunol.021908.132710
  • Eyerich K, Foerster S, Rombold S, Seidl HP, Behrendt H, Hofmann H, Ring J, Traidl-Hoffmann C. Patients with chronic mucocutaneous candidiasis exhibit reduced production of Th17-associated cytokines IL-17 and IL-22. J Invest Dermatol 2008; 128:2640-5; PMID:18615114; http://dx.doi.org/10.1038/jid.2008.139
  • Rudner XL, Happel KI, Young EA, Shellito JE. Interleukin-23 (IL-23)-IL-17 cytokine axis in murine Pneumocystis carinii infection. Infect Immun 2007; 75:3055-61; PMID:17403873; http://dx.doi.org/10.1128/IAI.01329-06
  • Chamilos G, Ganguly D, Lande R, Gregorio J, Meller S, Goldman WE, Gilliet M, Kontoyiannis DP. Generation of IL-23 producing dendritic cells (DCs) by airborne fungi regulates fungal pathogenicity via the induction of T(H)-17 responses. PLoS One 2010; 5:e12955
  • Dong C. TH17 cells in development: an updated view of their molecular identity and genetic programming. Nat Rev Immunol 2008; 8:337-48; PMID:18408735; http://dx.doi.org/10.1038/nri2295
  • Gerosa F, Baldani-Guerra B, Lyakh LA, Batoni G, Esin S, Winkler-Pickett RT, Consolaro MR, De Marchi M, Giachino D, Robbiano A, et al. Differential regulation of interleukin 12 and interleukin 23 production in human dendritic cells. J Exp Med 2008; 205:1447-61; PMID:18490488; http://dx.doi.org/10.1084/jem.20071450
  • Wuthrich M, Gern B, Hung CY, Ersland K, Rocco N, Pick-Jacobs J, Galles K, Filutowicz H, Warner T, Evans M, et al. Vaccine-induced protection against 3 systemic mycoses endemic to North America requires Th17 cells in mice. J Clin Invest 2011; 121:554-68; PMID:21206087; http://dx.doi.org/10.1172/JCI43984
  • Dumic J, Dabelic S, Flogel M. Galectin-3: an open-ended story. Biochim Biophys Acta 2006; 1760:616-35; PMID:16478649; http://dx.doi.org/10.1016/j.bbagen.2005.12.020
  • Sundblad V, Croci DO, Rabinovich GA. Regulated expression of galectin-3, a multifunctional glycan-binding protein, in haematopoietic and non-haematopoietic tissues. Histol Histopathol 2011; 26:247-65; PMID:21154238
  • Ruas LP, Bernardes ES, Fermino ML, de Oliveira LL, Hsu DK, Liu FT, Chammas R, Roque-Barreira MC. Lack of galectin-3 drives response to Paracoccidioides brasiliensis toward a Th2-biased immunity. PLoS One 2009; 4:e4519; PMID:19229338; http://dx.doi.org/10.1371/journal.pone.0004519
  • Bernardes ES, Silva NM, Ruas LP, Mineo JR, Loyola AM, Hsu DK, Liu FT, Chammas R, Roque-Barreira MC. Toxoplasma gondii infection reveals a novel regulatory role for galectin-3 in the interface of innate and adaptive immunity. Am J Pathol 2006; 168:1910-20; PMID:16723706; http://dx.doi.org/10.2353/ajpath.2006.050636
  • Jiang HR, Al Rasebi Z, Mensah-Brown E, Shahin A, Xu D, Goodyear CS, Fukada SY, Liu FT, Liew FY, Lukic ML. Galectin-3 deficiency reduces the severity of experimental autoimmune encephalomyelitis. J Immunol 2009; 182:1167-73; PMID:19124760; http://dx.doi.org/10.4049/jimmunol.182.2.1167
  • Jouault T, El Abed-El Behi M, Martinez-Esparza M, Breuilh L, Trinel PA, Chamaillard M, Trottein F, Poulain D. Specific recognition of Candida albicans by macrophages requires galectin-3 to discriminate Saccharomyces cerevisiae and needs association with TLR2 for signaling. J Immunol 2006; 177:4679-87; PMID:16982907; http://dx.doi.org/10.4049/jimm-unol.177.7.4679
  • Esteban A, Popp MW, Vyas VK, Strijbis K, Ploegh HL, Fink GR. Fungal recognition is mediated by the association of dectin-1 and galectin-3 in macrophages. Proc Natl Acad Sci U S A 2011; 108:14270-5; PMID:21825168; http://dx.doi.org/10.1073/pnas.1111415108
  • Mangan PR, Harrington LE, O’Quinn DB, Helms WS, Bullard DC, Elson CO, Hatton RD, Wahl SM, Schoeb TR, Weaver CT. Transforming growth factor-beta induces development of the T(H)17 lineage. Nature 2006; 441:231-4; PMID:16648837; http://dx.doi.org/10.1038/nature04754
  • Veldhoen M, Hocking RJ, Atkins CJ, Locksley RM, Stockinger B. TGFbeta in the context of an inflammatory cytokine milieu supports de novo differentiation of IL-17-producing T cells. Immunity 2006; 24:179-89; PMID:16473830; http://dx.doi.org/10.1016/j.immuni.2006.01.001
  • Aggarwal S, Ghilardi N, Xie MH, de Sauvage FJ, Gurney AL. Interleukin-23 promotes a distinct CD4 T cell activation state characterized by the production of interleukin-17. J Biol Chem 2003; 278:1910-4; PMID:12417590; http://dx.doi.org/10.1074/jbc.M207577200
  • Shen F, Gaffen SL. Structure-function relationships in the IL-17 receptor: implications for signal transduction and therapy. Cytokine 2008; 41:92-104; PMID:18178098; http://dx.doi.org/10.1016/j.cyto.2007.11.013
  • Huang W, Na L, Fidel PL, Schwarzenberger P. Requirement of interleukin-17A for systemic anti-Candida albicans host defense in mice. J Infect Dis 2004; 190:624-31; PMID:15243941; http://dx.doi.org/10.1086/422329
  • Deepe GS Jr, Gibbons RS. Interleukins 17 and 23 influence the host response to Histoplasma capsulatum. J Infect Dis 2009; 200:142-51; PMID:19469707; http://dx.doi.org/10.1086/599333
  • Wu SY, Yu JS, Liu FT, Miaw SC, Wu-Hsieh BA. Galectin-3 negatively regulates dendritic cell production of IL-23IL-17-axis cytokines in infection by Histoplasma capsulatum. J Immunol 2013; 190:3427-37; PMID:23455499; http://dx.doi.org/10.4049/jimm-unol.1202122
  • Matute DR, McEwen JG, Puccia R, Montes BA, San-Blas G, Bagagli E, Rauscher JT, Restrepo A, Morais F, Nino-Vega G, et al. Cryptic speciation and recombination in the fungus Paracoccidioides brasiliensis as revealed by gene genealogies. Mol Biol Evol 2006; 23:65-73; PMID:16151188; http://dx.doi.org/10.1093/molbev/msj008
  • Brummer E, Castaneda E, Restrepo A. Paracoccidioidomycosis: an update. Clin Microbiol Rev 1993; 6:89-117; PMID:8472249
  • Restrepo A, Benard G, de Castro CC, Agudelo CA, Tobon AM. Pulmonary paracoccidioidomycosis. Semin Respir Crit Care Med 2008; 29:182-97; PMID:18366000; http://dx.doi.org/10.1055/s-2008-1063857
  • Mandell LG BJ, Dolin R. Mandell, Douglas, and Bennett's Principles and Practice of Infectious Diseases, 7th Edition. Philadelphia, PA: Churchill Livingstone, 2010.
  • Ferreira KS, Lopes JD, Almeida SR. Down-regulation of dendritic cell activation induced by Paracoccidioides brasiliensis. Immunol Lett 2004; 94:107-14; PMID:15234542; http://dx.doi.org/10.1016/j.imlet.2004.04.005
  • Benard G. An overview of the immunopathology of human paracoccidioidomycosis. Mycopathologia 2008; 165:209-21; PMID:18777630; http://dx.doi.org/10.1007/s11046-007-9065-0
  • Shankar J, Restrepo A, Clemons KV, Stevens DA. Hormones and the resistance of women to paracoccidioidomycosis. Clin Microbiol Rev 2011; 24:296-313; PMID:21482727; http://dx.doi.org/10.1128/CMR.00062-10
  • Restrepo A, Salazar ME, Cano LE, Stover EP, Feldman D, Stevens DA. Estrogens inhibit mycelium-to-yeast transformation in the fungus Paracoccidioides brasiliensis: implications for resistance of females to paracoccidioidomycosis. Infect Immun 1984; 46:346-53; PMID:6500694
  • Kuchroo VK, Das MP, Brown JA, Ranger AM, Zamvil SS, Sobel RA, Weiner HL, Nabavi N, Glimcher LH. B7-1 and B7-2 costimulatory molecules activate differentially the Th1Th2 developmental pathways: application to autoimmune disease therapy. Cell 1995; 80:707-18; PMID:7534215; http://dx.doi.org/10.1016/0092-8674(95)90349-6
  • Reis e Sousa C, Sher A, Kaye P. The role of dendritic cells in the induction and regulation of immunity to microbial infection. Curr Opin Immunol 1999; 11:392-9; PMID:10448137; http://dx.doi.org/10.1016/S0952-7915(99)80066-1
  • Tavares AH, Derengowski LS, Ferreira KS, Silva SS, Macedo C, Bocca AL, Passos GA, Almeida SR, Silva-Pereira I. Murine dendritic cells transcriptional modulation upon Paracoccidioides brasiliensis infection. PLoS Negl Trop Dis 2012; 6:e1459; PMID:22235359; http://dx.doi.org/10.1371/journal.pntd.0001459
  • Randolph GJ, Ochando J, Partida-Sanchez S. Migration of dendritic cell subsets and their precursors. Annu Rev Immunol 2008; 26:293-316; PMID:18045026; http://dx.doi.org/10.1146/annurev.immunol.26.021607.090254
  • Ohl L, Mohaupt M, Czeloth N, Hintzen G, Kiafard Z, Zwirner J, Blankenstein T, Henning G, Forster R. CCR7 governs skin dendritic cell migration under inflammatory and steady-state conditions. Immunity 2004; 21:279-88; PMID:15308107; http://dx.doi.org/10.1016/j.immuni.2004.06.014
  • Murphy JW, Bistoni F, Deepe GS, Blackstock RA, Buchanan K, Ashman RB, Romani L, Mencacci A, Cenci E, Fe d’Ostiani C, et al. Type 1 and type 2 cytokines: from basic science to fungal infections. Med Mycol 1998; 36 Suppl 1:109-18; PMID:9988499
  • Ferreira KS, Bastos KR, Russo M, Almeida SR. Interaction between Paracoccidioides brasiliensis and pulmonary dendritic cells induces interleukin-10 production and toll-like receptor-2 expression: possible mechanisms of susceptibility. J Infect Dis 2007; 196:1108-15; PMID:17763336; http://dx.doi.org/10.1086/521369
  • Dillon S, Agrawal S, Banerjee K, Letterio J, Denning TL, Oswald-Richter K, Kasprowicz DJ, Kellar K, Pare J, van Dyke T, et al. Yeast zymosan, a stimulus for TLR2 and dectin-1, induces regulatory antigen-presenting cells and immunological tolerance. J Clin Invest 2006; 116:916-28; PMID:16543948; http://dx.doi.org/10.1172/JCI27203
  • Rogers NC, Slack EC, Edwards AD, Nolte MA, Schulz O, Schweighoffer E, Williams DL, Gordon S, Tybulewicz VL, Brown GD, et al. Syk-dependent cytokine induction by Dectin-1 reveals a novel pattern recognition pathway for C type lectins. Immunity 2005; 22:507-17; PMID:15845454; http://dx.doi.org/10.1016/j.immuni.2005.03.004
  • Nakaira-Takahagi E, Golim MA, Bannwart CF, Puccia R, Peracoli MT. Interactions between TLR2, TLR4, and mannose receptors with gp43 from Paracoccidioides brasiliensis induce cytokine production by human monocytes. Med Mycol 2011; 49:694-703; PMID:21417682
  • Tavares AH, Magalhaes KG, Almeida RD, Correa R, Burgel PH, Bocca AL. NLRP3 Inflammasome Activation by Paracoccidioides brasiliensis. PLoS Negl Trop Dis 2013; 7:e2595; PMID:24340123; http://dx.doi.org/10.1371/journal.pntd.0002595
  • Said-Sadier N, Padilla E, Langsley G, Ojcius DM. Aspergillus fumigatus stimulates the NLRP3 inflammasome through a pathway requiring ROS production and the Syk tyrosine kinase. PLoS One 2010; 5:e10008; PMID:20368800; http://dx.doi.org/10.1371/journal.pone.0010008
  • Lei G, Chen M, Li H, Niu JL, Wu S, Mao L, Lu A, Wang H, Chen W, Xu B, et al. Biofilm from a clinical strain of Cryptococcus neoformans activates the NLRP3 inflammasome. Cell Res 2013; 23:965-8; PMID:23567555; http://dx.doi.org/10.1038/cr.2013.49
  • Hise AG, Tomalka J, Ganesan S, Patel K, Hall BA, Brown GD, Fitzgerald KA. An essential role for the NLRP3 inflammasome in host defense against the human fungal pathogen Candida albicans. Cell Host Microbe 2009; 5:487-97; PMID:19454352; http://dx.doi.org/10.1016/j.chom.2009.05.002
  • Puccia R, Schenkman S, Gorin PA, Travassos LR. Exocellular components of Paracoccidioides brasiliensis: identification of a specific antigen. Infect Immun 1986; 53:199-206; PMID:2424841
  • Travassos LR, Taborda CP. Paracoccidioidomycosis vaccine. Hum Vaccin Immunother 2012; 8:1450-3; PMID:22894948; http://dx.doi.org/10.4161/hv.21283
  • Taborda CP, Juliano MA, Puccia R, Franco M, Travassos LR. Mapping of the T-cell epitope in the major 43-kilodalton glycoprotein of Paracoccidioides brasiliensis which induces a Th-1 response protective against fungal infection in BALBc mice. Infect Immun 1998; 66:786-93; PMID:9453642
  • Ferreira KS, Lopes JD, Almeida SR. Regulation of T helper cell differentiation in vivo by GP43 from Paracoccidioides brasiliensis provided by different antigen-presenting cells. Scand J Immunol 2003; 58:290-7; PMID:12950674; http://dx.doi.org/10.1046/j.1365-3083.2003.01291.x
  • Magalhaes A, Ferreira KS, Almeida SR, Nosanchuk JD, Travassos LR, Taborda CP. Prophylactic and therapeutic vaccination using dendritic cells primed with peptide 10 derived from the 43-kilodalton glycoprotein of Paracoccidioides brasiliensis. Clin Vaccine Immunol 2012; 19:23-9; PMID:22089247; http://dx.doi.org/10.1128/CVI.05414-11

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.