1,068
Views
35
CrossRef citations to date
0
Altmetric
Report

The RAX/PACT-PKR stress response pathway promotes p53 sumoylation and activation, leading to G1 arrest

, , , &
Pages 407-417 | Received 05 Oct 2011, Accepted 09 Dec 2011, Published online: 15 Jan 2012

References

  • Ito T, Yang M, May WS. RAX, a cellular activator for double-stranded RNA-dependent protein kinase during stress signaling. J Biol Chem 1999; 274:15427 - 15432; PMID: 10336432; http://dx.doi.org/10.1074/jbc.274.22.15427
  • Ito T, Jagus R, May WS. Interleukin 3 stimulates protein synthesis by regulating double-stranded RNA-dependent protein kinase. Proc Natl Acad Sci USA 1994; 91:7455 - 7459; PMID: 7519779; http://dx.doi.org/10.1073/pnas.91.16.7455
  • Bennett RL, Blalock WL, May WS. Serine 18 phosphorylation of RAX, the PKR activator, is required for PKR activation and consequent translation inhibition. J Biol Chem 2004; 279:42687 - 42693; PMID: 15299031; http://dx.doi.org/10.1074/jbc.M403321200
  • Chang KS, Cai Z, Zhang C, Sen GC, Williams BR, Luo G. Replication of hepatitis C virus (HCV) RNA in mouse embryonic fibroblasts: protein kinase R (PKR)-dependent and PKR-independent mechanisms for controlling HCV RNA replication and mediating interferon activities. J Virol 2006; 80:7364 - 7374; PMID: 16840317; http://dx.doi.org/10.1128/JVI.00586-06
  • Patel CV, Handy I, Goldsmith T, Patel RC. PACT, a stress-modulated cellular activator of interferon-induced double-stranded RNA-activated protein kinase, PKR. J Biol Chem 2000; 275:37993 - 37998; PMID: 10988289; http://dx.doi.org/10.1074/jbc.M004762200
  • Patel RC, Sen GC. PACT, a protein activator of the interferon-induced protein kinase, PKR. EMBO J 1998; 17:4379 - 4390; PMID: 9687506; http://dx.doi.org/10.1093/emboj/17.15.4379
  • Peters GA, Hartmann R, Qin J, Sen GC. Modular structure of PACT: distinct domains for binding and activating PKR. Mol Cell Biol 2001; 21:1908 - 1920; PMID: 11238927; http://dx.doi.org/10.1128/MCB.21.6.1908-1920.2001
  • Huang X, Hutchins B, Patel RC. The C-terminal, third conserved motif of the protein activator PACT plays an essential role in the activation of double-stranded-RNA-dependent protein kinase (PKR). Biochem J 2002; 366:175 - 186; PMID: 11985496
  • Meurs E, Chong K, Galabru J, Thomas NS, Kerr IM, Williams BRG, et al. Molecular cloning and characterization of the human double-stranded RNA-activated protein kinase induced by interferon. Cell 1990; 62:379 - 390; PMID: 1695551; http://dx.doi.org/10.1016/0092-8674(90)90374-N
  • Williams BR. PKR; a sentinel kinase for cellular stress. Oncogene 1999; 18:6112 - 6120; PMID: 10557102; http://dx.doi.org/10.1038/sj.onc.1203127
  • Balachandran S, Roberts PC, Brown LE, Truong H, Pattnaik AK, Archer DR, et al. Essential role for the dsRNA-dependent protein kinase PKR in innate immunity to viral infection. Immunity 2000; 13:129 - 141; PMID: 10933401; http://dx.doi.org/10.1016/S1074-7613(00)00014-5
  • Chen LL, Yang L, Carmichael GG. Molecular basis for an attenuated cytoplasmic dsRNA response in human embryonic stem cells. Cell Cycle 2010; 9:3552 - 3564; PMID: 20814227; http://dx.doi.org/10.4161/cc.9.17.12792
  • Bennett RL, Blalock WL, Abtahi DM, Pan Y, Moyer SA, May WS. RAX, the PKR activator, sensitizes cells to inflammatory cytokines, serum withdrawal, chemotherapy and viral infection. Blood 2006; 108:821 - 829; PMID: 16861340; http://dx.doi.org/10.1182/blood-2005-11-006817
  • Chen G, Ma C, Bower KA, Ke Z, Luo J. Interaction between RAX and PKR modulates the effect of ethanol on protein synthesis and survival of neurons. J Biol Chem 2006; 281:15909 - 15915; PMID: 16574643; http://dx.doi.org/10.1074/jbc.M600612200
  • Wong AH, Tam NW, Yang YL, Cuddihy AR, Li S, Kirchhoff S, et al. Physical association between STAT1 and the interferon-inducible protein kinase PKR and implications for interferon and double-stranded RNA signaling pathways. EMBO J 1997; 16:1291 - 1304; PMID: 9135145; http://dx.doi.org/10.1093/emboj/16.6.1291
  • D'Acquisto F, Ghosh S. PACT and PKR: turning on NFkappaB in the absence of virus. Sci STKE 2001; 2001:1; PMID: 11752660
  • Bonnet MC, Weil R, Dam E, Hovanessian AG, Meurs EF. PKR stimulates NFkappaB irrespective of its kinase function by interacting with the IkappaB kinase complex. Mol Cell Biol 2000; 20:4532 - 4542; PMID: 10848580; http://dx.doi.org/10.1128/MCB.20.13.4532-4542.2000
  • Gil J, Alcami J, Esteban M. Activation of NFkappaB by the dsRNA-dependent protein kinase, PKR involves the IkappaB kinase complex. Oncogene 2000; 19:1369 - 1378; PMID: 10723127; http://dx.doi.org/10.1038/sj.onc.1203448
  • Zamanian-Daryoush M, Mogensen TH, DiDonato JA, Williams BR. NFkappaB activation by double-stranded-RNA-activated protein kinase (PKR) is mediated through NFkappaB-inducing kinase and IkappaB kinase. Mol Cell Biol 2000; 20:1278 - 1290; PMID: 10648614; http://dx.doi.org/10.1128/MCB.20.4.1278-1290.2000
  • Frémont M, Vaeyens F, Herst CV, De Meirleir KL, Englebienne P. Double-stranded RNA-dependent protein kinase (PKR) is a stress-responsive kinase that induces NFkappaB-mediated resistance against mercury cytotoxicity. Life Sci 2006; 78:1845 - 1856; PMID: 16324719; http://dx.doi.org/10.1016/j.lfs.2005.08.024
  • Cuddihy AR, Wong AH, Tam NW, Li S, Koromilas AE. The double-stranded RNA activated protein kinase PKR physically associates with the tumor suppressor p53 protein and phosphorylates human p53 on serine 392 in vitro. Oncogene 1999; 18:2690 - 2702; PMID: 10348343; http://dx.doi.org/10.1038/sj.onc.1202620
  • Cuddihy AR, Li S, Tam NW, Wong AH, Taya Y, Abraham N, et al. Double-stranded-RNA-activated protein kinase PKR enhances transcriptional activation by tumor suppressor p53. Mol Cell Biol 1999; 19:2475 - 2484; PMID: 10082513
  • Yeung MC, Lau AS. Tumor suppressor p53 as a component of the tumor necrosis factor-induced, protein kinase PKR-mediated apoptotic pathway in human promonocytic U937 cells. J Biol Chem 1998; 273:25198 - 25202; PMID: 9737981; http://dx.doi.org/10.1074/jbc.273.39.25198
  • Van Dyke T. p53 and tumor suppression. N Engl J Med 2007; 356:79 - 81; PMID: 17202460; http://dx.doi.org/10.1056/NEJMcibr066301
  • Carter S, Vousden KH. Modifications of p53: competing for the lysines. Curr Opin Genet Dev 2009; 19:18 - 24; PMID: 19179064; http://dx.doi.org/10.1016/j.gde.2008.11.010
  • Hock A, Vousden KH. Regulation of the p53 pathway by ubiquitin and related proteins. Int J Biochem Cell Biol 2010; 42:1618 - 1621; PMID: 20601087; http://dx.doi.org/10.1016/j.biocel.2010.06.011
  • Ménendez S, Goh AM, Camus S, Ng KW, Kua N, Badal V, et al. MDM4 downregulates p53 transcriptional activity and response to stress during differentiation. Cell Cycle 2011; 10:1100 - 1108; PMID: 21422812; http://dx.doi.org/10.4161/cc.10.7.15090
  • Stindt MH, Carter S, Vigneron AM, Ryan KM, Vousden KH. MDM2 promotes SUMO-2/3 modification of p53 to modulate transcriptional activity. Cell Cycle 2011; 10:3176 - 3188; PMID: 21900752; http://dx.doi.org/10.4161/cc.10.18.17436
  • Stehmeier P, Muller S. Regulation of p53 family members by the ubiquitin-like SUMO system. DNA Repair (Amst) 2009; 8:491 - 498; PMID: 19213614; http://dx.doi.org/10.1016/j.dnarep.2009.01.002
  • Lin JY, Ohshima T, Shimotohno K. Association of Ubc9, an E2 ligase for SUMO conjugation, with p53 is regulated by phosphorylation of p53. FEBS Lett 2004; 573:15 - 18; PMID: 15327968; http://dx.doi.org/10.1016/j.febslet.2004.07.059
  • Chen L, Chen J. MDM2-ARF complex regulates p53 sumoylation. Oncogene 2003; 22:5348 - 5357; PMID: 12917636; http://dx.doi.org/10.1038/sj.onc.1206851
  • Bischof O, Schwamborn K, Martin N, Werner A, Sustmann C, Grosschedl R, et al. The E3 SUMO ligase PIASy is a regulator of cellular senescence and apoptosis. Mol Cell 2006; 22:783 - 794; PMID: 16793547; http://dx.doi.org/10.1016/j.molcel.2006.05.016
  • Gostissa M, Hengstermann A, Fogal V, Sandy P, Schwarz SE, Scheffner M, et al. Activation of p53 by conjugation to the ubiquitin-like protein SUMO-1. EMBO J 1999; 18:6462 - 6471; PMID: 10562558; http://dx.doi.org/10.1093/emboj/18.22.6462
  • Wu SY, Chiang CM. Crosstalk between sumoylation and acetylation regulates p53-dependent chromatin transcription and DNA binding. EMBO J 2009; 28:1246 - 1259; PMID: 19339993; http://dx.doi.org/10.1038/emboj.2009.83
  • Matic I, Macek B, Hilger M, Walther TC, Mann M. Phosphorylation of SUMO-1 occurs in vivo and is conserved through evolution. J Proteome Res 2008; 7:4050 - 4057; PMID: 18707152; http://dx.doi.org/10.1021/pr800368m
  • Cheema A, Knights CD, Rao M, Catania J, Perez R, Simons B, et al. Functional mimicry of the acetylated C-terminal tail of p53 by a SUMO-1 acetylated domain, SAD. J Cell Physiol 2010; 225:371 - 384; PMID: 20458745; http://dx.doi.org/10.1002/jcp.22224
  • Carter S, Bischof O, Dejean A, Vousden KH. C-terminal modifications regulate MDM2 dissociation and nuclear export of p53. Nat Cell Biol 2007; 9:428 - 435; PMID: 17369817; http://dx.doi.org/10.1038/ncb1562
  • Rodriguez MS, Desterro JM, Lain S, Midgley CA, Lane DP, Hay RT. SUMO-1 modification activates the transcriptional response of p53. EMBO J 1999; 18:6455 - 6461; PMID: 10562557; http://dx.doi.org/10.1093/emboj/18.22.6455
  • Kwek SS, Derry J, Tyner AL, Shen Z, Gudkov AV. Functional analysis and intracellular localization of p53 modified by SUMO-1. Oncogene 2001; 20:2587 - 2599; PMID: 11420669; http://dx.doi.org/10.1038/sj.onc.1204362
  • Muller S, Berger M, Lehembre F, Seeler JS, Haupt Y, Dejean A. c-Jun and p53 activity is modulated by SUMO-1 modification. J Biol Chem 2000; 275:13321 - 13329; PMID: 10788439; http://dx.doi.org/10.1074/jbc.275.18.13321
  • Jakobs A, Koehnke J, Himstedt F, Funk M, Korn B, Gaestel M, et al. Ubc9 fusion-directed SUMOylation (UFDS): a method to analyze function of protein SUMOylation. Nat Methods 2007; 4:245 - 250; PMID: 17277783; http://dx.doi.org/10.1038/nmeth1006
  • Kalejta RF, Brideau AD, Banfield BW, Beavis AJ. An integral membrane green fluorescent protein marker, Us9-GFP, is quantitatively retained in cells during propidium iodide-based cell cycle analysis by flow cytometry. Exp Cell Res 1999; 248:322 - 328; PMID: 10094838; http://dx.doi.org/10.1006/excr.1999.4427
  • Cox ML, Meek DW. Phosphorylation of serine 392 in p53 is a common and integral event during p53 induction by diverse stimuli. Cell Signal 2010; 22:564 - 571; PMID: 19932175; http://dx.doi.org/10.1016/j.cell-sig.2009.11.014
  • Blalock WL, Bavelloni A, Piazzi M, Tagliavini F, Faenza I, Martelli AM, et al. Multiple forms of PKR present in the nuclei of acute leukemia cells represent an active kinase that is responsive to stress. Leukemia 2011; 25:236 - 245; PMID: 21072047; http://dx.doi.org/10.1038/leu.2010.264
  • Bergeron J, Benlimame N, Zeng-Rong N, Xiao D, Scrivens PJ, Koromilas AE, et al. Identification of the interferon-inducible double-stranded RNA-dependent protein kinase as a regulator of cellular response to bulky adducts. Cancer Res 2000; 60:6800 - 6804; PMID: 11156368
  • Hakki M, Marshall EE, De Niro KL, Geballe AP. Binding and nuclear relocalization of protein kinase R by human cytomegalovirus TRS1. J Virol 2006; 80:11817 - 11826; PMID: 16987971; http://dx.doi.org/10.1128/JVI.00957-06

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.