1,990
Views
29
CrossRef citations to date
0
Altmetric
Meeting Report

Fourth World Antibody-Drug Conjugate Summit

February 29–March 1, 2012, Frankfurt, Germany

, , &
Pages 637-647 | Published online: 01 Nov 2012

References

  • Beck A, Wurch T, Bailly C, Corvaia N. Strategies and challenges for the next generation of therapeutic antibodies. Nat Rev Immunol 2010; 10:345 - 52; http://dx.doi.org/10.1038/nri2747; PMID: 20414207
  • Beck A, Haeuw JF, Wurch T, Goetsch L, Bailly C, Corvaïa N. The next generation of antibody-drug conjugates comes of age. Discov Med 2010; 10:329 - 39; PMID: 21034674
  • Beck A, Senter P, Chari R. World Antibody Drug Conjugate Summit Europe: February 21-23, 2011; Frankfurt, Germany. MAbs 2011; 3:331 - 7; http://dx.doi.org/10.4161/mabs.3.4.16612; PMID: 21691144
  • Lugovskoy AA, Reichert JM, Beck A. 7th Annual European Antibody Congress 2011: November 29-December 1, 2011, Geneva, Switzerland. MAbs 2012; 4:134 - 52; http://dx.doi.org/10.4161/mabs.4.2.19426; PMID: 22453093
  • Teicher BA, Chari RV. Antibody conjugate therapeutics: challenges and potential. Clin Cancer Res 2011; 17:6389 - 97; http://dx.doi.org/10.1158/1078-0432.CCR-11-1417; PMID: 22003066
  • Goldmacher VS, Kovtun YV. Antibody-drug conjugates: using monoclonal antibodies for delivery of cytotoxic payloads to cancer cells. Ther Deliv 2011; 2:397 - 416; http://dx.doi.org/10.4155/tde.10.98; PMID: 22834009
  • Casi G, Neri D. Antibody-drug conjugates: Basic concepts, examples and future perspectives. J Control Release 2012; 161:422 - 8; http://dx.doi.org/10.1016/j.jconrel.2012.01.026; PMID: 22306430
  • Shen BQ, Xu K, Liu L, Raab H, Bhakta S, Kenrick M, et al. Conjugation site modulates the in vivo stability and therapeutic activity of antibody-drug conjugates. Nat Biotechnol 2012; 30:184 - 9; http://dx.doi.org/10.1038/nbt.2108; PMID: 22267010
  • Junutula JR, Raab H, Clark S, Bhakta S, Leipold DD, Weir S, et al. Site-specific conjugation of a cytotoxic drug to an antibody improves the therapeutic index. Nat Biotechnol 2008; 26:925 - 32; http://dx.doi.org/10.1038/nbt.1480; PMID: 18641636
  • Sapra P, Hooper AT, O’Donnell CJ, Gerber HP. Investigational antibody drug conjugates for solid tumors. Expert Opin Investig Drugs 2011; 20:1131 - 49; http://dx.doi.org/10.1517/13543784.2011.582866; PMID: 21599617
  • Widdison WC, Wilhelm SD, Cavanagh EE, Whiteman KR, Leece BA, Kovtun Y, et al. Semisynthetic maytansine analogues for the targeted treatment of cancer. J Med Chem 2006; 49:4392 - 408; http://dx.doi.org/10.1021/jm060319f; PMID: 16821799
  • Lambert JM. Antibody-maytansinoid conjugates: a new strategy for the treatment for the treatment of cancer. Drugs Fut 2010; 35:471
  • Lewis Phillips GD, Li G, Dugger DL, Crocker LM, Parsons KL, Mai E, et al. Targeting HER2-positive breast cancer with trastuzumab-DM1, an antibody-cytotoxic drug conjugate. Cancer Res 2008; 68:9280 - 90; http://dx.doi.org/10.1158/0008-5472.CAN-08-1776; PMID: 19010901
  • Krop IE, Beeram M, Modi S, Jones SF, Holden SN, Yu W, et al. Phase I study of trastuzumab-DM1, an HER2 antibody-drug conjugate, given every 3 weeks to patients with HER2-positive metastatic breast cancer. J Clin Oncol 2010; 28:2698 - 704; http://dx.doi.org/10.1200/JCO.2009.26.2071; PMID: 20421541
  • Burris HA 3rd, Rugo HS, Vukelja SJ, Vogel CL, Borson RA, Limentani S, et al. Phase II study of the antibody drug conjugate trastuzumab-DM1 for the treatment of human epidermal growth factor receptor 2 (HER2)-positive breast cancer after prior HER2-directed therapy. J Clin Oncol 2011; 29:398 - 405; http://dx.doi.org/10.1200/JCO.2010.29.5865; PMID: 21172893
  • LoRusso PM, Weiss D, Guardino E, Girish S, Sliwkowski MX. Trastuzumab emtansine: a unique antibody-drug conjugate in development for human epidermal growth factor receptor 2-positive cancer. Clin Cancer Res 2011; 17:6437 - 47; http://dx.doi.org/10.1158/1078-0432.CCR-11-0762; PMID: 22003071
  • Hurvitz S, Dirix L, Kocsis J, Gianni L, Lu J, Vinholes J, et al. 5001 ORAL trastuzumab emtansine (T-DM1) vs trastuzumab plus docetaxel (H+T) in previously-untreated HER2-positive metastatic breast cancer (MBC): primary results of a randomized, multicenter, open-label Phase II study (TDM4450g/BO21976). Eur J Cancer 2011; 47:S330; http://dx.doi.org/10.1016/S0959-8049(11)71443-5; PMID: 21944003
  • McCann J, Fossella FV, Villalona-Calero MA, Tolcher AW, Fidias P, Raju R, et al. Phase II trial of huN901-DM1 in patients with relapsed small cell lung cancer (SCLC) and CD56-positive small cell carcinoma - ASCO Meeting Abstracts. J Clin Oncol 2007; 25:18084
  • Blanc V, Bousseau A, Caron A, Carrez C, Lutz RJ, Lambert JM. SAR3419: an anti-CD19-Maytansinoid Immunoconjugate for the treatment of B-cell malignancies. Clin Cancer Res 2011; 17:6448 - 58; http://dx.doi.org/10.1158/1078-0432.CCR-11-0485; PMID: 22003072
  • Younes A, Gordon L, Kim S, Romaguera J, Copeland AR, Castro Farial S, et al. Phase I multi-dose escalation study of the anti-CD19 maytansinoid immunoconjugate SAR3419 administered by intravenous (IV) infusion every 3 weeks to patients with relapsed/ refractory B-cell non-Hodgkin's lymphoma (NHL) - ASH Annual Meeting abstracts. Blood 2009; 114:585
  • Younes A, Kim S, Romaguera J, Copeland A, Farial SdeC, Kwak LW, et al. Phase I multidose-escalation study of the anti-CD19 maytansinoid immunoconjugate SAR3419 administered by intravenous infusion every 3 weeks to patients with relapsed/refractory B-cell lymphoma. J Clin Oncol 2012; 30:2776 - 82; http://dx.doi.org/10.1200/JCO.2011.39.4403; PMID: 22753910
  • Coiffier B, Ribrag V, Dupuis J, Tilly H, Haioun C, Morschhauser F, et al. Phase I/II study of the anti-CD19 maytansinoid immunoconjugate SAR3419 administered weekly to patients (pts) with relapsed/refractory B-cell non-Hodgkin lymphoma (NHL) - ASCO Meeting abstracts. J Clin Oncol 2011; 29:8017
  • Griffin JD, Hercend T, Beveridge R, Schlossman SF. Characterization of an antigen expressed by human natural killer cells. J Immunol 1983; 130:2947 - 51; PMID: 6574190
  • Tassone P, Gozzini A, Goldmacher V, Shammas MA, Whiteman KR, Carrasco DR, et al. In vitro and in vivo activity of the maytansinoid immunoconjugate huN901-N2′-deacetyl-N2′-(3-mercapto-1-oxopropyl)-maytansine against CD56+ multiple myeloma cells. Cancer Res 2004; 64:4629 - 36; http://dx.doi.org/10.1158/0008-5472.CAN-04-0142; PMID: 15231675
  • Roy DC, Ouellet S, Le Houillier C, Ariniello PD, Perreault C, Lambert JM. Elimination of neuroblastoma and small-cell lung cancer cells with an anti-neural cell adhesion molecule immunotoxin. J Natl Cancer Inst 1996; 88:1136 - 45; http://dx.doi.org/10.1093/jnci/88.16.1136; PMID: 8757193
  • Whiteman KR, Murphy MF, Cohan KP, Sun W, Carrigan C, Mayo MF, et al. Preclinical evaluation of IMGN901 (huN901-DM1) as a potential therapeutic for ovarian cancer. AACR Meeting Abstracts2008; 2135.
  • Tolcher AW, Forouzesh B, McCreery H, Hammond L, Patnaik A, Lambert J, et al. A phase I and pharmacokinetic study of BB10901, a maytansinoid immunoconjugate, in CD56 expressing tumors. Eur J Cancer 2002; 38:Supplement 7 S152 - 3; http://dx.doi.org/10.1016/S0959-8049(02)81163-7; PMID: 11858984
  • Fossella F, Woll PJ, Lorigan P, Tolcher A, O'Brien M, O'Keeffe J, et al. Clinical experience of IMGN901 (BB-10901) in patients with small cell lung carcinoma. J Thorac Oncol 2009; 4:6327
  • Woll PJ, O'Brien M, Fossella F, Shah M, Clinch Y, O'Keeffe J, et al. Phase I study of lorvotuzumab mertansine (IMGN901) in patients with CD56-positive solid tumors. Ann Oncol 2010; 21:536P
  • Chanan-Khan A, Wolf JL, Garcia J, Gharibo M, Jagannath S, Manfredi D, et al. Efficacy analysis from Phase I study of lorvotuzumab mertansine (IMGN901), used as monotherapy, in patients with heavily pre-treated CD56-positive multiple myeloma - a preliminary efficacy analysis. ASH Annual Meeting Abstracts2010; 116:1962.
  • Berdeja JG, Ailawadhi S, Niesvizky R, Wolf JL, Zildjian SH, O'Leary J, et al. Phase I study of lorvotuzumab mertansine (IMGN901) in combination with lenalidomide and dexamethasone in patients with CD56-positive relapsed or relapsed/refractory multiple myeloma - a preliminary safety and efficacy analysis of the combination. ASH Annual Meeting abstracts2010; 116:1934.
  • Berdeja JG, Ailawadhi S, Weitman SD, Zildjian S, O'Leary JJ, O'Keeffe J, et al. Phase I study of lorvotuzumab mertansine (LM, IMGN901) in combination with lenalidomide (Len) and dexamethasone (Dex) in patients with CD56-positive relapsed or relapsed/refractory multiple myeloma (MM). ASCO Meeting abstracts2011; 29:8013.
  • Allen PJ, Bowne WB, Jaques DP, Brennan MF, Busam K, Coit DG. Merkel cell carcinoma: prognosis and treatment of patients from a single institution. J Clin Oncol 2005; 23:2300 - 9; http://dx.doi.org/10.1200/JCO.2005.02.329; PMID: 15800320
  • Whiteman K, Johnson H, Xu S, Moreland J, Vyas V, Bartle L, et al. Abstract #2799: Combination therapy with IMGN901 and lenalidomide plus low-dose dexamethasone is highly effective in multiple myeloma xenograft models. AACR Meeting Abstracts2009;2799.
  • Whiteman KR, Johnson HA, Xu S, Pinkas J, Lutz RJ. Abstract 1781: Lorvotuzumab mertansine (IMGN901) in combination with standard-of-care paclitaxel/carboplatin therapy is highly active in a preclinical xenograft model of ovarian cancer. Cancer Res 2011; 71:1781; PMID: 21245102
  • Carter PJ, Senter PD. Antibody-drug conjugates for cancer therapy. Cancer J 2008; 14:154 - 69; http://dx.doi.org/10.1097/PPO.0b013e318172d704; PMID: 18536555
  • Lapusan S, Vidriales MB, Thomas X, de Botton S, Vekhoff A, Tang R, et al. Phase I studies of AVE9633, an anti-CD33 antibody-maytansinoid conjugate, in adult patients with relapsed/refractory acute myeloid leukemia. Invest New Drugs 2012; 30:1121 - 31; http://dx.doi.org/10.1007/s10637-011-9670-0; PMID: 21519855
  • Riechelmann H, Sauter A, Golze W, Hanft G, Schroen C, Hoermann K, et al. Phase I trial with the CD44v6-targeting immunoconjugate bivatuzumab mertansine in head and neck squamous cell carcinoma. Oral Oncol 2008; 44:823 - 9; http://dx.doi.org/10.1016/j.oraloncology.2007.10.009; PMID: 18203652
  • Alley SC, Benjamin DR, Jeffrey SC, Okeley NM, Meyer DL, Sanderson RJ, et al. Contribution of linker stability to the activities of anticancer immunoconjugates. Bioconjug Chem 2008; 19:759 - 65; http://dx.doi.org/10.1021/bc7004329; PMID: 18314937
  • Fishkin N, Maloney EK, Chari RV, Singh R. A novel pathway for maytansinoid release from thioether linked antibody-drug conjugates (ADCs) under oxidative conditions. Chem Commun (Camb) 2011; 47:10752 - 4; http://dx.doi.org/10.1039/c1cc14164c; PMID: 21874179
  • Ikeda H, Hideshima T, Fulciniti M, Lutz RJ, Yasui H, Okawa Y, et al. The monoclonal antibody nBT062 conjugated to cytotoxic Maytansinoids has selective cytotoxicity against CD138-positive multiple myeloma cells in vitro and in vivo. Clin Cancer Res 2009; 15:4028 - 37; http://dx.doi.org/10.1158/1078-0432.CCR-08-2867; PMID: 19509164
  • Tassone P, Goldmacher VS, Neri P, Gozzini A, Shammas MA, Whiteman KR, et al. Cytotoxic activity of the maytansinoid immunoconjugate B-B4-DM1 against CD138+ multiple myeloma cells. Blood 2004; 104:3688 - 96; http://dx.doi.org/10.1182/blood-2004-03-0963; PMID: 15292058
  • Jagannath S, Chanan-Khan A, Heffner LT, Avigan D, Lutz RJ, Uherek C, et al. BT062, An antibody-drug conjugate directed against CD138, shows clinical activity in a Phase I study in patients with relapsed or relapsed/refractory multiple myeloma - American Society of Hematology Annual Meeting abstracts. Blood 2010; 116:3060
  • Jagannath S, Chanan-Khan A, Heffner LT, Avigan D, Zimmerman TM, Lonial S, et al. BT062, an antibody-drug conjugate directed against CD138, shows clinical activity in patients with relapsed or relapsed/refractory multiple myeloma - American Society of Hematology Annual Meeting abstracts. Blood 2011; 118:305
  • Zuber C, Daelken B, Aigner S, Haeder T, Ab O, Whiteman K, et al. BT062, a CD138-specific immunoconjugate, demonstrates superior in vivo anti-myeloma efficacy in combination with lenalidomide or bortezomib - American Society of Hematology Annual Meeting abstracts. Blood 2010; 116:3008
  • Zuber C, Daelken B, Aigner S, Haeder T, Moreland JA, Carrigan CN, et al. High in vivo anti-tumor activity of the immunoconjugate BT-062 against CD138 positive solid tumors. Eur J Cancer 2010; 8:226
  • Park PU, Yi Y, Li M, Chicklas S, Lai KC, Mayo MF, et al. Abstract 2830: Antibody and linker selection for the anti-CD37 antibody-maytansinoid conjugate IMGN529 for the treatment of B-cell malignancies. Cancer Res 2011; 71:2830; http://dx.doi.org/10.1158/1538-7445.AM2011-2830
  • Deckert J, Mayo MF, Yi Y, Li M, Chicklas S, Tavares DJ, et al. Abstract 4565: IMGN529: A therapeutic maytansinoid conjugate of an anti-CD37 antibody with multiple mechanisms of action for B-cell lymphoma and leukemia. Cancer Res 2011; 71:4565; http://dx.doi.org/10.1158/1538-7445.AM2011-4565
  • Ab O, Bartle LM, Rui L, Coccia J, Johnson HA, Whiteman KR, et al. Abstract 4576: IMGN853, an anti-Folate Receptor I antibody-maytansinoid conjugate for targeted cancer therapy. Cancer Res 2011; 71:4576; http://dx.doi.org/10.1158/1538-7445.AM2011-4576
  • Whiteman KR. johnson HA, Xu S, Carrigan CN, Ab O, Pinkas J. Abstract 1760: Preclinical evaluation of IMGN853, an anti-FOLR1 antibody-maytansinoid conjugate, as a potential therapeutic for ovarian cancer. Cancer Res 2011; 71:1760
  • Hamblett KJ, Senter PD, Chace DF, Sun MM, Lenox J, Cerveny CG, et al. Effects of drug loading on the antitumor activity of a monoclonal antibody drug conjugate. Clin Cancer Res 2004; 10:7063 - 70; http://dx.doi.org/10.1158/1078-0432.CCR-04-0789; PMID: 15501986
  • McDonagh CF, Turcott E, Westendorf L, Webster JB, Alley SC, Kim K, et al. Engineered antibody-drug conjugates with defined sites and stoichiometries of drug attachment. Protein Eng Des Sel 2006; 19:299 - 307; http://dx.doi.org/10.1093/protein/gzl013; PMID: 16644914
  • Sun MM, Beam KS, Cerveny CG, Hamblett KJ, Blackmore RS, Torgov MY, et al. Reduction-alkylation strategies for the modification of specific monoclonal antibody disulfides. Bioconjug Chem 2005; 16:1282 - 90; http://dx.doi.org/10.1021/bc050201y; PMID: 16173809
  • Okeley NM, Miyamoto JB, Zhang X, Sanderson RJ, Benjamin DR, Sievers EL, et al. Intracellular activation of SGN-35, a potent anti-CD30 antibody-drug conjugate. Clin Cancer Res 2010; 16:888 - 97; http://dx.doi.org/10.1158/1078-0432.CCR-09-2069; PMID: 20086002
  • Younes A, Gopal AK, Smith SE, Ansell SM, Rosenblatt JD, Savage KJ, et al. Results of a pivotal Phase II study of brentuximab vedotin for patients with relapsed or refractory Hodgkin's lymphoma. J Clin Oncol 2012; 30:2183 - 9; http://dx.doi.org/10.1200/JCO.2011.38.0410; PMID: 22454421
  • Pro B, Advani R, Brice P, Bartlett NL, Rosenblatt JD, Illidge T, et al. Brentuximab vedotin (SGN-35) in patients with relapsed or refractory systemic anaplastic large-cell lymphoma: results of a Phase II study. J Clin Oncol 2012; 30:2190 - 6; http://dx.doi.org/10.1200/JCO.2011.38.0402; PMID: 22614995
  • Doronina SO, Toki BE, Torgov MY, Mendelsohn BA, Cerveny CG, Chace DF, et al. Development of potent monoclonal antibody auristatin conjugates for cancer therapy. Nat Biotechnol 2003; 21:778 - 84; http://dx.doi.org/10.1038/nbt832; PMID: 12778055
  • Cizeau J, Grenkow DM, Brown JG, Entwistle J, MacDonald GC. Engineering and biological characterization of VB6-845, an anti-EpCAM immunotoxin containing a T-cell epitope-depleted variant of the plant toxin bouganin. J Immunother 2009; 32:574 - 84; http://dx.doi.org/10.1097/CJI.0b013e3181a6981c; PMID: 19483652
  • Beck A, Reichert JM. The amazing, multipurpose antibody. MAbs 2011; 3:221 - 2; http://dx.doi.org/10.4161/mabs.3.3.15625; PMID: 21487245
  • Reichert JM. Bispecific antibodies and ADCs: Once and future kings?. MAbs 2011; 3:329 - 30; http://dx.doi.org/10.4161/mabs.3.4.16589; PMID: 21654205
  • Metz S, Haas AK, Daub K, Croasdale R, Stracke J, Lau W, et al. Bispecific digoxigenin-binding antibodies for targeted payload delivery. Proc Natl Acad Sci U S A 2011; 108:8194 - 9; http://dx.doi.org/10.1073/pnas.1018565108; PMID: 21536919
  • Stamati I, Kuimova MK, Lion M, Yahioglu G, Phillips D, Deonarain MP. Novel photosensitisers derived from pyropheophorbide-a: uptake by cells and photodynamic efficiency in vitro. Photochem Photobiol Sci 2010; 9:1033 - 41; http://dx.doi.org/10.1039/c0pp00038h; PMID: 20532306
  • Boswell CA, Mundo EE, Zhang C, Bumbaca D, Valle NR, Kozak KR, et al. Impact of drug conjugation on pharmacokinetics and tissue distribution of anti-STEAP1 antibody-drug conjugates in rats. Bioconjug Chem 2011; 22:1994 - 2004; http://dx.doi.org/10.1021/bc200212a; PMID: 21913715
  • Lin K, Tibbitts J. Pharmacokinetic considerations for antibody drug conjugates. Pharm Res 2012; 28:2354 - 66; http://dx.doi.org/10.1007/s11095-012-0800-y; PMID: 22740180