1,935
Views
78
CrossRef citations to date
0
Altmetric
Review

Role of TH17 cytokines in the control of colorectal cancer

, , &
Article: e26617 | Received 09 Sep 2013, Accepted 26 Sep 2013, Published online: 22 Oct 2013

References

  • Center MM, Jemal A, Smith RA, Ward E. Worldwide variations in colorectal cancer. CA Cancer J Clin 2009; 59:366 - 78; http://dx.doi.org/10.3322/caac.20038; PMID: 19897840
  • Terzić J, Grivennikov S, Karin E, Karin M. Inflammation and colon cancer. Gastroenterology 2010; 138:2101 - 14, e5; http://dx.doi.org/10.1053/j.gastro.2010.01.058; PMID: 20420949
  • Bernstein CN, Blanchard JF, Kliewer E, Wajda A. Cancer risk in patients with inflammatory bowel disease: a population-based study. Cancer 2001; 91:854 - 62; http://dx.doi.org/10.1002/1097-0142(20010215)91:4<854::AID-CNCR1073>3.0.CO;2-Z; PMID: 11241255
  • Eaden JA, Abrams KR, Mayberry JF. The risk of colorectal cancer in ulcerative colitis: a meta-analysis. Gut 2001; 48:526 - 35; http://dx.doi.org/10.1136/gut.48.4.526; PMID: 11247898
  • Lança T, Silva-Santos B. The split nature of tumor-infiltrating leukocytes: Implications for cancer surveillance and immunotherapy. Oncoimmunology 2012; 1:717 - 25; http://dx.doi.org/10.4161/onci.20068; PMID: 22934263
  • Monteleone G, Pallone F, Stolfi C. The dual role of inflammation in colon carcinogenesis. Int J Mol Sci 2012; 13:11071 - 84; http://dx.doi.org/10.3390/ijms130911071; PMID: 23109839
  • Galon J, Costes A, Sanchez-Cabo F, Kirilovsky A, Mlecnik B, Lagorce-Pagès C, Tosolini M, Camus M, Berger A, Wind P, et al. Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science 2006; 313:1960 - 4; http://dx.doi.org/10.1126/science.1129139; PMID: 17008531
  • Fridman WH, Pagès F, Sautès-Fridman C, Galon J. The immune contexture in human tumours: impact on clinical outcome. Nat Rev Cancer 2012; 12:298 - 306; http://dx.doi.org/10.1038/nrc3245; PMID: 22419253
  • Fridman WH, Galon J, Pagès F, Tartour E, Sautès-Fridman C, Kroemer G. Prognostic and predictive impact of intra- and peritumoral immune infiltrates. Cancer Res 2011; 71:5601 - 5; http://dx.doi.org/10.1158/0008-5472.CAN-11-1316; PMID: 21846822
  • Ivanov II, McKenzie BS, Zhou L, Tadokoro CE, Lepelley A, Lafaille JJ, Cua DJ, Littman DR. The orphan nuclear receptor RORgammat directs the differentiation program of proinflammatory IL-17+ T helper cells. Cell 2006; 126:1121 - 33; http://dx.doi.org/10.1016/j.cell.2006.07.035; PMID: 16990136
  • Korn T, Oukka M, Kuchroo V, Bettelli E. Th17 cells: effector T cells with inflammatory properties. Semin Immunol 2007; 19:362 - 71; http://dx.doi.org/10.1016/j.smim.2007.10.007; PMID: 18035554
  • Donnelly RP, Sheikh F, Dickensheets H, Savan R, Young HA, Walter MR. Interleukin-26: an IL-10-related cytokine produced by Th17 cells. Cytokine Growth Factor Rev 2010; 21:393 - 401; http://dx.doi.org/10.1016/j.cytogfr.2010.09.001; PMID: 20947410
  • Witte E, Witte K, Warszawska K, Sabat R, Wolk K. Interleukin-22: a cytokine produced by T, NK and NKT cell subsets, with importance in the innate immune defense and tissue protection. Cytokine Growth Factor Rev 2010; 21:365 - 79; http://dx.doi.org/10.1016/j.cytogfr.2010.08.002; PMID: 20870448
  • Starnes T, Robertson MJ, Sledge G, Kelich S, Nakshatri H, Broxmeyer HE, Hromas R. Cutting edge: IL-17F, a novel cytokine selectively expressed in activated T cells and monocytes, regulates angiogenesis and endothelial cell cytokine production. J Immunol 2001; 167:4137 - 40; PMID: 11591732
  • Spolski R, Leonard WJ. Interleukin-21: basic biology and implications for cancer and autoimmunity. Annu Rev Immunol 2008; 26:57 - 79; http://dx.doi.org/10.1146/annurev.immunol.26.021607.090316; PMID: 17953510
  • Miossec P, Korn T, Kuchroo VK. Interleukin-17 and type 17 helper T cells. N Engl J Med 2009; 361:888 - 98; http://dx.doi.org/10.1056/NEJMra0707449; PMID: 19710487
  • Yang XO, Pappu BP, Nurieva R, Akimzhanov A, Kang HS, Chung Y, Ma L, Shah B, Panopoulos AD, Schluns KS, et al. T helper 17 lineage differentiation is programmed by orphan nuclear receptors ROR alpha and ROR gamma. Immunity 2008; 28:29 - 39; http://dx.doi.org/10.1016/j.immuni.2007.11.016; PMID: 18164222
  • Zhang F, Meng G, Strober W. Interactions among the transcription factors Runx1, RORgammat and Foxp3 regulate the differentiation of interleukin 17-producing T cells. Nat Immunol 2008; 9:1297 - 306; http://dx.doi.org/10.1038/ni.1663; PMID: 18849990
  • Zhou L, Ivanov II, Spolski R, Min R, Shenderov K, Egawa T, Levy DE, Leonard WJ, Littman DR. IL-6 programs T(H)-17 cell differentiation by promoting sequential engagement of the IL-21 and IL-23 pathways. Nat Immunol 2007; 8:967 - 74; http://dx.doi.org/10.1038/ni1488; PMID: 17581537
  • Yang L, Anderson DE, Baecher-Allan C, Hastings WD, Bettelli E, Oukka M, Kuchroo VK, Hafler DA. IL-21 and TGF-beta are required for differentiation of human T(H)17 cells. Nature 2008; 454:350 - 2; http://dx.doi.org/10.1038/nature07021; PMID: 18469800
  • Acosta-Rodriguez EV, Napolitani G, Lanzavecchia A, Sallusto F. Interleukins 1beta and 6 but not transforming growth factor-beta are essential for the differentiation of interleukin 17-producing human T helper cells. Nat Immunol 2007; 8:942 - 9; http://dx.doi.org/10.1038/ni1496; PMID: 17676045
  • Murphy KM, Stockinger B. Effector T cell plasticity: flexibility in the face of changing circumstances. Nat Immunol 2010; 11:674 - 80; http://dx.doi.org/10.1038/ni.1899; PMID: 20644573
  • Lee YK, Mukasa R, Hatton RD, Weaver CT. Developmental plasticity of Th17 and Treg cells. Curr Opin Immunol 2009; 21:274 - 80; http://dx.doi.org/10.1016/j.coi.2009.05.021; PMID: 19524429
  • Tesmer LA, Lundy SK, Sarkar S, Fox DA. Th17 cells in human disease. Immunol Rev 2008; 223:87 - 113; http://dx.doi.org/10.1111/j.1600-065X.2008.00628.x; PMID: 18613831
  • Greten TF, Zhao F, Gamrekelashvili J, Korangy F. Human Th17 cells in patients with cancer: Friends or foe?. Oncoimmunology 2012; 1:1438 - 9; http://dx.doi.org/10.4161/onci.21245; PMID: 23243621
  • Wilke CM, Kryczek I, Wei S, Zhao E, Wu K, Wang G, Zou W. Th17 cells in cancer: help or hindrance?. Carcinogenesis 2011; 32:643 - 9; http://dx.doi.org/10.1093/carcin/bgr019; PMID: 21304053
  • Liu J, Duan Y, Cheng X, Chen X, Xie W, Long H, Lin Z, Zhu B. IL-17 is associated with poor prognosis and promotes angiogenesis via stimulating VEGF production of cancer cells in colorectal carcinoma. Biochem Biophys Res Commun 2011; 407:348 - 54; http://dx.doi.org/10.1016/j.bbrc.2011.03.021; PMID: 21396350
  • Blatner NR, Mulcahy MF, Dennis KL, Scholtens D, Bentrem DJ, Phillips JD, Ham S, Sandall BP, Khan MW, Mahvi DM, et al. Expression of RORγt marks a pathogenic regulatory T cell subset in human colon cancer. Sci Transl Med 2012; 4:ra159; http://dx.doi.org/10.1126/scitranslmed.3004566; PMID: 23241743
  • Stolfi C, Rizzo A, Franzè E, Rotondi A, Fantini MC, Sarra M, Caruso R, Monteleone I, Sileri P, Franceschilli L, et al. Involvement of interleukin-21 in the regulation of colitis-associated colon cancer. J Exp Med 2011; 208:2279 - 90; http://dx.doi.org/10.1084/jem.20111106; PMID: 21987656
  • Tong Z, Yang XO, Yan H, Liu W, Niu X, Shi Y, Fang W, Xiong B, Wan Y, Dong C. A protective role by interleukin-17F in colon tumorigenesis. PLoS One 2012; 7:e34959; http://dx.doi.org/10.1371/journal.pone.0034959; PMID: 22509371
  • Jiang R, Wang H, Deng L, Hou J, Shi R, Yao M, Gao Y, Yao A, Wang X, Yu L, et al. IL-22 is related to development of human colon cancer by activation of STAT3. BMC Cancer 2013; 13:59; http://dx.doi.org/10.1186/1471-2407-13-59; PMID: 23379788
  • Cui G, Yuan A, Goll R, Florholmen J. IL-17A in the tumor microenvironment of the human colorectal adenoma-carcinoma sequence. Scand J Gastroenterol 2012; 47:1304 - 12; http://dx.doi.org/10.3109/00365521.2012.725089; PMID: 22989213
  • Tosolini M, Kirilovsky A, Mlecnik B, Fredriksen T, Mauger S, Bindea G, Berger A, Bruneval P, Fridman WH, Pagès F, et al. Clinical impact of different classes of infiltrating T cytotoxic and helper cells (Th1, th2, treg, th17) in patients with colorectal cancer. Cancer Res 2011; 71:1263 - 71; http://dx.doi.org/10.1158/0008-5472.CAN-10-2907; PMID: 21303976
  • Moseley TA, Haudenschild DR, Rose L, Reddi AH. Interleukin-17 family and IL-17 receptors. Cytokine Growth Factor Rev 2003; 14:155 - 74; http://dx.doi.org/10.1016/S1359-6101(03)00002-9; PMID: 12651226
  • Numasaki M, Fukushi J, Ono M, Narula SK, Zavodny PJ, Kudo T, Robbins PD, Tahara H, Lotze MT. Interleukin-17 promotes angiogenesis and tumor growth. Blood 2003; 101:2620 - 7; http://dx.doi.org/10.1182/blood-2002-05-1461; PMID: 12411307
  • Kryczek I, Wei S, Szeliga W, Vatan L, Zou W. Endogenous IL-17 contributes to reduced tumor growth and metastasis. Blood 2009; 114:357 - 9; http://dx.doi.org/10.1182/blood-2008-09-177360; PMID: 19289853
  • Ngiow SF, Smyth MJ, Teng MW. Does IL-17 suppress tumor growth?. Blood 2010; 115:2554 - 5, author reply 2556-7; http://dx.doi.org/10.1182/blood-2009-11-254607; PMID: 20339108
  • Chae WJ, Gibson TF, Zelterman D, Hao L, Henegariu O, Bothwell AL. Ablation of IL-17A abrogates progression of spontaneous intestinal tumorigenesis. Proc Natl Acad Sci U S A 2010; 107:5540 - 4; http://dx.doi.org/10.1073/pnas.0912675107; PMID: 20212110
  • Wu S, Rhee KJ, Albesiano E, Rabizadeh S, Wu X, Yen HR, Huso DL, Brancati FL, Wick E, McAllister F, et al. A human colonic commensal promotes colon tumorigenesis via activation of T helper type 17 T cell responses. Nat Med 2009; 15:1016 - 22; http://dx.doi.org/10.1038/nm.2015; PMID: 19701202
  • Hyun YS, Han DS, Lee AR, Eun CS, Youn J, Kim HY. Role of IL-17A in the development of colitis-associated cancer. Carcinogenesis 2012; 33:931 - 6; http://dx.doi.org/10.1093/carcin/bgs106; PMID: 22354874
  • Hinoi T, Akyol A, Theisen BK, Ferguson DO, Greenson JK, Williams BO, Cho KR, Fearon ER. Mouse model of colonic adenoma-carcinoma progression based on somatic Apc inactivation. Cancer Res 2007; 67:9721 - 30; http://dx.doi.org/10.1158/0008-5472.CAN-07-2735; PMID: 17942902
  • Grivennikov SI, Wang K, Mucida D, Stewart CA, Schnabl B, Jauch D, Taniguchi K, Yu GY, Osterreicher CH, Hung KE, et al. Adenoma-linked barrier defects and microbial products drive IL-23/IL-17-mediated tumour growth. Nature 2012; 491:254 - 8; PMID: 23034650
  • Monteleone G, Pallone F, Macdonald TT. Interleukin-21 as a new therapeutic target for immune-mediated diseases. Trends Pharmacol Sci 2009; 30:441 - 7; http://dx.doi.org/10.1016/j.tips.2009.05.006; PMID: 19616319
  • Søndergaard H, Skak K. IL-21: roles in immunopathology and cancer therapy. Tissue Antigens 2009; 74:467 - 79; http://dx.doi.org/10.1111/j.1399-0039.2009.01382.x; PMID: 19845910
  • Stolfi C, Pallone F, Macdonald TT, Monteleone G. Interleukin-21 in cancer immunotherapy: Friend or foe?. Oncoimmunology 2012; 1:351 - 4; http://dx.doi.org/10.4161/onci.19122; PMID: 22737612
  • Monteleone G, Monteleone I, Fina D, Vavassori P, Del Vecchio Blanco G, Caruso R, Tersigni R, Alessandroni L, Biancone L, Naccari GC, et al. Interleukin-21 enhances T-helper cell type I signaling and interferon-gamma production in Crohn’s disease. Gastroenterology 2005; 128:687 - 94; http://dx.doi.org/10.1053/j.gastro.2004.12.042; PMID: 15765404
  • Fina D, Sarra M, Fantini MC, Rizzo A, Caruso R, Caprioli F, Stolfi C, Cardolini I, Dottori M, Boirivant M, et al. Regulation of gut inflammation and th17 cell response by interleukin-21. Gastroenterology 2008; 134:1038 - 48; http://dx.doi.org/10.1053/j.gastro.2008.01.041; PMID: 18395085
  • Jauch D, Martin M, Schiechl G, Kesselring R, Schlitt HJ, Geissler EK, Fichtner-Feigl S. Interleukin 21 controls tumour growth and tumour immunosurveillance in colitis-associated tumorigenesis in mice. Gut 2011; 60:1678 - 86; http://dx.doi.org/10.1136/gutjnl-2011-300612; PMID: 21948944
  • Lejeune D, Dumoutier L, Constantinescu S, Kruijer W, Schuringa JJ, Renauld JC. Interleukin-22 (IL-22) activates the JAK/STAT, ERK, JNK, and p38 MAP kinase pathways in a rat hepatoma cell line. Pathways that are shared with and distinct from IL-10. J Biol Chem 2002; 277:33676 - 82; http://dx.doi.org/10.1074/jbc.M204204200; PMID: 12087100
  • Ziesché E, Bachmann M, Kleinert H, Pfeilschifter J, Mühl H. The interleukin-22/STAT3 pathway potentiates expression of inducible nitric-oxide synthase in human colon carcinoma cells. J Biol Chem 2007; 282:16006 - 15; http://dx.doi.org/10.1074/jbc.M611040200; PMID: 17438334
  • Kotenko SV, Izotova LS, Mirochnitchenko OV, Esterova E, Dickensheets H, Donnelly RP, Pestka S. Identification, cloning, and characterization of a novel soluble receptor that binds IL-22 and neutralizes its activity. J Immunol 2001; 166:7096 - 103; PMID: 11390454
  • Dumoutier L, Lejeune D, Colau D, Renauld JC. Cloning and characterization of IL-22 binding protein, a natural antagonist of IL-10-related T cell-derived inducible factor/IL-22. J Immunol 2001; 166:7090 - 5; PMID: 11390453
  • Wei CC, Ho TW, Liang WG, Chen GY, Chang MS. Cloning and characterization of mouse IL-22 binding protein. Genes Immun 2003; 4:204 - 11; http://dx.doi.org/10.1038/sj.gene.6363947; PMID: 12700595
  • Mizoguchi A. Healing of intestinal inflammation by IL-22. Inflamm Bowel Dis 2012; 18:1777 - 84; http://dx.doi.org/10.1002/ibd.22929; PMID: 22359410
  • Huber S, Gagliani N, Zenewicz LA, Huber FJ, Bosurgi L, Hu B, Hedl M, Zhang W, O’Connor W Jr., Murphy AJ, et al. IL-22BP is regulated by the inflammasome and modulates tumorigenesis in the intestine. Nature 2012; 491:259 - 63; http://dx.doi.org/10.1038/nature11535; PMID: 23075849
  • Kirchberger S, Royston DJ, Boulard O, Thornton E, Franchini F, Szabady RL, Harrison O, Powrie F. Innate lymphoid cells sustain colon cancer through production of interleukin-22 in a mouse model. J Exp Med 2013; 210:917 - 31; http://dx.doi.org/10.1084/jem.20122308; PMID: 23589566
  • Thompson CL, Plummer SJ, Tucker TC, Casey G, Li L. Interleukin-22 genetic polymorphisms and risk of colon cancer. Cancer Causes Control 2010; 21:1165 - 70; http://dx.doi.org/10.1007/s10552-010-9542-5; PMID: 20339910
  • Waldner MJ, Foersch S, Neurath MF. Interleukin-6--a key regulator of colorectal cancer development. Int J Biol Sci 2012; 8:1248 - 53; http://dx.doi.org/10.7150/ijbs.4614; PMID: 23136553
  • Yoshizaki A, Nakayama T, Yamazumi K, Yakata Y, Taba M, Sekine I. Expression of interleukin (IL)-11 and IL-11 receptor in human colorectal adenocarcinoma: IL-11 up-regulation of the invasive and proliferative activity of human colorectal carcinoma cells. Int J Oncol 2006; 29:869 - 76; PMID: 16964382
  • Baltgalvis KA, Berger FG, Pena MM, Davis JM, Muga SJ, Carson JA. Interleukin-6 and cachexia in ApcMin/+ mice. Am J Physiol Regul Integr Comp Physiol 2008; 294:R393 - 401; http://dx.doi.org/10.1152/ajpregu.00716.2007; PMID: 18056981
  • Grivennikov S, Karin E, Terzic J, Mucida D, Yu GY, Vallabhapurapu S, Scheller J, Rose-John S, Cheroutre H, Eckmann L, et al. IL-6 and Stat3 are required for survival of intestinal epithelial cells and development of colitis-associated cancer. Cancer Cell 2009; 15:103 - 13; http://dx.doi.org/10.1016/j.ccr.2009.01.001; PMID: 19185845
  • Becker C, Fantini MC, Schramm C, Lehr HA, Wirtz S, Nikolaev A, Burg J, Strand S, Kiesslich R, Huber S, et al. TGF-beta suppresses tumor progression in colon cancer by inhibition of IL-6 trans-signaling. Immunity 2004; 21:491 - 501; http://dx.doi.org/10.1016/j.immuni.2004.07.020; PMID: 15485627
  • Putoczki TL, Thiem S, Loving A, Busuttil RA, Wilson NJ, Ziegler PK, Nguyen PM, Preaudet A, Farid R, Edwards KM, et al. Interleukin-11 Is the Dominant IL-6 Family Cytokine during Gastrointestinal Tumorigenesis and Can Be Targeted Therapeutically. Cancer Cell 2013; 24:257 - 71; http://dx.doi.org/10.1016/j.ccr.2013.06.017; PMID: 23948300