1,235
Views
24
CrossRef citations to date
0
Altmetric
Original Research

CD137L-stimulated dendritic cells are more potent than conventional dendritic cells at eliciting cytotoxic T-cell responses

, , , &
Article: e26859 | Received 27 Jul 2013, Accepted 17 Oct 2013, Published online: 11 Nov 2013

References

  • Steinman RM. The control of immunity and tolerance by dendritic cell. Pathol Biol (Paris) 2003; 51:59 - 60; http://dx.doi.org/10.1016/S0369-8114(03)00096-8; PMID: 12801800
  • Naik SH, Sathe P, Park HY, Metcalf D, Proietto AI, Dakic A, Carotta S, O’Keeffe M, Bahlo M, Papenfuss A, et al. Development of plasmacytoid and conventional dendritic cell subtypes from single precursor cells derived in vitro and in vivo. Nat Immunol 2007; 8:1217 - 26; http://dx.doi.org/10.1038/ni1522; PMID: 17922015
  • Rossi M, Young JW. Human dendritic cells: potent antigen-presenting cells at the crossroads of innate and adaptive immunity. J Immunol 2005; 175:1373 - 81; PMID: 16034072
  • Tacke F, Randolph GJ. Migratory fate and differentiation of blood monocyte subsets. Immunobiology 2006; 211:609 - 18; http://dx.doi.org/10.1016/j.imbio.2006.05.025; PMID: 16920499
  • León B, López-Bravo M, Ardavín C. Monocyte-derived dendritic cells formed at the infection site control the induction of protective T helper 1 responses against Leishmania. Immunity 2007; 26:519 - 31; http://dx.doi.org/10.1016/j.immuni.2007.01.017; PMID: 17412618
  • Krutzik SR, Tan B, Li H, Ochoa MT, Liu PT, Sharfstein SE, Graeber TG, Sieling PA, Liu YJ, Rea TH, et al. TLR activation triggers the rapid differentiation of monocytes into macrophages and dendritic cells. Nat Med 2005; 11:653 - 60; http://dx.doi.org/10.1038/nm1246; PMID: 15880118
  • Sallusto F, Lanzavecchia A. Efficient presentation of soluble antigen by cultured human dendritic cells is maintained by granulocyte/macrophage colony-stimulating factor plus interleukin 4 and downregulated by tumor necrosis factor alpha. J Exp Med 1994; 179:1109 - 18; http://dx.doi.org/10.1084/jem.179.4.1109; PMID: 8145033
  • Rescigno M, Martino M, Sutherland CL, Gold MR, Ricciardi-Castagnoli P. Dendritic cell survival and maturation are regulated by different signaling pathways. J Exp Med 1998; 188:2175 - 80; http://dx.doi.org/10.1084/jem.188.11.2175; PMID: 9841930
  • Auffray C, Sieweke MH, Geissmann F. Blood monocytes: development, heterogeneity, and relationship with dendritic cells. Annu Rev Immunol 2009; 27:669 - 92; http://dx.doi.org/10.1146/annurev.immunol.021908.132557; PMID: 19132917
  • Figdor CG, de Vries IJ, Lesterhuis WJ, Melief CJ. Dendritic cell immunotherapy: mapping the way. Nat Med 2004; 10:475 - 80; http://dx.doi.org/10.1038/nm1039; PMID: 15122249
  • Osada T, Clay TM, Woo CY, Morse MA, Lyerly HK. Dendritic cell-based immunotherapy. Int Rev Immunol 2006; 25:377 - 413; http://dx.doi.org/10.1080/08830180600992456; PMID: 17169781
  • Tuyaerts S, Aerts JL, Corthals J, Neyns B, Heirman C, Breckpot K, Thielemans K, Bonehill A. Current approaches in dendritic cell generation and future implications for cancer immunotherapy. Cancer Immunol Immunother 2007; 56:1513 - 37; http://dx.doi.org/10.1007/s00262-007-0334-z; PMID: 17503040
  • Thomas-Kaskel AK, Veelken H. [Active immunotherapy of prostate cancer with a focus on dendritic cells]. Actas Urol Esp 2007; 31:668 - 79; http://dx.doi.org/10.1016/S0210-4806(07)73704-X; PMID: 17896564
  • Kwajah M M S, Schwarz H. CD137 ligand signaling induces human monocyte to dendritic cell differentiation. Eur J Immunol 2010; 40:1938 - 49; http://dx.doi.org/10.1002/eji.200940105; PMID: 20432236
  • Ju S, Ju S, Ge Y, Qiu H, Lu B, Qiu Y, Fu J, Liu G, Wang Q, Hu Y, et al. A novel approach to induce human DCs from monocytes by triggering 4-1BBL reverse signaling. Int Immunol 2009; 21:1135 - 44; http://dx.doi.org/10.1093/intimm/dxp077; PMID: 19684160
  • Wang C, Lin GH, McPherson AJ, Watts TH. Immune regulation by 4-1BB and 4-1BBL: complexities and challenges. Immunol Rev 2009; 229:192 - 215; http://dx.doi.org/10.1111/j.1600-065X.2009.00765.x; PMID: 19426223
  • Thum E, Shao Z, Schwarz H. CD137, implications in immunity and potential for therapy. Front Biosci (Landmark Ed) 2009; 14:4173 - 88; http://dx.doi.org/10.2741/3521; PMID: 19273343
  • Lee SW, Croft M. 4-1BB as a therapeutic target for human disease. Adv Exp Med Biol 2009; 647:120 - 9; http://dx.doi.org/10.1007/978-0-387-89520-8_8; PMID: 19760070
  • Wang S, Lv J, Wang P, Yin X, Tan A, Chen Y. Recombinant human CD137L for cancer immunotherapy: effects of different fusions and linkers on its activity. Cancer Immunol Immunother 2012; 61:489 - 95; http://dx.doi.org/10.1007/s00262-011-1097-0; PMID: 21968735
  • Shao Z, Schwarz H. CD137 ligand, a member of the tumor necrosis factor family, regulates immune responses via reverse signal transduction. J Leukoc Biol 2011; 89:21 - 9; http://dx.doi.org/10.1189/jlb.0510315; PMID: 20643812
  • Jonuleit H, Kühn U, Müller G, Steinbrink K, Paragnik L, Schmitt E, Knop J, Enk AH. Pro-inflammatory cytokines and prostaglandins induce maturation of potent immunostimulatory dendritic cells under fetal calf serum-free conditions. Eur J Immunol 1997; 27:3135 - 42; http://dx.doi.org/10.1002/eji.1830271209; PMID: 9464798
  • Zobywalski A, Javorovic M, Frankenberger B, Pohla H, Kremmer E, Bigalke I, Schendel DJ. Generation of clinical grade dendritic cells with capacity to produce biologically active IL-12p70. J Transl Med 2007; 5:18; http://dx.doi.org/10.1186/1479-5876-5-18; PMID: 17430585
  • Boullart AC, Aarntzen EH, Verdijk P, Jacobs JF, Schuurhuis DH, Benitez-Ribas D, Schreibelt G, van de Rakt MW, Scharenborg NM, de Boer A, et al. Maturation of monocyte-derived dendritic cells with Toll-like receptor 3 and 7/8 ligands combined with prostaglandin E2 results in high interleukin-12 production and cell migration. Cancer Immunol Immunother 2008; 57:1589 - 97; http://dx.doi.org/10.1007/s00262-008-0489-2; PMID: 18322684
  • Langstein J, Michel J, Fritsche J, Kreutz M, Andreesen R, Schwarz H. CD137 (ILA/4-1BB), a member of the TNF receptor family, induces monocyte activation via bidirectional signaling. J Immunol 1998; 160:2488 - 94; PMID: 9498794
  • Zhou LJ, Tedder TF. CD14+ blood monocytes can differentiate into functionally mature CD83+ dendritic cells. Proc Natl Acad Sci U S A 1996; 93:2588 - 92; http://dx.doi.org/10.1073/pnas.93.6.2588; PMID: 8637918
  • Chamberlain ND, Kim SJ, Vila OM, Volin MV, Volkov S, Pope RM, Arami S, Mandelin AM 2nd, Shahrara S. Ligation of TLR7 by rheumatoid arthritis synovial fluid single strand RNA induces transcription of TNFα in monocytes. Ann Rheum Dis 2013; 72:418 - 26; http://dx.doi.org/10.1136/annrheumdis-2011-201203; PMID: 22730373
  • Zannetti C, Bonnay F, Takeshita F, Parroche P, Ménétrier-Caux C, Tommasino M, Hasan UA. C/EBPdelta and STAT-1 are required for TLR8 transcriptional activity. J Biol Chem 2010; 285:34773 - 80; http://dx.doi.org/10.1074/jbc.M110.133884; PMID: 20829351
  • Xu S, Koldovsky U, Xu M, Wang D, Fitzpatrick E, Son G, Koski G, Czerniecki BJ. High-avidity antitumor T-cell generation by toll receptor 8-primed, myeloid- derived dendritic cells is mediated by IL-12 production. Surgery 2006; 140:170 - 8; http://dx.doi.org/10.1016/j.surg.2006.03.006; PMID: 16904966
  • Skalova K, Mollova K, Michalek J. Human myeloid dendritic cells for cancer therapy: does maturation matter?. Vaccine 2010;; 28:5153 - 60; http://dx.doi.org/10.1016/j.vaccine.2010.05.042; PMID: 20665974
  • Mailliard RB, Wankowicz-Kalinska A, Cai Q, Wesa A, Hilkens CM, Kapsenberg ML, Kirkwood JM, Storkus WJ, Kalinski P. alpha-type-1 polarized dendritic cells: a novel immunization tool with optimized CTL-inducing activity. Cancer Res 2004; 64:5934 - 7; http://dx.doi.org/10.1158/0008-5472.CAN-04-1261; PMID: 15342370
  • Bourgeois C, Rocha B, Tanchot C. A role for CD40 expression on CD8+ T cells in the generation of CD8+ T cell memory. Science 2002; 297:2060 - 3; http://dx.doi.org/10.1126/science.1072615; PMID: 12242444
  • Fuse S, Tsai CY, Molloy MJ, Allie SR, Zhang W, Yagita H, Usherwood EJ. Recall responses by helpless memory CD8+ T cells are restricted by the up-regulation of PD-1. J Immunol 2009; 182:4244 - 54; http://dx.doi.org/10.4049/jimmunol.0802041; PMID: 19299723
  • Janssen EM, Droin NM, Lemmens EE, Pinkoski MJ, Bensinger SJ, Ehst BD, Griffith TS, Green DR, Schoenberger SP. CD4+ T-cell help controls CD8+ T-cell memory via TRAIL-mediated activation-induced cell death. Nature 2005; 434:88 - 93; http://dx.doi.org/10.1038/nature03337; PMID: 15744305
  • Williams MA, Tyznik AJ, Bevan MJ. Interleukin-2 signals during priming are required for secondary expansion of CD8+ memory T cells. Nature 2006; 441:890 - 3; http://dx.doi.org/10.1038/nature04790; PMID: 16778891
  • Stuller KA, Cush SS, Flaño E. Persistent gamma-herpesvirus infection induces a CD4 T cell response containing functionally distinct effector populations. J Immunol 2010; 184:3850 - 6; http://dx.doi.org/10.4049/jimmunol.0902935; PMID: 20208003
  • Brien JD, Uhrlaub JL, Nikolich-Zugich J. West Nile virus-specific CD4 T cells exhibit direct antiviral cytokine secretion and cytotoxicity and are sufficient for antiviral protection. J Immunol 2008; 181:8568 - 75; PMID: 19050276
  • Yauch LE, Prestwood TR, May MM, Morar MM, Zellweger RM, Peters B, Sette A, Shresta S. CD4+ T cells are not required for the induction of dengue virus-specific CD8+ T cell or antibody responses but contribute to protection after vaccination. J Immunol 2010; 185:5405 - 16; http://dx.doi.org/10.4049/jimmunol.1001709; PMID: 20870934
  • Quezada SA, Simpson TR, Peggs KS, Merghoub T, Vider J, Fan X, Blasberg R, Yagita H, Muranski P, Antony PA, et al. Tumor-reactive CD4(+) T cells develop cytotoxic activity and eradicate large established melanoma after transfer into lymphopenic hosts. J Exp Med 2010; 207:637 - 50; http://dx.doi.org/10.1084/jem.20091918; PMID: 20156971
  • Kang YJ, Kim SO, Shimada S, Otsuka M, Seit-Nebi A, Kwon BS, Watts TH, Han J. Cell surface 4-1BBL mediates sequential signaling pathways ‘downstream’ of TLR and is required for sustained TNF production in macrophages. Nat Immunol 2007; 8:601 - 9; http://dx.doi.org/10.1038/ni1471; PMID: 17496895
  • Moh MC, Lorenzini PA, Gullo C, Schwarz H. Tumor necrosis factor receptor 1 associates with CD137 ligand and mediates its reverse signaling. FASEB J 2013; 27:2957 - 66; http://dx.doi.org/10.1096/fj.12-225250; PMID: 23620528
  • Kwajah M M S, Mustafa N, Holme AL, Pervaiz S, Schwarz H. Biphasic activity of CD137 ligand-stimulated monocytes on T cell apoptosis and proliferation. J Leukoc Biol 2011; 89:707 - 20; http://dx.doi.org/10.1189/jlb.1010569; PMID: 21330351
  • Langstein J, Becke FM, Söllner L, Krause G, Brockhoff G, Kreutz M, Andreesen R, Schwarz H. Comparative analysis of CD137 and LPS effects on monocyte activation, survival, and proliferation. Biochem Biophys Res Commun 2000; 273:117 - 22; http://dx.doi.org/10.1006/bbrc.2000.2889; PMID: 10873573
  • Langstein J, Michel J, Schwarz H. CD137 induces proliferation and endomitosis in monocytes. Blood 1999; 94:3161 - 8; PMID: 10556203
  • Langstein J, Schwarz H. Identification of CD137 as a potent monocyte survival factor. J Leukoc Biol 1999; 65:829 - 33; PMID: 10380906
  • Drenkard D, Becke FM, Langstein J, Spruss T, Kunz-Schughart LA, Tan TE, Lim YC, Schwarz H. CD137 is expressed on blood vessel walls at sites of inflammation and enhances monocyte migratory activity. FASEB J 2007; 21:456 - 63; http://dx.doi.org/10.1096/fj.05-4739com; PMID: 17167064
  • Quek BZ, Lim YC, Lin JH, Tan TE, Chan J, Biswas A, Schwarz H. CD137 enhances monocyte-ICAM-1 interactions in an E-selectin-dependent manner under flow conditions. Mol Immunol 2010; 47:1839 - 47; http://dx.doi.org/10.1016/j.molimm.2009.11.010; PMID: 20347151
  • Jiang D, Yue PS, Drenkard D, Schwarz H. Induction of proliferation and monocytic differentiation of human CD34+ cells by CD137 ligand signaling. Stem Cells 2008; 26:2372 - 81; http://dx.doi.org/10.1634/stemcells.2008-0158; PMID: 18566330
  • Jiang D, Chen Y, Schwarz H. CD137 induces proliferation of murine hematopoietic progenitor cells and differentiation to macrophages. J Immunol 2008; 181:3923 - 32; PMID: 18768847
  • Jiang D, Schwarz H. Regulation of granulocyte and macrophage populations of murine bone marrow cells by G-CSF and CD137 protein. PLoS One 2010; 5:e15565; http://dx.doi.org/10.1371/journal.pone.0015565; PMID: 21179444
  • Jiang D, Tang Q, Schwarz H. Involvement of the cytokine receptor CD137 in murine hematopoiesis. Adv Exp Med Biol 2011; 691:375 - 82; http://dx.doi.org/10.1007/978-1-4419-6612-4_38; PMID: 21153341
  • Tang Q, Jiang D, Alonso S, Pant A, Martínez Gómez JM, Kemeny DM, Chen L, Schwarz H. CD137 ligand signaling enhances myelopoiesis during infections. Eur J Immunol 2013; 43:1555 - 67; http://dx.doi.org/10.1002/eji.201243071; PMID: 23519951
  • Laderach D, Wesa A, Galy A. 4-1BB-ligand is regulated on human dendritic cells and induces the production of IL-12. Cell Immunol 2003; 226:37 - 44; http://dx.doi.org/10.1016/j.cellimm.2003.11.003; PMID: 14746806
  • Kim YJ, Li G, Broxmeyer HE. 4-1BB ligand stimulation enhances myeloid dendritic cell maturation from human umbilical cord blood CD34+ progenitor cells. J Hematother Stem Cell Res 2002; 11:895 - 903; http://dx.doi.org/10.1089/152581602321080556; PMID: 12590704
  • Lippert U, Zachmann K, Ferrari DM, Schwarz H, Brunner E, Mahbub-Ul Latif AH, Neumann C, Soruri A. CD137 ligand reverse signaling has multiple functions in human dendritic cells during an adaptive immune response. Eur J Immunol 2008; 38:1024 - 32; http://dx.doi.org/10.1002/eji.200737800; PMID: 18395851