1,543
Views
67
CrossRef citations to date
0
Altmetric
Author's View

Trial Watch

Toll-like receptor agonists in oncological indications

, , , , , , , , , & show all
Article: e29179 | Received 07 May 2014, Accepted 09 May 2014, Published online: 01 Aug 2014

References

  • Song WY, Wang GL, Chen LL, Kim HS, Pi LY, Holsten T, Gardner J, Wang B, Zhai WX, Zhu LH, et al. A receptor kinase-like protein encoded by the rice disease resistance gene, Xa21. Science 1995; 270:1804 - 6; http://dx.doi.org/10.1126/science.270.5243.1804; PMID: 8525370
  • Gómez-Gómez L, Boller T. FLS2: an LRR receptor-like kinase involved in the perception of the bacterial elicitor flagellin in Arabidopsis. Mol Cell 2000; 5:1003 - 11; http://dx.doi.org/10.1016/S1097-2765(00)80265-8; PMID: 10911994
  • Roach JC, Glusman G, Rowen L, Kaur A, Purcell MK, Smith KD, Hood LE, Aderem A. The evolution of vertebrate Toll-like receptors. Proc Natl Acad Sci USA 2005; 102:9577 - 82; http://dx.doi.org/10.1073/pnas.0502272102; PMID: 15976025
  • Anderson KV, Bokla L, Nüsslein-Volhard C. Establishment of dorsal-ventral polarity in the Drosophila embryo: the induction of polarity by the Toll gene product. Cell 1985; 42:791 - 8; http://dx.doi.org/10.1016/0092-8674(85)90275-2; PMID: 3931919
  • Anderson KV, Jürgens G, Nüsslein-Volhard C. Establishment of dorsal-ventral polarity in the Drosophila embryo: genetic studies on the role of the Toll gene product. Cell 1985; 42:779 - 89; http://dx.doi.org/10.1016/0092-8674(85)90274-0; PMID: 3931918
  • Lemaitre B, Nicolas E, Michaut L, Reichhart JM, Hoffmann JA. The dorsoventral regulatory gene cassette spätzle/Toll/cactus controls the potent antifungal response in Drosophila adults. Cell 1996; 86:973 - 83; http://dx.doi.org/10.1016/S0092-8674(00)80172-5; PMID: 8808632
  • Kawai T, Akira S. Toll-like receptors and their crosstalk with other innate receptors in infection and immunity. Immunity 2011; 34:637 - 50; http://dx.doi.org/10.1016/j.immuni.2011.05.006; PMID: 21616434
  • Hennessy EJ, Parker AE, O’Neill LA. Targeting Toll-like receptors: emerging therapeutics?. Nat Rev Drug Discov 2010; 9:293 - 307; http://dx.doi.org/10.1038/nrd3203; PMID: 20380038
  • Lauw FN, Caffrey DR, Golenbock DT. Of mice and man: TLR11 (finally) finds profilin. Trends Immunol 2005; 26:509 - 11; http://dx.doi.org/10.1016/j.it.2005.08.006; PMID: 16111920
  • Galluzzi L, Vacchelli E, Eggermont A, Fridman WH, Galon J, Sautès-Fridman C, Tartour E, Zitvogel L, Kroemer G. Trial Watch: Experimental Toll-like receptor agonists for cancer therapy. OncoImmunology 2012; 1:699 - 716; http://dx.doi.org/10.4161/onci.20696; PMID: 22934262
  • Vacchelli E, Galluzzi L, Eggermont A, Fridman WH, Galon J, Sautès-Fridman C, Tartour E, Zitvogel L, Kroemer G. Trial watch: FDA-approved Toll-like receptor agonists for cancer therapy. OncoImmunology 2012; 1:894 - 907; http://dx.doi.org/10.4161/onci.20931; PMID: 23162757
  • Jiang Q, Akashi S, Miyake K, Petty HR. Lipopolysaccharide induces physical proximity between CD14 and toll-like receptor 4 (TLR4) prior to nuclear translocation of NF-kappa B. J Immunol 2000; 165:3541 - 4; http://dx.doi.org/10.4049/jimmunol.165.7.3541; PMID: 11034352
  • Schröder NW, Opitz B, Lamping N, Michelsen KS, Zähringer U, Göbel UB, Schumann RR. Involvement of lipopolysaccharide binding protein, CD14, and Toll-like receptors in the initiation of innate immune responses by Treponema glycolipids. J Immunol 2000; 165:2683 - 93; http://dx.doi.org/10.4049/jimmunol.165.5.2683; PMID: 10946299
  • Mata-Haro V, Cekic C, Martin M, Chilton PM, Casella CR, Mitchell TC. The vaccine adjuvant monophosphoryl lipid A as a TRIF-biased agonist of TLR4. Science 2007; 316:1628 - 32; http://dx.doi.org/10.1126/science.1138963; PMID: 17569868
  • Hoebe K, Georgel P, Rutschmann S, Du X, Mudd S, Crozat K, Sovath S, Shamel L, Hartung T, Zähringer U, et al. CD36 is a sensor of diacylglycerides. Nature 2005; 433:523 - 7; http://dx.doi.org/10.1038/nature03253; PMID: 15690042
  • Hayashi F, Smith KD, Ozinsky A, Hawn TR, Yi EC, Goodlett DR, Eng JK, Akira S, Underhill DM, Aderem A. The innate immune response to bacterial flagellin is mediated by Toll-like receptor 5. Nature 2001; 410:1099 - 103; http://dx.doi.org/10.1038/35074106; PMID: 11323673
  • Smith KD, Andersen-Nissen E, Hayashi F, Strobe K, Bergman MA, Barrett SL, Cookson BT, Aderem A. Toll-like receptor 5 recognizes a conserved site on flagellin required for protofilament formation and bacterial motility. Nat Immunol 2003; 4:1247 - 53; http://dx.doi.org/10.1038/ni1011; PMID: 14625549
  • Lu J, Sun PD. The structure of the TLR5-flagellin complex: a new mode of pathogen detection, conserved receptor dimerization for signaling. Sci Signal 2012; 5:pe11; http://dx.doi.org/10.1126/scisignal.2002963
  • Yoon SI, Kurnasov O, Natarajan V, Hong M, Gudkov AV, Osterman AL, Wilson IA. Structural basis of TLR5-flagellin recognition and signaling. Science 2012; 335:859 - 64; http://dx.doi.org/10.1126/science.1215584; PMID: 22344444
  • Hemmi H, Takeuchi O, Kawai T, Kaisho T, Sato S, Sanjo H, Matsumoto M, Hoshino K, Wagner H, Takeda K, et al. A Toll-like receptor recognizes bacterial DNA. Nature 2000; 408:740 - 5; http://dx.doi.org/10.1038/35047123; PMID: 11130078
  • Diebold SS, Kaisho T, Hemmi H, Akira S, Reis e Sousa C. Innate antiviral responses by means of TLR7-mediated recognition of single-stranded RNA. Science 2004; 303:1529 - 31; http://dx.doi.org/10.1126/science.1093616; PMID: 14976261
  • Heil F, Hemmi H, Hochrein H, Ampenberger F, Kirschning C, Akira S, Lipford G, Wagner H, Bauer S. Species-specific recognition of single-stranded RNA via toll-like receptor 7 and 8. Science 2004; 303:1526 - 9; http://dx.doi.org/10.1126/science.1093620; PMID: 14976262
  • Hotz C, Bourquin C. Systemic cancer immunotherapy with Toll-like receptor 7 agonists: Timing is everything. OncoImmunology 2012; 1:227 - 8; http://dx.doi.org/10.4161/onci.1.2.18169; PMID: 22720251
  • Alexopoulou L, Holt AC, Medzhitov R, Flavell RA. Recognition of double-stranded RNA and activation of NF-kappaB by Toll-like receptor 3. Nature 2001; 413:732 - 8; http://dx.doi.org/10.1038/35099560; PMID: 11607032
  • Choe J, Kelker MS, Wilson IA. Crystal structure of human toll-like receptor 3 (TLR3) ectodomain. Science 2005; 309:581 - 5; http://dx.doi.org/10.1126/science.1115253; PMID: 15961631
  • Liu L, Botos I, Wang Y, Leonard JN, Shiloach J, Segal DM, Davies DR. Structural basis of toll-like receptor 3 signaling with double-stranded RNA. Science 2008; 320:379 - 81; http://dx.doi.org/10.1126/science.1155406; PMID: 18420935
  • Shi Z, Cai Z, Yu J, Zhang T, Zhao S, Smeds E, Zhang Q, Wang F, Zhao C, Fu S, et al. Toll-like receptor 11 (TLR11) prevents Salmonella penetration into the murine Peyer patches. J Biol Chem 2012; 287:43417 - 23; http://dx.doi.org/10.1074/jbc.M112.411009; PMID: 23135279
  • Oldenburg M, Krüger A, Ferstl R, Kaufmann A, Nees G, Sigmund A, Bathke B, Lauterbach H, Suter M, Dreher S, et al. TLR13 recognizes bacterial 23S rRNA devoid of erythromycin resistance-forming modification. Science 2012; 337:1111 - 5; http://dx.doi.org/10.1126/science.1220363; PMID: 22821982
  • Matzinger P. The danger model: a renewed sense of self. Science 2002; 296:301 - 5; http://dx.doi.org/10.1126/science.1071059; PMID: 11951032
  • Chen GY, Nuñez G. Sterile inflammation: sensing and reacting to damage. Nat Rev Immunol 2010; 10:826 - 37; http://dx.doi.org/10.1038/nri2873; PMID: 21088683
  • Brenner C, Galluzzi L, Kepp O, Kroemer G. Decoding cell death signals in liver inflammation. J Hepatol 2013; 59:583 - 94; http://dx.doi.org/10.1016/j.jhep.2013.03.033; PMID: 23567086
  • Galluzzi L, Kepp O, Kroemer G. Mitochondria: master regulators of danger signalling. Nat Rev Mol Cell Biol 2012; 13:780 - 8; http://dx.doi.org/10.1038/nrm3479; PMID: 23175281
  • Spel L, Boelens JJ, Nierkens S, Boes M. Antitumor immune responses mediated by dendritic cells: How signals derived from dying cancer cells drive antigen cross-presentation. OncoImmunology 2013; 2:e26403; http://dx.doi.org/10.4161/onci.26403; PMID: 24482744
  • Yi Y, Zhou Z, Shu S, Fang Y, Twitty C, Hilton TL, Aung S, Urba WJ, Fox BA, Hu HM, et al. Autophagy-assisted antigen cross-presentation: Autophagosome as the argo of shared tumor-specific antigens and DAMPs. OncoImmunology 2012; 1:976 - 8; http://dx.doi.org/10.4161/onci.20059; PMID: 23162777
  • Asea A, Rehli M, Kabingu E, Boch JA, Bare O, Auron PE, Stevenson MA, Calderwood SK. Novel signal transduction pathway utilized by extracellular HSP70: role of toll-like receptor (TLR) 2 and TLR4. J Biol Chem 2002; 277:15028 - 34; http://dx.doi.org/10.1074/jbc.M200497200; PMID: 11836257
  • Kol A, Lichtman AH, Finberg RW, Libby P, Kurt-Jones EA. Cutting edge: heat shock protein (HSP) 60 activates the innate immune response: CD14 is an essential receptor for HSP60 activation of mononuclear cells. J Immunol 2000; 164:13 - 7; http://dx.doi.org/10.4049/jimmunol.164.1.13; PMID: 10604986
  • Liu-Bryan R, Pritzker K, Firestein GS, Terkeltaub R. TLR2 signaling in chondrocytes drives calcium pyrophosphate dihydrate and monosodium urate crystal-induced nitric oxide generation. J Immunol 2005; 174:5016 - 23; http://dx.doi.org/10.4049/jimmunol.174.8.5016; PMID: 15814732
  • Guillot L, Balloy V, McCormack FX, Golenbock DT, Chignard M, Si-Tahar M. Cutting edge: the immunostimulatory activity of the lung surfactant protein-A involves Toll-like receptor 4. J Immunol 2002; 168:5989 - 92; http://dx.doi.org/10.4049/jimmunol.168.12.5989; PMID: 12055204
  • Loser K, Vogl T, Voskort M, Lueken A, Kupas V, Nacken W, Klenner L, Kuhn A, Foell D, Sorokin L, et al. The Toll-like receptor 4 ligands Mrp8 and Mrp14 are crucial in the development of autoreactive CD8+ T cells. Nat Med 2010; 16:713 - 7; http://dx.doi.org/10.1038/nm.2150; PMID: 20473308
  • Vogl T, Tenbrock K, Ludwig S, Leukert N, Ehrhardt C, van Zoelen MA, Nacken W, Foell D, van der Poll T, Sorg C, et al. Mrp8 and Mrp14 are endogenous activators of Toll-like receptor 4, promoting lethal, endotoxin-induced shock. Nat Med 2007; 13:1042 - 9; http://dx.doi.org/10.1038/nm1638; PMID: 17767165
  • Barton GM, Kagan JC. A cell biological view of Toll-like receptor function: regulation through compartmentalization. Nat Rev Immunol 2009; 9:535 - 42; http://dx.doi.org/10.1038/nri2587; PMID: 19556980
  • Marques PE, Amaral SS, Pires DA, Nogueira LL, Soriani FM, Lima BH, Lopes GA, Russo RC, Avila TV, Melgaço JG, et al. Chemokines and mitochondrial products activate neutrophils to amplify organ injury during mouse acute liver failure. Hepatology 2012; 56:1971 - 82; http://dx.doi.org/10.1002/hep.25801; PMID: 22532075
  • Zhang Q, Raoof M, Chen Y, Sumi Y, Sursal T, Junger W, Brohi K, Itagaki K, Hauser CJ. Circulating mitochondrial DAMPs cause inflammatory responses to injury. Nature 2010; 464:104 - 7; http://dx.doi.org/10.1038/nature08780; PMID: 20203610
  • Fitzgerald KA, Palsson-McDermott EM, Bowie AG, Jefferies CA, Mansell AS, Brady G, Brint E, Dunne A, Gray P, Harte MT, et al. Mal (MyD88-adapter-like) is required for Toll-like receptor-4 signal transduction. Nature 2001; 413:78 - 83; http://dx.doi.org/10.1038/35092578; PMID: 11544529
  • Medzhitov R, Preston-Hurlburt P, Kopp E, Stadlen A, Chen C, Ghosh S, Janeway CA Jr.. MyD88 is an adaptor protein in the hToll/IL-1 receptor family signaling pathways. Mol Cell 1998; 2:253 - 8; http://dx.doi.org/10.1016/S1097-2765(00)80136-7; PMID: 9734363
  • Hoebe K, Du X, Georgel P, Janssen E, Tabeta K, Kim SO, Goode J, Lin P, Mann N, Mudd S, et al. Identification of Lps2 as a key transducer of MyD88-independent TIR signalling. Nature 2003; 424:743 - 8; http://dx.doi.org/10.1038/nature01889; PMID: 12872135
  • Yamamoto M, Sato S, Hemmi H, Hoshino K, Kaisho T, Sanjo H, Takeuchi O, Sugiyama M, Okabe M, Takeda K, et al. Role of adaptor TRIF in the MyD88-independent toll-like receptor signaling pathway. Science 2003; 301:640 - 3; http://dx.doi.org/10.1126/science.1087262; PMID: 12855817
  • Honda K, Yanai H, Negishi H, Asagiri M, Sato M, Mizutani T, Shimada N, Ohba Y, Takaoka A, Yoshida N, et al. IRF-7 is the master regulator of type-I interferon-dependent immune responses. Nature 2005; 434:772 - 7; http://dx.doi.org/10.1038/nature03464; PMID: 15800576
  • Yanai H, Negishi H, Taniguchi T. The IRF family of transcription factors: Inception, impact and implications in oncogenesis. OncoImmunology 2012; 1:1376 - 86; http://dx.doi.org/10.4161/onci.22475; PMID: 23243601
  • Ksienzyk A, Neumann B, Kröger A. IRF-1 is critical for IFNγ mediated immune surveillance. OncoImmunology 2012; 1:533 - 4; http://dx.doi.org/10.4161/onci.19405; PMID: 22754776
  • Siednienko J, Gajanayake T, Fitzgerald KA, Moynagh P, Miggin SM. Absence of MyD88 results in enhanced TLR3-dependent phosphorylation of IRF3 and increased IFN-β and RANTES production. J Immunol 2011; 186:2514 - 22; http://dx.doi.org/10.4049/jimmunol.1003093; PMID: 21248248
  • Siednienko J, Halle A, Nagpal K, Golenbock DT, Miggin SM. TLR3-mediated IFN-β gene induction is negatively regulated by the TLR adaptor MyD88 adaptor-like. Eur J Immunol 2010; 40:3150 - 60; http://dx.doi.org/10.1002/eji.201040547; PMID: 20957750
  • Zambirinis CP, Miller G. Signaling via MYD88 in the pancreatic tumor microenvironment: A double-edged sword. OncoImmunology 2013; 2:e22567; http://dx.doi.org/10.4161/onci.22567; PMID: 23483804
  • Lee CC, Avalos AM, Ploegh HL. Accessory molecules for Toll-like receptors and their function. Nat Rev Immunol 2012; 12:168 - 79; PMID: 22301850
  • O’Neill LA, Bowie AG. The family of five: TIR-domain-containing adaptors in Toll-like receptor signalling. Nat Rev Immunol 2007; 7:353 - 64; http://dx.doi.org/10.1038/nri2079; PMID: 17457343
  • Seya T, Shime H, Takaki H, Azuma M, Oshiumi H, Matsumoto M. TLR3/TICAM-1 signaling in tumor cell RIP3-dependent necroptosis. OncoImmunology 2012; 1:917 - 23; http://dx.doi.org/10.4161/onci.21244; PMID: 23162759
  • Rakoff-Nahoum S, Medzhitov R. Toll-like receptors and cancer. Nat Rev Cancer 2009; 9:57 - 63; http://dx.doi.org/10.1038/nrc2541; PMID: 19052556
  • Jinushi M. The role of innate immune signals in antitumor immunity. OncoImmunology 2012; 1:189 - 94; http://dx.doi.org/10.4161/onci.1.2.18495; PMID: 22720240
  • Tahara T, Arisawa T, Wang F, Shibata T, Nakamura M, Sakata M, Hirata I, Nakano H. Toll-like receptor 2 -196 to 174del polymorphism influences the susceptibility of Japanese people to gastric cancer. Cancer Sci 2007; 98:1790 - 4; http://dx.doi.org/10.1111/j.1349-7006.2007.00590.x; PMID: 17711514
  • Mollaki V, Georgiadis T, Tassidou A, Ioannou M, Daniil Z, Koutsokera A, Papathanassiou AA, Zintzaras E, Vassilopoulos G. Polymorphisms and haplotypes in TLR9 and MYD88 are associated with the development of Hodgkin’s lymphoma: a candidate-gene association study. J Hum Genet 2009; 54:655 - 9; http://dx.doi.org/10.1038/jhg.2009.90; PMID: 19745833
  • Gast A, Bermejo JL, Claus R, Brandt A, Weires M, Weber A, Plass C, Sucker A, Hemminki K, Schadendorf D, et al. Association of inherited variation in Toll-like receptor genes with malignant melanoma susceptibility and survival. PLoS ONE 2011; 6:e24370; http://dx.doi.org/10.1371/journal.pone.0024370; PMID: 21931695
  • Guirado M, Gil H, Saenz-Lopez P, Reinboth J, Garrido F, Cozar JM, Ruiz-Cabello F, Carretero R. Association between C13ORF31, NOD2, RIPK2 and TLR10 polymorphisms and urothelial bladder cancer. Hum Immunol 2012; 73:668 - 72; http://dx.doi.org/10.1016/j.humimm.2012.03.006; PMID: 22504414
  • Junjie X, Songyao J, Minmin S, Yanyan S, Baiyong S, Xiaxing D, Jiabin J, Xi Z, Hao C. The association between Toll-like receptor 2 single-nucleotide polymorphisms and hepatocellular carcinoma susceptibility. BMC Cancer 2012; 12:57; http://dx.doi.org/10.1186/1471-2407-12-57; PMID: 22309608
  • Carvalho A, Cunha C, Almeida AJ, Osório NS, Saraiva M, Teixeira-Coelho M, Pedreiro S, Torrado E, Domingues N, Gomes-Alves AG, et al. The rs5743836 polymorphism in TLR9 confers a population-based increased risk of non-Hodgkin lymphoma. Genes Immun 2012; 13:197 - 201; http://dx.doi.org/10.1038/gene.2011.59; PMID: 21866115
  • Kim MK, Park SW, Kim SK, Park HJ, Eun YG, Kwon KH, Kim J. Association of Toll-like receptor 2 polymorphisms with papillary thyroid cancer and clinicopathologic features in a Korean population. J Korean Med Sci 2012; 27:1333 - 8; http://dx.doi.org/10.3346/jkms.2012.27.11.1333; PMID: 23166414
  • Yang ZH, Dai Q, Gu YJ, Guo QX, Gong L. Cytokine and chemokine modification by Toll-like receptor polymorphisms is associated with nasopharyngeal carcinoma. Cancer Sci 2012; 103:653 - 8; http://dx.doi.org/10.1111/j.1349-7006.2012.02210.x; PMID: 22320262
  • Resler AJ, Malone KE, Johnson LG, Malkki M, Petersdorf EW, McKnight B, Madeleine MM. Genetic variation in TLR or NFkappaB pathways and the risk of breast cancer: a case-control study. BMC Cancer 2013; 13:219; http://dx.doi.org/10.1186/1471-2407-13-219; PMID: 23634849
  • Roszak A, Lianeri M, Sowińska A, Jagodziński PP. Involvement of Toll-like Receptor 9 polymorphism in cervical cancer development. Mol Biol Rep 2012; 39:8425 - 30; http://dx.doi.org/10.1007/s11033-012-1695-8; PMID: 22714906
  • Agúndez JA, García-Martín E, Devesa MJ, Carballo M, Martínez C, Lee-Brunner A, Fernández C, Díaz-Rubio M, Ladero JM. Polymorphism of the TLR4 gene reduces the risk of hepatitis C virus-induced hepatocellular carcinoma. Oncology 2012; 82:35 - 40; http://dx.doi.org/10.1159/000335606; PMID: 22286521
  • Castaño-Rodríguez N, Kaakoush NO, Goh KL, Fock KM, Mitchell HM. The role of TLR2, TLR4 and CD14 genetic polymorphisms in gastric carcinogenesis: a case-control study and meta-analysis. PLoS ONE 2013; 8:e60327; http://dx.doi.org/10.1371/journal.pone.0060327; PMID: 23565226
  • Kim HJ, Bae JS, Chang IH, Kim KD, Lee J, Shin HD, Lee JY, Kim WJ, Kim W, Myung SC. Sequence variants of Toll-like receptor 4 (TLR4) and the risk of prostate cancer in Korean men. World J Urol 2012; 30:225 - 32; http://dx.doi.org/10.1007/s00345-011-0690-3; PMID: 21553150
  • Zhang K, Zhou B, Wang Y, Rao L, Zhang L. The TLR4 gene polymorphisms and susceptibility to cancer: a systematic review and meta-analysis. Eur J Cancer 2013; 49:946 - 54; http://dx.doi.org/10.1016/j.ejca.2012.09.022; PMID: 23084080
  • Nischalke HD, Coenen M, Berger C, Aldenhoff K, Müller T, Berg T, Krämer B, Körner C, Odenthal M, Schulze F, et al. The toll-like receptor 2 (TLR2) -196 to -174 del/ins polymorphism affects viral loads and susceptibility to hepatocellular carcinoma in chronic hepatitis C. Int J Cancer 2012; 130:1470 - 5; http://dx.doi.org/10.1002/ijc.26143; PMID: 21500195
  • Wang X, Li J, Xie W, Zhang W, Chang Y. Toll-like receptor 2 gene polymorphisms and cancer susceptibility: a meta-analysis. Neoplasma 2013; 60:459 - 67; http://dx.doi.org/10.4149/neo_2013_060; PMID: 23581420
  • Theodoropoulos GE, Saridakis V, Karantanos T, Michalopoulos NV, Zagouri F, Kontogianni P, Lymperi M, Gazouli M, Zografos GC. Toll-like receptors gene polymorphisms may confer increased susceptibility to breast cancer development. Breast 2012; 21:534 - 8; http://dx.doi.org/10.1016/j.breast.2012.04.001; PMID: 22560646
  • Zou TH, Wang ZH, Fang JY. Positive association between Toll-like receptor 4 gene +896A/G polymorphism and susceptibility to gastric carcinogenesis: a meta-analysis. Tumour Biol 2013; 34:2441 - 50; http://dx.doi.org/10.1007/s13277-013-0795-y; PMID: 23592020
  • Chew V, Tow C, Huang C, Bard-Chapeau E, Copeland NG, Jenkins NA, Weber A, Lim KH, Toh HC, Heikenwalder M, et al. Toll-like receptor 3 expressing tumor parenchyma and infiltrating natural killer cells in hepatocellular carcinoma patients. J Natl Cancer Inst 2012; 104:1796 - 807; http://dx.doi.org/10.1093/jnci/djs436; PMID: 23197495
  • Hirsch I, Caux C, Hasan U, Bendriss-Vermare N, Olive D. Impaired Toll-like receptor 7 and 9 signaling: from chronic viral infections to cancer. Trends Immunol 2010; 31:391 - 7; http://dx.doi.org/10.1016/j.it.2010.07.004; PMID: 20832362
  • Kroemer G, Galluzzi L, Kepp O, Zitvogel L. Immunogenic cell death in cancer therapy. Annu Rev Immunol 2013; 31:51 - 72; http://dx.doi.org/10.1146/annurev-immunol-032712-100008; PMID: 23157435
  • Krysko DV, Garg AD, Kaczmarek A, Krysko O, Agostinis P, Vandenabeele P. Immunogenic cell death and DAMPs in cancer therapy. Nat Rev Cancer 2012; 12:860 - 75; http://dx.doi.org/10.1038/nrc3380; PMID: 23151605
  • Kepp O, Galluzzi L, Martins I, Schlemmer F, Adjemian S, Michaud M, Sukkurwala AQ, Menger L, Zitvogel L, Kroemer G. Molecular determinants of immunogenic cell death elicited by anticancer chemotherapy. Cancer Metastasis Rev 2011; 30:61 - 9; http://dx.doi.org/10.1007/s10555-011-9273-4; PMID: 21249425
  • Vacchelli E, Vitale I, Tartour E, Eggermont A, Sautès-Fridman C, Galon J, Zitvogel L, Kroemer G, Galluzzi L. Trial Watch: Anticancer radioimmunotherapy. OncoImmunology 2013; 2:e25595; http://dx.doi.org/10.4161/onci.25595; PMID: 24319634
  • Galluzzi L, Senovilla L, Zitvogel L, Kroemer G. The secret ally: immunostimulation by anticancer drugs. Nat Rev Drug Discov 2012; 11:215 - 33; http://dx.doi.org/10.1038/nrd3626; PMID: 22301798
  • Zitvogel L, Galluzzi L, Smyth MJ, Kroemer G. Mechanism of action of conventional and targeted anticancer therapies: reinstating immunosurveillance. Immunity 2013; 39:74 - 88; http://dx.doi.org/10.1016/j.immuni.2013.06.014; PMID: 23890065
  • Demaria S, Vanpouille-Box C, Formenti SC, Adams S. The TLR7 agonist imiquimod as an adjuvant for radiotherapy-elicited in situ vaccination against breast cancer. OncoImmunology 2013; 2:e25997; http://dx.doi.org/10.4161/onci.25997; PMID: 24404422
  • Apetoh L, Ghiringhelli F, Tesniere A, Criollo A, Ortiz C, Lidereau R, Mariette C, Chaput N, Mira JP, Delaloge S, et al. The interaction between HMGB1 and TLR4 dictates the outcome of anticancer chemotherapy and radiotherapy. Immunol Rev 2007; 220:47 - 59; http://dx.doi.org/10.1111/j.1600-065X.2007.00573.x; PMID: 17979839
  • Ahmed A, Redmond HP, Wang JH. Links between Toll-like receptor 4 and breast cancer. OncoImmunology 2013; 2:e22945; http://dx.doi.org/10.4161/onci.22945; PMID: 23526132
  • Tittarelli A, González FE, Pereda C, Mora G, Muñoz L, Saffie C, García T, Díaz D, Falcón C, Hermoso M, et al. Toll-like receptor 4 gene polymorphism influences dendritic cell in vitro function and clinical outcomes in vaccinated melanoma patients. Cancer Immunol Immunother 2012; 61:2067 - 77; http://dx.doi.org/10.1007/s00262-012-1268-7; PMID: 22552381
  • Hoffman ES, Smith RE, Renaud RC Jr.. From the analyst’s couch: TLR-targeted therapeutics. Nat Rev Drug Discov 2005; 4:879 - 80; http://dx.doi.org/10.1038/nrd1880; PMID: 16299917
  • Heldwein KA, Liang MD, Andresen TK, Thomas KE, Marty AM, Cuesta N, Vogel SN, Fenton MJ. TLR2 and TLR4 serve distinct roles in the host immune response against Mycobacterium bovis BCG. J Leukoc Biol 2003; 74:277 - 86; http://dx.doi.org/10.1189/jlb.0103026; PMID: 12885945
  • Uehori J, Matsumoto M, Tsuji S, Akazawa T, Takeuchi O, Akira S, Kawata T, Azuma I, Toyoshima K, Seya T. Simultaneous blocking of human Toll-like receptors 2 and 4 suppresses myeloid dendritic cell activation induced by Mycobacterium bovis bacillus Calmette-Guérin peptidoglycan. Infect Immun 2003; 71:4238 - 49; http://dx.doi.org/10.1128/IAI.71.8.4238-4249.2003; PMID: 12874299
  • Paavonen J, Naud P, Salmerón J, Wheeler CM, Chow SN, Apter D, Kitchener H, Castellsague X, Teixeira JC, Skinner SR, et al, HPV PATRICIA Study Group. Efficacy of human papillomavirus (HPV)-16/18 AS04-adjuvanted vaccine against cervical infection and precancer caused by oncogenic HPV types (PATRICIA): final analysis of a double-blind, randomised study in young women. Lancet 2009; 374:301 - 14; http://dx.doi.org/10.1016/S0140-6736(09)61248-4; PMID: 19586656
  • Lehtinen M, Paavonen J. Sound efficacy of prophylactic HPV vaccination: Basics and implications. OncoImmunology 2012; 1:995 - 6; http://dx.doi.org/10.4161/onci.20011; PMID: 23162784
  • Hemmi H, Kaisho T, Takeuchi O, Sato S, Sanjo H, Hoshino K, Horiuchi T, Tomizawa H, Takeda K, Akira S. Small anti-viral compounds activate immune cells via the TLR7 MyD88-dependent signaling pathway. Nat Immunol 2002; 3:196 - 200; http://dx.doi.org/10.1038/ni758; PMID: 11812998
  • Holcmann M, Drobits B, Sibilia M. How imiquimod licenses plasmacytoid dendritic cells to kill tumors. OncoImmunology 2012; 1:1661 - 3; http://dx.doi.org/10.4161/onci.22033; PMID: 23264929
  • Schön MP, Schön M. TLR7 and TLR8 as targets in cancer therapy. Oncogene 2008; 27:190 - 9; http://dx.doi.org/10.1038/sj.onc.1210913; PMID: 18176600
  • Walter A, Schäfer M, Cecconi V, Matter C, Urosevic-Maiwald M, Belloni B, Schönewolf N, Dummer R, Bloch W, Werner S, et al. Aldara activates TLR7-independent immune defence. Nat Commun 2013; 4:1560; http://dx.doi.org/10.1038/ncomms2566; PMID: 23463003
  • Zitvogel L, Kepp O, Galluzzi L, Kroemer G. Inflammasomes in carcinogenesis and anticancer immune responses. Nat Immunol 2012; 13:343 - 51; http://dx.doi.org/10.1038/ni.2224; PMID: 22430787
  • Okamoto H, Shoin S, Koshimura S, Shimizu R. Studies on the anticancer and streptolysin S-forming abilities of hemolytic streptococci. Jpn J Microbiol 1967; 11:323 - 6; http://dx.doi.org/10.1111/j.1348-0421.1967.tb00350.x; PMID: 4875331
  • Aranda F, Vacchelli E, Obrist F, Eggermont A, Fridman WH, Galon J, et al. Trial Watch: Adoptive cell transfer for anticancer immunotherapy. OncoImmunology 2014; 3:e27297
  • Pol J, Bloy N, Obrist F, Eggermont A, Galon J, Cremer I, et al. Trial Watch: Oncolytic viruses for cancer therapy. OncoImmunology 2014; 3 Forthcoming
  • Vacchelli E, Eggermont A, Sautès-Fridman C, Galon J, Zitvogel L, Kroemer G, Galluzzi L. Trial Watch: Toll-like receptor agonists for cancer therapy. OncoImmunology 2013; 2:e25238; http://dx.doi.org/10.4161/onci.25238; PMID: 24083080
  • Murad YM, Clay TM, Lyerly HK, Morse MA. CPG-7909 (PF-3512676, ProMune): toll-like receptor-9 agonist in cancer therapy. Expert Opin Biol Ther 2007; 7:1257 - 66; http://dx.doi.org/10.1517/14712598.7.8.1257; PMID: 17696823
  • Boehrer S, Adès L, Braun T, Galluzzi L, Grosjean J, Fabre C, Le Roux G, Gardin C, Martin A, de Botton S, et al. Erlotinib exhibits antineoplastic off-target effects in AML and MDS: a preclinical study. Blood 2008; 111:2170 - 80; http://dx.doi.org/10.1182/blood-2007-07-100362; PMID: 17925489
  • Belani CP, Nemunaitis JJ, Chachoua A, Eisenberg PD, Raez LE, Cuevas JD, Mather CB, Benner RJ, Meech SJ. Phase 2 trial of erlotinib with or without PF-3512676 (CPG 7909, a Toll-like receptor 9 agonist) in patients with advanced recurrent EGFR-positive non-small cell lung cancer. Cancer Biol Ther 2013; 14:557 - 63; http://dx.doi.org/10.4161/cbt.24598; PMID: 23792641
  • Vacchelli E, Eggermont A, Galon J, Sautès-Fridman C, Zitvogel L, Kroemer G, Galluzzi L. Trial watch: Monoclonal antibodies in cancer therapy. OncoImmunology 2013; 2:e22789; http://dx.doi.org/10.4161/onci.22789; PMID: 23482847
  • Vacchelli E, Aranda F, Eggermont A, Galon J, Sautès-Fridman C, Zitvogel L, Kroemer G, Galluzzi L. Trial Watch: Tumor-targeting monoclonal antibodies in cancer therapy. OncoImmunology 2014; 3:e27048; http://dx.doi.org/10.4161/onci.27048; PMID: 24605265
  • Akhtar S, Maghfoor I. Rituximab plus CHOP for diffuse large-B-cell lymphoma. N Engl J Med 2002; 346:1830-1, author reply 1830-1;; http://dx.doi.org/10.1056/NEJM200206063462317PMID: 12050349
  • Coiffier B, Lepage E, Briere J, Herbrecht R, Tilly H, Bouabdallah R, Morel P, Van Den Neste E, Salles G, Gaulard P, et al. CHOP chemotherapy plus rituximab compared with CHOP alone in elderly patients with diffuse large-B-cell lymphoma. N Engl J Med 2002; 346:235 - 42; http://dx.doi.org/10.1056/NEJMoa011795; PMID: 11807147
  • Witzig TE, Wiseman GA, Maurer MJ, Habermann TM, Micallef IN, Nowakowski GS, Ansell SM, Colgan JP, Inwards DJ, Porrata LF, et al. A phase I trial of immunostimulatory CpG 7909 oligodeoxynucleotide and 90 yttrium ibritumomab tiuxetan radioimmunotherapy for relapsed B-cell non-Hodgkin lymphoma. Am J Hematol 2013; 88:589 - 93; http://dx.doi.org/10.1002/ajh.23460; PMID: 23619698
  • Kensil CR, Kammer R. QS-21: a water-soluble triterpene glycoside adjuvant. Expert Opin Investig Drugs 1998; 7:1475 - 82; http://dx.doi.org/10.1517/13543784.7.9.1475; PMID: 15992044
  • Cluff CW. Monophosphoryl lipid A (MPL) as an adjuvant for anti-cancer vaccines: clinical results. Adv Exp Med Biol 2010; 667:111 - 23; http://dx.doi.org/10.1007/978-1-4419-1603-7_10; PMID: 20665204
  • Vandepapelière P, Horsmans Y, Moris P, Van Mechelen M, Janssens M, Koutsoukos M, Van Belle P, Clement F, Hanon E, Wettendorff M, et al. Vaccine adjuvant systems containing monophosphoryl lipid A and QS21 induce strong and persistent humoral and T cell responses against hepatitis B surface antigen in healthy adult volunteers. Vaccine 2008; 26:1375 - 86; http://dx.doi.org/10.1016/j.vaccine.2007.12.038; PMID: 18272264
  • Vantomme V, Dantinne C, Amrani N, Permanne P, Gheysen D, Bruck C, Stoter G, Britten CM, Keilholz U, Lamers CH, et al. Immunologic analysis of a phase I/II study of vaccination with MAGE-3 protein combined with the AS02B adjuvant in patients with MAGE-3-positive tumors. J Immunother 2004; 27:124 - 35; http://dx.doi.org/10.1097/00002371-200403000-00006; PMID: 14770084
  • Kruit WH, Suciu S, Dreno B, Mortier L, Robert C, Chiarion-Sileni V, Maio M, Testori A, Dorval T, Grob JJ, et al. Selection of immunostimulant AS15 for active immunization with MAGE-A3 protein: results of a randomized phase II study of the European Organisation for Research and Treatment of Cancer Melanoma Group in Metastatic Melanoma. J Clin Oncol 2013; 31:2413 - 20; http://dx.doi.org/10.1200/JCO.2012.43.7111; PMID: 23715572
  • Brichard VG, Godechal Q. MAGE-A3-specific anticancer immunotherapy in the clinical practice. OncoImmunology 2013; 2:e25995; http://dx.doi.org/10.4161/onci.25995; PMID: 24244898
  • Ulloa-Montoya F, Louahed J, Dizier B, Gruselle O, Spiessens B, Lehmann FF, Suciu S, Kruit WH, Eggermont AM, Vansteenkiste J, et al. Predictive gene signature in MAGE-A3 antigen-specific cancer immunotherapy. J Clin Oncol 2013; 31:2388 - 95; http://dx.doi.org/10.1200/JCO.2012.44.3762; PMID: 23715562
  • Levy HB, Baer G, Baron S, Buckler CE, Gibbs CJ, Iadarola MJ, London WT, Rice J. A modified polyriboinosinic-polyribocytidylic acid complex that induces interferon in primates. J Infect Dis 1975; 132:434 - 9; http://dx.doi.org/10.1093/infdis/132.4.434; PMID: 810520
  • Ming Lim C, Stephenson R, Salazar AM, Ferris RL. TLR3 agonists improve the immunostimulatory potential of cetuximab against EGFR(+) head and neck cancer cells. OncoImmunology 2013; 2:e24677; http://dx.doi.org/10.4161/onci.24677; PMID: 23894722
  • Hartman LL, Crawford JR, Makale MT, Milburn M, Joshi S, Salazar AM, Hasenauer B, Vandenberg SR, Macdonald TJ, Durden DL. Pediatric Phase II Trials of Poly-ICLC in the Management of Newly Diagnosed and Recurrent Brain Tumors. J Pediatr Hematol Oncol 2013; Forthcoming http://dx.doi.org/10.1097/MPH.0000000000000047; PMID: 24309609
  • Galluzzi L, Senovilla L, Vacchelli E, Eggermont A, Fridman WH, Galon J, Sautès-Fridman C, Tartour E, Zitvogel L, Kroemer G. Trial watch: Dendritic cell-based interventions for cancer therapy. OncoImmunology 2012; 1:1111 - 34; http://dx.doi.org/10.4161/onci.21494; PMID: 23170259
  • Vacchelli E, Vitale I, Eggermont A, Fridman WH, Fučíková J, Cremer I, Galon J, Tartour E, Zitvogel L, Kroemer G, et al. Trial watch: Dendritic cell-based interventions for cancer therapy. OncoImmunology 2013; 2:e25771; http://dx.doi.org/10.4161/onci.25771; PMID: 24286020
  • Mark KE, Corey L, Meng TC, Magaret AS, Huang ML, Selke S, Slade HB, Tyring SK, Warren T, Sacks SL, et al. Topical resiquimod 0.01% gel decreases herpes simplex virus type 2 genital shedding: a randomized, controlled trial. J Infect Dis 2007; 195:1324 - 31; http://dx.doi.org/10.1086/513276; PMID: 17397003
  • Miller RL, Meng TC, Tomai MA. The antiviral activity of Toll-like receptor 7 and 7/8 agonists. Drug News Perspect 2008; 21:69 - 87; http://dx.doi.org/10.1358/dnp.2008.21.2.1188193; PMID: 18389099
  • Meyer T, Surber C, French LE, Stockfleth E. Resiquimod, a topical drug for viral skin lesions and skin cancer. Expert Opin Investig Drugs 2013; 22:149 - 59; http://dx.doi.org/10.1517/13543784.2013.749236; PMID: 23205468
  • Lai JP, Rosenberg AZ, Miettinen MM, Lee CC. NY-ESO-1 expression in sarcomas: A diagnostic marker and immunotherapy target. OncoImmunology 2012; 1:1409 - 10; http://dx.doi.org/10.4161/onci.21059; PMID: 23243610
  • Aranda F, Vacchelli E, Eggermont A, Galon J, Fridman WH, Zitvogel L, Kroemer G, Galluzzi L. Trial Watch: Immunostimulatory monoclonal antibodies in cancer therapy. OncoImmunology 2014; 3:e27297; http://dx.doi.org/10.4161/onci.27297; PMID: 24701370
  • Paleja B, Anand A, Chaukar D, D’Cruz A, Chiplunkar S. Decreased functional response to Toll like receptor ligands in patients with oral cancer. Hum Immunol 2013; 74:927 - 36; http://dx.doi.org/10.1016/j.humimm.2013.04.018; PMID: 23628388
  • Newton MR, Askeland EJ, Andresen ED, Chehval VA, Wang X, Askeland RW, O’Donnell MA, Luo Y. Anti-interleukin-10R1 monoclonal antibody in combination with BCG is protective against bladder cancer metastasis in a murine orthotopic tumor model and demonstrates systemic specific antitumor immunity. Clin Exp Immunol 2014; Forthcoming http://dx.doi.org/10.1111/cei.12315; PMID: 24593764
  • Luo Y. Blocking IL-10 enhances bacillus Calmette-Guérin induced T helper Type 1 immune responses and anti-bladder cancer immunity. OncoImmunology 2012; 1:1183 - 5; http://dx.doi.org/10.4161/onci.20640; PMID: 23170273
  • Sun HX, Xie Y, Ye YP. Advances in saponin-based adjuvants. Vaccine 2009; 27:1787 - 96; http://dx.doi.org/10.1016/j.vaccine.2009.01.091; PMID: 19208455
  • White K, Rades T, Kearns P, Toth I, Hook S. Immunogenicity of liposomes containing lipid core peptides and the adjuvant Quil A. Pharm Res 2006; 23:1473 - 81; http://dx.doi.org/10.1007/s11095-006-0272-z; PMID: 16779706
  • Perret R, Sierro SR, Botelho NK, Corgnac S, Donda A, Romero P. Adjuvants that improve the ratio of antigen-specific effector to regulatory T cells enhance tumor immunity. Cancer Res 2013; 73:6597 - 608; http://dx.doi.org/10.1158/0008-5472.CAN-13-0875; PMID: 24048821
  • Ali OA, Verbeke C, Johnson C, Sands RW, Lewin SA, White D, Doherty E, Dranoff G, Mooney DJ. Identification of immune factors regulating antitumor immunity using polymeric vaccines with multiple adjuvants. Cancer Res 2014; 74:1670 - 81; http://dx.doi.org/10.1158/0008-5472.CAN-13-0777; PMID: 24480625
  • Yamazaki T, Hannani D, Poirier-Colame V, Ladoire S, Locher C, Sistigu A, Prada N, Adjemian S, Catani JP, Freudenberg M, et al. Defective immunogenic cell death of HMGB1-deficient tumors: compensatory therapy with TLR4 agonists. Cell Death Differ 2014; 21:69 - 78; http://dx.doi.org/10.1038/cdd.2013.72; PMID: 23811849
  • Tai LH, Zhang J, Scott KJ, de Souza CT, Alkayyal AA, Ananth AA, Sahi S, Adair RA, Mahmoud AB, Sad S, et al. Perioperative influenza vaccination reduces postoperative metastatic disease by reversing surgery-induced dysfunction in natural killer cells. Clin Cancer Res 2013; 19:5104 - 15; http://dx.doi.org/10.1158/1078-0432.CCR-13-0246; PMID: 23881927
  • Huang SW, Kao JK, Wu CY, Wang ST, Lee HC, Liang SM, Chen YJ, Shieh JJ. Targeting aerobic glycolysis and HIF-1alpha expression enhance imiquimod-induced apoptosis in cancer cells. Oncotarget 2014; 5:1352-62;PMID: 24658058
  • Galluzzi L, Kepp O, Vander Heiden MG, Kroemer G. Metabolic targets for cancer therapy. Nat Rev Drug Discov 2013; 12:829 - 46; http://dx.doi.org/10.1038/nrd4145; PMID: 24113830
  • Köchling J, Prada J, Bahrami M, Stripecke R, Seeger K, Henze G, Wittig B, Schmidt M. Anti-tumor effect of DNA-based vaccination and dSLIM immunomodulatory molecules in mice with Ph+ acute lymphoblastic leukaemia. Vaccine 2008; 26:4669 - 75; http://dx.doi.org/10.1016/j.vaccine.2008.06.094; PMID: 18639600
  • Fox CB, Moutaftsi M, Vergara J, Desbien AL, Nana GI, Vedvick TS, Coler RN, Reed SG. TLR4 ligand formulation causes distinct effects on antigen-specific cell-mediated and humoral immune responses. Vaccine 2013; 31:5848 - 55; http://dx.doi.org/10.1016/j.vaccine.2013.09.069; PMID: 24120675
  • Schneider LP, Schoonderwoerd AJ, Moutaftsi M, Howard RF, Reed SG, de Jong EC, Teunissen MB. Intradermally administered TLR4 agonist GLA-SE enhances the capacity of human skin DCs to activate T cells and promotes emigration of Langerhans cells. Vaccine 2012; 30:4216 - 24; http://dx.doi.org/10.1016/j.vaccine.2012.04.051; PMID: 22542815
  • Orr MT, Duthie MS, Windish HP, Lucas EA, Guderian JA, Hudson TE, Shaverdian N, O’Donnell J, Desbien AL, Reed SG, et al. MyD88 and TRIF synergistic interaction is required for TH1-cell polarization with a synthetic TLR4 agonist adjuvant. Eur J Immunol 2013; 43:2398 - 408; http://dx.doi.org/10.1002/eji.201243124; PMID: 23716300
  • Prior S, Fleck RA, Gillett ML, Rigsby PR, Corbel MJ, Stacey GN, Xing DK. Evaluation of adenyl cyclase toxin constructs from Bordetella pertussis as candidate vaccine components in an in vitro model of complement-dependent intraphagocytic killing. Vaccine 2006; 24:4794 - 803; http://dx.doi.org/10.1016/j.vaccine.2006.03.065; PMID: 16675078
  • Mackova J, Stasikova J, Kutinova L, Masin J, Hainz P, Simsova M, Gabriel P, Sebo P, Nemeckova S. Prime/boost immunotherapy of HPV16-induced tumors with E7 protein delivered by Bordetella adenylate cyclase and modified vaccinia virus Ankara. Cancer Immunol Immunother 2006; 55:39 - 46; http://dx.doi.org/10.1007/s00262-005-0700-7; PMID: 15926077
  • Fayolle C, Ladant D, Karimova G, Ullmann A, Leclerc C. Therapy of murine tumors with recombinant Bordetella pertussis adenylate cyclase carrying a cytotoxic T cell epitope. J Immunol 1999; 162:4157 - 62; PMID: 10201941
  • Okada H, Kalinski P, Ueda R, Hoji A, Kohanbash G, Donegan TE, Mintz AH, Engh JA, Bartlett DL, Brown CK, et al. Induction of CD8+ T-cell responses against novel glioma-associated antigen peptides and clinical activity by vaccinations with alpha-type 1 polarized dendritic cells and polyinosinic-polycytidylic acid stabilized by lysine and carboxymethylcellulose in patients with recurrent malignant glioma. J Clin Oncol 2011; 29:330 - 6; http://dx.doi.org/10.1200/JCO.2010.30.7744; PMID: 21149657
  • Ziccheddu G, Proietti E, Moschella F. The Janus face of cyclophosphamide: A sterile inflammatory response that potentiates cancer immunotherapy. OncoImmunology 2013; 2:e25789; http://dx.doi.org/10.4161/onci.25789; PMID: 24244905
  • Waldron TJ, Quatromoni JG, Karakasheva TA, Singhal S, Rustgi AK. Myeloid derived suppressor cells: Targets for therapy. OncoImmunology 2013; 2:e24117; http://dx.doi.org/10.4161/onci.24117; PMID: 23734336
  • Su S, Zhou H, Xue M, Liu JY, Ding L, Cao M, Zhou ZX, Hu HM, Wang LX. Anti-tumor efficacy of a hepatocellular carcinoma vaccine based on dendritic cells combined with tumor-derived autophagosomes in murine models. Asian Pac J Cancer Prev 2013; 14:3109 - 16; http://dx.doi.org/10.7314/APJCP.2013.14.5.3109; PMID: 23803088
  • Li Y, Wang LX, Pang P, Cui Z, Aung S, Haley D, Fox BA, Urba WJ, Hu HM. Tumor-derived autophagosome vaccine: mechanism of cross-presentation and therapeutic efficacy. Clin Cancer Res 2011; 17:7047 - 57; http://dx.doi.org/10.1158/1078-0432.CCR-11-0951; PMID: 22068657
  • Twitty CG, Jensen SM, Hu HM, Fox BA. Tumor-derived autophagosome vaccine: induction of cross-protective immune responses against short-lived proteins through a p62-dependent mechanism. Clin Cancer Res 2011; 17:6467 - 81; http://dx.doi.org/10.1158/1078-0432.CCR-11-0812; PMID: 21810919
  • Aditya S, Gupta S. Ingenol mebutate: A novel topical drug for actinic keratosis. Indian Dermatol Online J 2013; 4:246-9;; http://dx.doi.org/10.4103/2229-5178.115538PMID: 23984250
  • Lebwohl M, Shumack S, Stein Gold L, Melgaard A, Larsson T, Tyring SK. Long-term follow-up study of ingenol mebutate gel for the treatment of actinic keratoses. JAMA Dermatol 2013; 149:666 - 70; http://dx.doi.org/10.1001/jamadermatol.2013.2766; PMID: 23553119
  • Lebwohl M, Swanson N, Anderson LL, Melgaard A, Xu Z, Berman B. Ingenol mebutate gel for actinic keratosis. N Engl J Med 2012; 366:1010 - 9; http://dx.doi.org/10.1056/NEJMoa1111170; PMID: 22417254
  • Morse MA, Niedzwiecki D, Marshall JL, Garrett C, Chang DZ, Aklilu M, Crocenzi TS, Cole DJ, Dessureault S, Hobeika AC, et al. A randomized phase II study of immunization with dendritic cells modified with poxvectors encoding CEA and MUC1 compared with the same poxvectors plus GM-CSF for resected metastatic colorectal cancer. Ann Surg 2013; 258:879 - 86; http://dx.doi.org/10.1097/SLA.0b013e318292919e; PMID: 23657083
  • Vasir B, Zarwan C, Ahmad R, Crawford KD, Rajabi H, Matsuoka K, Rosenblatt J, Wu Z, Mills H, Kufe D, et al. Induction of antitumor immunity ex vivo using dendritic cells transduced with fowl pox vector expressing MUC1, CEA, and a triad of costimulatory molecules (rF-PANVAC). J Immunother 2012; 35:555 - 69; http://dx.doi.org/10.1097/CJI.0b013e31826a73de; PMID: 22892452
  • Mohebtash M, Tsang KY, Madan RA, Huen NY, Poole DJ, Jochems C, Jones J, Ferrara T, Heery CR, Arlen PM, et al. A pilot study of MUC-1/CEA/TRICOM poxviral-based vaccine in patients with metastatic breast and ovarian cancer. Clin Cancer Res 2011; 17:7164 - 73; http://dx.doi.org/10.1158/1078-0432.CCR-11-0649; PMID: 22068656
  • Madan RA, Arlen PM, Gulley JL. PANVAC-VF: poxviral-based vaccine therapy targeting CEA and MUC1 in carcinoma. Expert Opin Biol Ther 2007; 7:543 - 54; http://dx.doi.org/10.1517/14712598.7.4.543; PMID: 17373905
  • Petrulio CA, Kaufman HL. Development of the PANVAC-VF vaccine for pancreatic cancer. Expert Rev Vaccines 2006; 5:9 - 19; http://dx.doi.org/10.1586/14760584.5.1.9; PMID: 16451103
  • Dutoit V, Herold-Mende C, Hilf N, Schoor O, Beckhove P, Bucher J, Dorsch K, Flohr S, Fritsche J, Lewandrowski P, et al. Exploiting the glioblastoma peptidome to discover novel tumour-associated antigens for immunotherapy. Brain 2012; 135:1042 - 54; http://dx.doi.org/10.1093/brain/aws042; PMID: 22418738
  • Grossman SA, Ye X, Piantadosi S, Desideri S, Nabors LB, Rosenfeld M, Fisher J, NABTT CNS Consortium. Survival of patients with newly diagnosed glioblastoma treated with radiation and temozolomide in research studies in the United States. Clin Cancer Res 2010; 16:2443 - 9; http://dx.doi.org/10.1158/1078-0432.CCR-09-3106; PMID: 20371685
  • Akilov OE, Grant C, Frye R, Bates S, Piekarz R, Geskin LJ. Low-dose electron beam radiation and romidepsin therapy for symptomatic cutaneous T-cell lymphoma lesions. Br J Dermatol 2012; 167:194 - 7; http://dx.doi.org/10.1111/j.1365-2133.2012.10905.x; PMID: 22372971
  • Lansigan F, Foss FM. Current and emerging treatment strategies for cutaneous T-cell lymphoma. Drugs 2010; 70:273 - 86; http://dx.doi.org/10.2165/11532190-000000000-00000; PMID: 20166766
  • West AC, Smyth MJ, Johnstone RW. The anticancer effects of HDAC inhibitors require the immune system. OncoImmunology 2014; 3:e27414; http://dx.doi.org/10.4161/onci.27414; PMID: 24701376
  • Adamopoulou E, Naumann U. HDAC inhibitors and their potential applications to glioblastoma therapy. OncoImmunology 2013; 2:e25219; http://dx.doi.org/10.4161/onci.25219; PMID: 24167760
  • Lim SN, Kuhn S, Hyde E, Ronchese F. Combined TLR stimulation with Pam3Cys and Poly I: C enhances Flt3-ligand dendritic cell activation for tumor immunotherapy. J Immunother 2012; 35:670 - 9; http://dx.doi.org/10.1097/CJI.0b013e318270e135; PMID: 23090076
  • Hennies CM, Reboulet RA, Garcia Z, Nierkens S, Wolkers MC, Janssen EM. Selective expansion of merocytic dendritic cells and CD8DCs confers anti-tumour effect of Fms-like tyrosine kinase 3-ligand treatment in vivo. Clin Exp Immunol 2011; 163:381 - 91; http://dx.doi.org/10.1111/j.1365-2249.2010.04305.x; PMID: 21235535
  • Curran MA, Allison JP. Tumor vaccines expressing flt3 ligand synergize with ctla-4 blockade to reject preimplanted tumors. Cancer Res 2009; 69:7747 - 55; http://dx.doi.org/10.1158/0008-5472.CAN-08-3289; PMID: 19738077
  • de Vries IJ, Tel J, Benitez-Ribas D, Torensma R, Figdor CG. Prophylactic vaccines mimic synthetic CpG oligonucleotides in their ability to modulate immune responses. Mol Immunol 2011; 48:810 - 7; http://dx.doi.org/10.1016/j.molimm.2010.12.022; PMID: 21257206
  • Schreibelt G, Benitez-Ribas D, Schuurhuis D, Lambeck AJ, van Hout-Kuijer M, Schaft N, Punt CJ, Figdor CG, Adema GJ, de Vries IJ. Commonly used prophylactic vaccines as an alternative for synthetically produced TLR ligands to mature monocyte-derived dendritic cells. Blood 2010; 116:564 - 74; http://dx.doi.org/10.1182/blood-2009-11-251884; PMID: 20424184
  • Hodi FS, O’Day SJ, McDermott DF, Weber RW, Sosman JA, Haanen JB, Gonzalez R, Robert C, Schadendorf D, Hassel JC, et al. Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med 2010; 363:711 - 23; http://dx.doi.org/10.1056/NEJMoa1003466; PMID: 20525992
  • Mavilio D, Lugli E. Inhibiting the inhibitors: Checkpoints blockade in solid tumors. OncoImmunology 2013; 2:e26535; http://dx.doi.org/10.4161/onci.26535; PMID: 24244910
  • Robert C, Thomas L, Bondarenko I, O’Day S. M D JW, Garbe C, Lebbe C, Baurain JF, Testori A, Grob JJ, et al. Ipilimumab plus dacarbazine for previously untreated metastatic melanoma. N Engl J Med 2011; 364:2517-26;; http://dx.doi.org/10.1056/NEJMoa1104621PMID: 21639810
  • Wolchok JD, Kluger H, Callahan MK, Postow MA, Rizvi NA, Lesokhin AM, Segal NH, Ariyan CE, Gordon RA, Reed K, et al. Nivolumab plus ipilimumab in advanced melanoma. N Engl J Med 2013; 369:122 - 33; http://dx.doi.org/10.1056/NEJMoa1302369; PMID: 23724867
  • Duraiswamy J, Freeman GJ, Coukos G. Therapeutic PD-1 pathway blockade augments with other modalities of immunotherapy T-cell function to prevent immune decline in ovarian cancer. Cancer Res 2013; 73:6900 - 12; http://dx.doi.org/10.1158/0008-5472.CAN-13-1550; PMID: 23975756
  • Williams EL, Dunn SN, James S, Johnson PW, Cragg MS, Glennie MJ, Gray JC. Immunomodulatory monoclonal antibodies combined with peptide vaccination provide potent immunotherapy in an aggressive murine neuroblastoma model. Clin Cancer Res 2013; 19:3545 - 55; http://dx.doi.org/10.1158/1078-0432.CCR-12-3226; PMID: 23649004
  • Mangsbo SM, Sandin LC, Anger K, Korman AJ, Loskog A, Tötterman TH. Enhanced tumor eradication by combining CTLA-4 or PD-1 blockade with CpG therapy. J Immunother 2010; 33:225 - 35; http://dx.doi.org/10.1097/CJI.0b013e3181c01fcb; PMID: 20445343

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.