4,928
Views
109
CrossRef citations to date
0
Altmetric
Review

Small RNAs in the control of RpoS, CsgD, and biofilm architecture of Escherichia coli

&
Pages 494-507 | Received 16 Feb 2014, Accepted 12 Apr 2014, Published online: 25 Apr 2014

References

  • Hall-Stoodley L, Costerton JW, Stoodley P. Bacterial biofilms: from the natural environment to infectious diseases. Nat Rev Microbiol 2004; 2:95 - 108; http://dx.doi.org/10.1038/nrmicro821; PMID: 15040259
  • Branda SS, Vik S, Friedman L, Kolter R. Biofilms: the matrix revisited. Trends Microbiol 2005; 13:20 - 6; http://dx.doi.org/10.1016/j.tim.2004.11.006; PMID: 15639628
  • Anderson GG, O’Toole GA. Innate and induced resistance mechanisms of bacterial biofilms. Curr Top Microbiol Immunol 2008; 322:85 - 105; http://dx.doi.org/10.1007/978-3-540-75418-3_5; PMID: 18453273
  • Karatan E, Watnick P. Signals, regulatory networks, and materials that build and break bacterial biofilms. Microbiol Mol Biol Rev 2009; 73:310 - 47; http://dx.doi.org/10.1128/MMBR.00041-08; PMID: 19487730
  • Beloin C, Roux A, Ghigo JM. Escherichia coli biofilms. Curr Top Microbiol Immunol 2008; 322:249 - 89; http://dx.doi.org/10.1007/978-3-540-75418-3_12; PMID: 18453280
  • Pratt LA, Kolter R. Genetic analysis of Escherichia coli biofilm formation: roles of flagella, motility, chemotaxis and type I pili. Mol Microbiol 1998; 30:285 - 93; http://dx.doi.org/10.1046/j.1365-2958.1998.01061.x; PMID: 9791174
  • Wood TK, González Barrios AF, Herzberg M, Lee J. Motility influences biofilm architecture in Escherichia coli.. Appl Microbiol Biotechnol 2006; 72:361 - 7; http://dx.doi.org/10.1007/s00253-005-0263-8; PMID: 16397770
  • Serra DO, Richter AM, Klauck G, Mika F, Hengge R. Microanatomy at cellular resolution and spatial order of physiological differentiation in a bacterial biofilm. MBio 2013; 4:e00103 - 13; http://dx.doi.org/10.1128/mBio.00103-13; PMID: 23512962
  • Danese PN, Pratt LA, Dove SL, Kolter R. The outer membrane protein, antigen 43, mediates cell-to-cell interactions within Escherichia coli biofilms. Mol Microbiol 2000; 37:424 - 32; http://dx.doi.org/10.1046/j.1365-2958.2000.02008.x; PMID: 10931336
  • Wang X, Preston JF 3rd, Romeo T. The pgaABCD locus of Escherichia coli promotes the synthesis of a polysaccharide adhesin required for biofilm formation. J Bacteriol 2004; 186:2724 - 34; http://dx.doi.org/10.1128/JB.186.9.2724-2734.2004; PMID: 15090514
  • Bokranz W, Wang X, Tschäpe H, Römling U. Expression of cellulose and curli fimbriae by Escherichia coli isolated from the gastrointestinal tract. J Med Microbiol 2005; 54:1171 - 82; http://dx.doi.org/10.1099/jmm.0.46064-0; PMID: 16278431
  • Serra DO, Richter AM, Hengge R. Cellulose as an architectural element in spatially structured Escherichia coli biofilms. J Bacteriol 2013; 195:5540 - 54; http://dx.doi.org/10.1128/JB.00946-13; PMID: 24097954
  • Zorraquino V, García B, Latasa C, Echeverz M, Toledo-Arana A, Valle J, Lasa I, Solano C. Coordinated cyclic-di-GMP repression of Salmonella motility through YcgR and cellulose. J Bacteriol 2013; 195:417 - 28; http://dx.doi.org/10.1128/JB.01789-12; PMID: 23161026
  • Serra DO, Hengge R. Stress responses go 3D - the spatial order of physiological differentiation in bacterial macrocolony biofilms. Environ Microbiol 2014; submitted http://dx.doi.org/10.1111/1462-2920.12483; PMID: 24725389
  • Hengge R. Role of c-di-GMP in the regulatory networks of Escherichia coli. In: Wolfe A, Visick K, eds. The Second Messenger Cyclic-di-GMP. Washington, D.C.: ASM Press, 2010:230-52.
  • Chevance FF, Hughes KT. Coordinating assembly of a bacterial macromolecular machine. Nat Rev Microbiol 2008; 6:455 - 65; http://dx.doi.org/10.1038/nrmicro1887; PMID: 18483484
  • Pesavento C, Becker G, Sommerfeldt N, Possling A, Tschowri N, Mehlis A, Hengge R. Inverse regulatory coordination of motility and curli-mediated adhesion in Escherichia coli.. Genes Dev 2008; 22:2434 - 46; http://dx.doi.org/10.1101/gad.475808; PMID: 18765794
  • Weber H, Pesavento C, Possling A, Tischendorf G, Hengge R. Cyclic-di-GMP-mediated signalling within the sigma network of Escherichia coli.. Mol Microbiol 2006; 62:1014 - 34; http://dx.doi.org/10.1111/j.1365-2958.2006.05440.x; PMID: 17010156
  • Römling U. Characterization of the rdar morphotype, a multicellular behaviour in Enterobacteriaceae.. Cell Mol Life Sci 2005; 62:1234 - 46; http://dx.doi.org/10.1007/s00018-005-4557-x; PMID: 15818467
  • Hengge R. The general stress response in Gram-negative bacteria. In: Storz G, Hengge R, eds. Bacterial stress responses. Washington, D.C.: ASM Press, 2011:251-89.
  • Weber H, Polen T, Heuveling J, Wendisch VF, Hengge R. Genome-wide analysis of the general stress response network in Escherichia coli: sigmaS-dependent genes, promoters, and sigma factor selectivity. J Bacteriol 2005; 187:1591 - 603; http://dx.doi.org/10.1128/JB.187.5.1591-1603.2005; PMID: 15716429
  • Lacour S, Landini P. SigmaS-dependent gene expression at the onset of stationary phase in Escherichia coli: function of sigmaS-dependent genes and identification of their promoter sequences. J Bacteriol 2004; 186:7186 - 95; http://dx.doi.org/10.1128/JB.186.21.7186-7195.2004; PMID: 15489429
  • Patten CL, Kirchhof MG, Schertzberg MR, Morton RA, Schellhorn HE. Microarray analysis of RpoS-mediated gene expression in Escherichia coli K-12. Mol Genet Genomics 2004; 272:580 - 91; http://dx.doi.org/10.1007/s00438-004-1089-2; PMID: 15558318
  • Dong T, Schellhorn HE. Control of RpoS in global gene expression of Escherichia coli in minimal media. Mol Genet Genomics 2009; 281:19 - 33; http://dx.doi.org/10.1007/s00438-008-0389-3; PMID: 18843507
  • Hengge R. Proteolysis of sigmaS (RpoS) and the general stress response in Escherichia coli.. Res Microbiol 2009; 160:667 - 76; http://dx.doi.org/10.1016/j.resmic.2009.08.014; PMID: 19765651
  • Klauck E, Hengge R. σS-controlling networks in Escherichia coli. In: Filloux A, ed. Bacterial Regulatory Networks. Norfolk, UK: Caister Academic Press, 2011:1-26.
  • Spangler C, Böhm A, Jenal U, Seifert R, Kaever V. A liquid chromatography-coupled tandem mass spectrometry method for quantitation of cyclic di-guanosine monophosphate. J Microbiol Methods 2010; 81:226 - 31; http://dx.doi.org/10.1016/j.mimet.2010.03.020; PMID: 20385176
  • Lindenberg S, Klauck G, Pesavento C, Klauck E, Hengge R. The EAL domain protein YciR acts as a trigger enzyme in a c-di-GMP signalling cascade in E. coli biofilm control. EMBO J 2013; 32:2001 - 14; http://dx.doi.org/10.1038/emboj.2013.120; PMID: 23708798
  • Ogasawara H, Yamamoto K, Ishihama A. Regulatory role of MlrA in transcription activation of csgD, the master regulator of biofilm formation in Escherichia coli.. FEMS Microbiol Lett 2010; 312:160 - 8; http://dx.doi.org/10.1111/j.1574-6968.2010.02112.x; PMID: 20874755
  • Prigent-Combaret C, Brombacher E, Vidal O, Ambert A, Lejeune P, Landini P, Dorel C. Complex regulatory network controls initial adhesion and biofilm formation in Escherichia coli via regulation of the csgD gene. J Bacteriol 2001; 183:7213 - 23; http://dx.doi.org/10.1128/JB.183.24.7213-7223.2001; PMID: 11717281
  • Gerstel U, Park C, Römling U. Complex regulation of csgD promoter activity by global regulatory proteins. Mol Microbiol 2003; 49:639 - 54; http://dx.doi.org/10.1046/j.1365-2958.2003.03594.x; PMID: 12864849
  • Ogasawara H, Yamamoto K, Ishihama A. Role of the biofilm master regulator CsgD in cross-regulation between biofilm formation and flagellar synthesis. J Bacteriol 2011; 193:2587 - 97; http://dx.doi.org/10.1128/JB.01468-10; PMID: 21421764
  • Römling U, Rohde M, Olsén A, Normark S, Reinköster J. AgfD, the checkpoint of multicellular and aggregative behaviour in Salmonella typhimurium regulates at least two independent pathways. Mol Microbiol 2000; 36:10 - 23; http://dx.doi.org/10.1046/j.1365-2958.2000.01822.x; PMID: 10760159
  • Brombacher E, Dorel C, Zehnder AJ, Landini P. The curli biosynthesis regulator CsgD co-ordinates the expression of both positive and negative determinants for biofilm formation in Escherichia coli.. Microbiology 2003; 149:2847 - 57; http://dx.doi.org/10.1099/mic.0.26306-0; PMID: 14523117
  • Römling U, Sierralta WD, Eriksson K, Normark S. Multicellular and aggregative behaviour of Salmonella typhimurium strains is controlled by mutations in the agfD promoter. Mol Microbiol 1998; 28:249 - 64; http://dx.doi.org/10.1046/j.1365-2958.1998.00791.x; PMID: 9622351
  • Amikam D, Galperin MY. PilZ domain is part of the bacterial c-di-GMP binding protein. Bioinformatics 2006; 22:3 - 6; http://dx.doi.org/10.1093/bioinformatics/bti739; PMID: 16249258
  • Stout V. Identification of the promoter region for the colanic acid polysaccharide biosynthetic genes in Escherichia coli K-12. J Bacteriol 1996; 178:4273 - 80; PMID: 8763957
  • Tschowri N, Busse S, Hengge R. The BLUF-EAL protein YcgF acts as a direct anti-repressor in a blue-light response of Escherichia coli.. Genes Dev 2009; 23:522 - 34; http://dx.doi.org/10.1101/gad.499409; PMID: 19240136
  • Majdalani N, Gottesman S. The Rcs phosphorelay: a complex signal transduction system. Annu Rev Microbiol 2005; 59:379 - 405; http://dx.doi.org/10.1146/annurev.micro.59.050405.101230; PMID: 16153174
  • Ferrières L, Clarke DJ. The RcsC sensor kinase is required for normal biofilm formation in Escherichia coli K-12 and controls the expression of a regulon in response to growth on a solid surface. Mol Microbiol 2003; 50:1665 - 82; http://dx.doi.org/10.1046/j.1365-2958.2003.03815.x; PMID: 14651646
  • Francez-Charlot A, Laugel B, Van Gemert A, Dubarry N, Wiorowski F, Castanié-Cornet MP, Gutierrez C, Cam K. RcsCDB His-Asp phosphorelay system negatively regulates the flhDC operon in Escherichia coli.. Mol Microbiol 2003; 49:823 - 32; http://dx.doi.org/10.1046/j.1365-2958.2003.03601.x; PMID: 12864862
  • Ranjit DK, Young KD. The Rcs stress response and accessory envelope proteins are required for de novo generation of cell shape in Escherichia coli.. J Bacteriol 2013; 195:2452 - 62; http://dx.doi.org/10.1128/JB.00160-13; PMID: 23543719
  • Gottesman S. The small RNA regulators of Escherichia coli: roles and mechanisms. Annu Rev Microbiol 2004; 58:303 - 28; http://dx.doi.org/10.1146/annurev.micro.58.030603.123841; PMID: 15487940
  • Soper T, Mandin P, Majdalani N, Gottesman S, Woodson SA. Positive regulation by small RNAs and the role of Hfq. Proc Natl Acad Sci U S A 2010; 107:9602 - 7; http://dx.doi.org/10.1073/pnas.1004435107; PMID: 20457943
  • Boehm A, Vogel J. The csgD mRNA as a hub for signal integration via multiple small RNAs. Mol Microbiol 2012; 84:1 - 5; http://dx.doi.org/10.1111/j.1365-2958.2012.08033.x; PMID: 22414234
  • Mika F, Hengge R. Small regulatory RNAs in the control of motility and biofilm formation in E. coli and Salmonella.. Int J Mol Sci 2013; 14:4560 - 79; http://dx.doi.org/10.3390/ijms14034560; PMID: 23443158
  • McCullen CA, Benhammou JN, Majdalani N, Gottesman S. Mechanism of positive regulation by DsrA and RprA small noncoding RNAs: pairing increases translation and protects rpoS mRNA from degradation. J Bacteriol 2010; 192:5559 - 71; http://dx.doi.org/10.1128/JB.00464-10; PMID: 20802038
  • Basineni SR, Madhugiri R, Kolmsee T, Hengge R, Klug G. The influence of Hfq and ribonucleases on the stability of the small non-coding RNA OxyS and its target rpoS in E. coli is growth phase dependent. RNA Biol 2009; 6:584 - 94; http://dx.doi.org/10.4161/rna.6.5.10082; PMID: 20016254
  • Resch A, Afonyushkin T, Lombo TB, McDowall KJ, Bläsi U, Kaberdin VR. Translational activation by the noncoding RNA DsrA involves alternative RNase III processing in the rpoS 5′-leader. RNA 2008; 14:454 - 9; http://dx.doi.org/10.1261/rna.603108; PMID: 18192613
  • Kolmsee T, Hengge R. Rare codons play a positive role in the expression of the stationary phase sigma factor RpoS (σ(S)) in Escherichia coli. RNA Biol 2011; 8:913 - 21; http://dx.doi.org/10.4161/rna.8.5.16265; PMID: 21788735
  • Thompson KM, Gottesman S. The MiaA tRNA modification enzyme is necessary for robust RpoS expression in Escherichia coli.. J Bacteriol 2014; 196:754 - 61; http://dx.doi.org/10.1128/JB.01013-13; PMID: 24296670
  • Cunning C, Brown L, Elliott T. Promoter substitution and deletion analysis of upstream region required for rpoS translational regulation. J Bacteriol 1998; 180:4564 - 70; PMID: 9721296
  • Lease RA, Woodson SA. Cycling of the Sm-like protein Hfq on the DsrA small regulatory RNA. J Mol Biol 2004; 344:1211 - 23; http://dx.doi.org/10.1016/j.jmb.2004.10.006; PMID: 15561140
  • Muffler A, Fischer D, Hengge-Aronis R. The RNA-binding protein HF-I, known as a host factor for phage Qbeta RNA replication, is essential for rpoS translation in Escherichia coli.. Genes Dev 1996; 10:1143 - 51; http://dx.doi.org/10.1101/gad.10.9.1143; PMID: 8654929
  • Majdalani N, Cunning C, Sledjeski D, Elliott T, Gottesman S. DsrA RNA regulates translation of RpoS message by an anti-antisense mechanism, independent of its action as an antisilencer of transcription. Proc Natl Acad Sci U S A 1998; 95:12462 - 7; http://dx.doi.org/10.1073/pnas.95.21.12462; PMID: 9770508
  • Majdalani N, Hernandez D, Gottesman S. Regulation and mode of action of the second small RNA activator of RpoS translation, RprA. Mol Microbiol 2002; 46:813 - 26; http://dx.doi.org/10.1046/j.1365-2958.2002.03203.x; PMID: 12410838
  • Mandin P, Gottesman S. Integrating anaerobic/aerobic sensing and the general stress response through the ArcZ small RNA. EMBO J 2010; 29:3094 - 107; http://dx.doi.org/10.1038/emboj.2010.179; PMID: 20683441
  • Lease RA, Belfort M. A trans-acting RNA as a control switch in Escherichia coli: DsrA modulates function by forming alternative structures. Proc Natl Acad Sci U S A 2000; 97:9919 - 24; http://dx.doi.org/10.1073/pnas.170281497; PMID: 10954740
  • Brown L, Elliott T. Efficient translation of the RpoS sigma factor in Salmonella typhimurium requires host factor I, an RNA-binding protein encoded by the hfq gene. J Bacteriol 1996; 178:3763 - 70; PMID: 8682778
  • Zhang A, Wassarman KM, Ortega J, Steven AC, Storz G. The Sm-like Hfq protein increases OxyS RNA interaction with target mRNAs. Mol Cell 2002; 9:11 - 22; http://dx.doi.org/10.1016/S1097-2765(01)00437-3; PMID: 11804582
  • Mikulecky PJ, Kaw MK, Brescia CC, Takach JC, Sledjeski DD, Feig AL. Escherichia coli Hfq has distinct interaction surfaces for DsrA, rpoS and poly(A) RNAs. Nat Struct Mol Biol 2004; 11:1206 - 14; http://dx.doi.org/10.1038/nsmb858; PMID: 15531892
  • Link TM, Valentin-Hansen P, Brennan RG. Structure of Escherichia coli Hfq bound to polyriboadenylate RNA. Proc Natl Acad Sci U S A 2009; 106:19292 - 7; http://dx.doi.org/10.1073/pnas.0908744106; PMID: 19889981
  • Soper TJ, Woodson SA. The rpoS mRNA leader recruits Hfq to facilitate annealing with DsrA sRNA. RNA 2008; 14:1907 - 17; http://dx.doi.org/10.1261/rna.1110608; PMID: 18658123
  • Sauer E, Weichenrieder O. Structural basis for RNA 3′-end recognition by Hfq. Proc Natl Acad Sci U S A 2011; 108:13065 - 70; http://dx.doi.org/10.1073/pnas.1103420108; PMID: 21737752
  • Ishikawa H, Otaka H, Maki K, Morita T, Aiba H. The functional Hfq-binding module of bacterial sRNAs consists of a double or single hairpin preceded by a U-rich sequence and followed by a 3′ poly(U) tail. RNA 2012; 18:1062 - 74; http://dx.doi.org/10.1261/rna.031575.111; PMID: 22454537
  • Sauer E, Schmidt S, Weichenrieder O. Small RNA binding to the lateral surface of Hfq hexamers and structural rearrangements upon mRNA target recognition. Proc Natl Acad Sci U S A 2012; 109:9396 - 401; http://dx.doi.org/10.1073/pnas.1202521109; PMID: 22645344
  • Waters LS, Storz G. Regulatory RNAs in bacteria. Cell 2009; 136:615 - 28; http://dx.doi.org/10.1016/j.cell.2009.01.043; PMID: 19239884
  • Moll I, Afonyushkin T, Vytvytska O, Kaberdin VR, Bläsi U. Coincident Hfq binding and RNase E cleavage sites on mRNA and small regulatory RNAs. RNA 2003; 9:1308 - 14; http://dx.doi.org/10.1261/rna.5850703; PMID: 14561880
  • De Lay N, Schu DJ, Gottesman S. Bacterial small RNA-based negative regulation: Hfq and its accomplices. J Biol Chem 2013; 288:7996 - 8003; http://dx.doi.org/10.1074/jbc.R112.441386; PMID: 23362267
  • Bandyra KJ, Said N, Pfeiffer V, Górna MW, Vogel J, Luisi BF. The seed region of a small RNA drives the controlled destruction of the target mRNA by the endoribonuclease RNase E. Mol Cell 2012; 47:943 - 53; http://dx.doi.org/10.1016/j.molcel.2012.07.015; PMID: 22902561
  • Updegrove T, Wilf N, Sun X, Wartell RM. Effect of Hfq on RprA-rpoS mRNA pairing: Hfq-RNA binding and the influence of the 5′ rpoS mRNA leader region. Biochemistry 2008; 47:11184 - 95; http://dx.doi.org/10.1021/bi800479p; PMID: 18826256
  • Peng Y, Soper TJ, Woodson SA. Positional effects of AAN motifs in rpoS regulation by sRNAs and Hfq. J Mol Biol 2014; 426:275 - 85; http://dx.doi.org/10.1016/j.jmb.2013.08.026; PMID: 24051417
  • Soper TJ, Doxzen K, Woodson SA. Major role for mRNA binding and restructuring in sRNA recruitment by Hfq. RNA 2011; 17:1544 - 50; http://dx.doi.org/10.1261/rna.2767211; PMID: 21705431
  • Hämmerle H, Večerek B, Resch A, Bläsi U. Duplex formation between the sRNA DsrA and rpoS mRNA is not sufficient for efficient RpoS synthesis at low temperature. RNA Biol 2013; 10:1834 - 41; http://dx.doi.org/10.4161/rna.27100; PMID: 24448230
  • Henderson CA, Vincent HA, Casamento A, Stone CM, Phillips JO, Cary PD, Sobott F, Gowers DM, Taylor JE, Callaghan AJ. Hfq binding changes the structure of Escherichia coli small noncoding RNAs OxyS and RprA, which are involved in the riboregulation of rpoS.. RNA 2013; 19:1089 - 104; http://dx.doi.org/10.1261/rna.034595.112; PMID: 23804244
  • Panja S, Schu DJ, Woodson SA. Conserved arginines on the rim of Hfq catalyze base pair formation and exchange. Nucleic Acids Res 2013; 41:7536 - 46; http://dx.doi.org/10.1093/nar/gkt521; PMID: 23771143
  • Mika F, Hengge R. A two-component phosphotransfer network involving ArcB, ArcA, and RssB coordinates synthesis and proteolysis of sigmaS (RpoS) in E. coli.. Genes Dev 2005; 19:2770 - 81; http://dx.doi.org/10.1101/gad.353705; PMID: 16291649
  • Malpica R, Franco B, Rodriguez C, Kwon O, Georgellis D. Identification of a quinone-sensitive redox switch in the ArcB sensor kinase. Proc Natl Acad Sci U S A 2004; 101:13318 - 23; http://dx.doi.org/10.1073/pnas.0403064101; PMID: 15326287
  • Monteiro C, Papenfort K, Hentrich K, Ahmad I, Le Guyon S, Reimann R, Grantcharova N, Römling U. Hfq and Hfq-dependent small RNAs are major contributors to multicellular development in Salmonella enterica serovar Typhimurium.. RNA Biol 2012; 9:489 - 502; http://dx.doi.org/10.4161/rna.19682; PMID: 22336758
  • De Lay N, Gottesman S. A complex network of small non-coding RNAs regulate motility in Escherichia coli.. Mol Microbiol 2012; 86:524 - 38; http://dx.doi.org/10.1111/j.1365-2958.2012.08209.x; PMID: 22925049
  • Sledjeski DD, Gupta A, Gottesman S. The small RNA, DsrA, is essential for the low temperature expression of RpoS during exponential growth in Escherichia coli.. EMBO J 1996; 15:3993 - 4000; PMID: 8670904
  • Repoila F, Gottesman S. Signal transduction cascade for regulation of RpoS: temperature regulation of DsrA. J Bacteriol 2001; 183:4012 - 23; http://dx.doi.org/10.1128/JB.183.13.4012-4023.2001; PMID: 11395466
  • Repoila F, Gottesman S. Temperature sensing by the dsrA promoter. J Bacteriol 2003; 185:6609 - 14; http://dx.doi.org/10.1128/JB.185.22.6609-6614.2003; PMID: 14594834
  • Lease RA, Smith D, McDonough K, Belfort M. The small noncoding DsrA RNA is an acid resistance regulator in Escherichia coli.. J Bacteriol 2004; 186:6179 - 85; http://dx.doi.org/10.1128/JB.186.18.6179-6185.2004; PMID: 15342588
  • Bak G, Han K, Kim D, Lee Y. Roles of rpoS-activating small RNAs in pathways leading to acid resistance of Escherichia coli.. MicrobiologyOpen 2014; 3:15 - 28; http://dx.doi.org/10.1002/mbo3.143; PMID: 24319011
  • Resch A, Većerek B, Palavra K, Bläsi U. Requirement of the CsdA DEAD-box helicase for low temperature riboregulation of rpoS mRNA. RNA Biol 2010; 7:796 - 802; http://dx.doi.org/10.4161/rna.7.6.13768; PMID: 21045550
  • Lease RA, Cusick ME, Belfort M. Riboregulation in Escherichia coli: DsrA RNA acts by RNA:RNA interactions at multiple loci. Proc Natl Acad Sci U S A 1998; 95:12456 - 61; http://dx.doi.org/10.1073/pnas.95.21.12456; PMID: 9770507
  • Barth M, Marschall C, Muffler A, Fischer D, Hengge-Aronis R. Role for the histone-like protein H-NS in growth phase-dependent and osmotic regulation of sigma S and many sigma S-dependent genes in Escherichia coli.. J Bacteriol 1995; 177:3455 - 64; PMID: 7768855
  • Zhou Y, Gottesman S. Modes of regulation of RpoS by H-NS. J Bacteriol 2006; 188:7022 - 5; http://dx.doi.org/10.1128/JB.00687-06; PMID: 16980505
  • Battesti A, Tsegaye YM, Packer DG, Majdalani N, Gottesman S. H-NS regulation of IraD and IraM antiadaptors for control of RpoS degradation. J Bacteriol 2012; 194:2470 - 8; http://dx.doi.org/10.1128/JB.00132-12; PMID: 22408168
  • Ko M, Park C. Two novel flagellar components and H-NS are involved in the motor function of Escherichia coli.. J Mol Biol 2000; 303:371 - 82; http://dx.doi.org/10.1006/jmbi.2000.4147; PMID: 11031114
  • Majdalani N, Chen S, Murrow J, St John K, Gottesman S. Regulation of RpoS by a novel small RNA: the characterization of RprA. Mol Microbiol 2001; 39:1382 - 94; http://dx.doi.org/10.1111/j.1365-2958.2001.02329.x; PMID: 11251852
  • Mika F, Busse S, Possling A, Berkholz J, Tschowri N, Sommerfeldt N, Pruteanu M, Hengge R. Targeting of csgD by the small regulatory RNA RprA links stationary phase, biofilm formation and cell envelope stress in Escherichia coli.. Mol Microbiol 2012; 84:51 - 65; http://dx.doi.org/10.1111/j.1365-2958.2012.08002.x; PMID: 22356413
  • Madhugiri R, Basineni SR, Klug G. Turn-over of the small non-coding RNA RprA in E. coli is influenced by osmolarity. Mol Genet Genomics 2010; 284:307 - 18; http://dx.doi.org/10.1007/s00438-010-0568-x; PMID: 20717695
  • Lange R, Hengge-Aronis R. The cellular concentration of the sigma S subunit of RNA polymerase in Escherichia coli is controlled at the levels of transcription, translation, and protein stability. Genes Dev 1994; 8:1600 - 12; http://dx.doi.org/10.1101/gad.8.13.1600; PMID: 7525405
  • Muffler A, Traulsen DD, Lange R, Hengge-Aronis R. Posttranscriptional osmotic regulation of the sigma(s) subunit of RNA polymerase in Escherichia coli.. J Bacteriol 1996; 178:1607 - 13; PMID: 8626288
  • Heuveling J, Possling A, Hengge R. A role for Lon protease in the control of the acid resistance genes of Escherichia coli.. Mol Microbiol 2008; 69:534 - 47; http://dx.doi.org/10.1111/j.1365-2958.2008.06306.x; PMID: 18630346
  • Vianney A, Jubelin G, Renault S, Dorel C, Lejeune P, Lazzaroni JC. Escherichia coli tol and rcs genes participate in the complex network affecting curli synthesis. Microbiology 2005; 151:2487 - 97; http://dx.doi.org/10.1099/mic.0.27913-0; PMID: 16000739
  • Jørgensen MG, Nielsen JS, Boysen A, Franch T, Møller-Jensen J, Valentin-Hansen P. Small regulatory RNAs control the multi-cellular adhesive lifestyle of Escherichia coli.. Mol Microbiol 2012; 84:36 - 50; http://dx.doi.org/10.1111/j.1365-2958.2012.07976.x; PMID: 22250746
  • Altuvia S, Weinstein-Fischer D, Zhang A, Postow L, Storz G. A small, stable RNA induced by oxidative stress: role as a pleiotropic regulator and antimutator. Cell 1997; 90:43 - 53; http://dx.doi.org/10.1016/S0092-8674(00)80312-8; PMID: 9230301
  • Zhang A, Altuvia S, Tiwari A, Argaman L, Hengge-Aronis R, Storz G. The OxyS regulatory RNA represses rpoS translation and binds the Hfq (HF-I) protein. EMBO J 1998; 17:6061 - 8; http://dx.doi.org/10.1093/emboj/17.20.6061; PMID: 9774349
  • Moon K, Gottesman S. Competition among Hfq-binding small RNAs in Escherichia coli.. Mol Microbiol 2011; 82:1545 - 62; http://dx.doi.org/10.1111/j.1365-2958.2011.07907.x; PMID: 22040174
  • Hussein R, Lim HN. Disruption of small RNA signaling caused by competition for Hfq. Proc Natl Acad Sci U S A 2011; 108:1110 - 5; http://dx.doi.org/10.1073/pnas.1010082108; PMID: 21189298
  • Holmqvist E, Reimegård J, Sterk M, Grantcharova N, Römling U, Wagner EG. Two antisense RNAs target the transcriptional regulator CsgD to inhibit curli synthesis. EMBO J 2010; 29:1840 - 50; http://dx.doi.org/10.1038/emboj.2010.73; PMID: 20407422
  • Thomason MK, Fontaine F, De Lay N, Storz G. A small RNA that regulates motility and biofilm formation in response to changes in nutrient availability in Escherichia coli.. Mol Microbiol 2012; 84:17 - 35; http://dx.doi.org/10.1111/j.1365-2958.2012.07965.x; PMID: 22289118
  • Bouvier M, Sharma CM, Mika F, Nierhaus KH, Vogel J. Small RNA binding to 5′ mRNA coding region inhibits translational initiation. Mol Cell 2008; 32:827 - 37; http://dx.doi.org/10.1016/j.molcel.2008.10.027; PMID: 19111662
  • Jørgensen MG, Thomason MK, Havelund J, Valentin-Hansen P, Storz G. Dual function of the McaS small RNA in controlling biofilm formation. Genes Dev 2013; 27:1132 - 45; http://dx.doi.org/10.1101/gad.214734.113; PMID: 23666921
  • Holmqvist E, Vogel J. A small RNA serving both the Hfq and CsrA regulons. Genes Dev 2013; 27:1073 - 8; http://dx.doi.org/10.1101/gad.220178.113; PMID: 23699406
  • Guillier M, Gottesman S. Remodelling of the Escherichia coli outer membrane by two small regulatory RNAs. Mol Microbiol 2006; 59:231 - 47; http://dx.doi.org/10.1111/j.1365-2958.2005.04929.x; PMID: 16359331
  • Guillier M, Gottesman S. The 5′ end of two redundant sRNAs is involved in the regulation of multiple targets, including their own regulator. Nucleic Acids Res 2008; 36:6781 - 94; http://dx.doi.org/10.1093/nar/gkn742; PMID: 18953042
  • Wassarman KM, Repoila F, Rosenow C, Storz G, Gottesman S. Identification of novel small RNAs using comparative genomics and microarrays. Genes Dev 2001; 15:1637 - 51; http://dx.doi.org/10.1101/gad.901001; PMID: 11445539
  • Urbanowski ML, Stauffer LT, Stauffer GV. The gcvB gene encodes a small untranslated RNA involved in expression of the dipeptide and oligopeptide transport systems in Escherichia coli.. Mol Microbiol 2000; 37:856 - 68; http://dx.doi.org/10.1046/j.1365-2958.2000.02051.x; PMID: 10972807
  • Modi SR, Camacho DM, Kohanski MA, Walker GC, Collins JJ. Functional characterization of bacterial sRNAs using a network biology approach. Proc Natl Acad Sci U S A 2011; 108:15522 - 7; http://dx.doi.org/10.1073/pnas.1104318108; PMID: 21876160
  • Jin Y, Watt RM, Danchin A, Huang JD. Small noncoding RNA GcvB is a novel regulator of acid resistance in Escherichia coli.. BMC Genomics 2009; 10:165; http://dx.doi.org/10.1186/1471-2164-10-165; PMID: 19379489
  • Stauffer LT, Stauffer GV. Antagonistic Roles for GcvA and GcvB in hdeAB Expression in Escherichia coli. ISRN Microbiol 2012; 2012:697308; http://dx.doi.org/10.5402/2012/697308; PMID: 23762759
  • Argaman L, Hershberg R, Vogel J, Bejerano G, Wagner EG, Margalit H, Altuvia S. Novel small RNA-encoding genes in the intergenic regions of Escherichia coli.. Curr Biol 2001; 11:941 - 50; http://dx.doi.org/10.1016/S0960-9822(01)00270-6; PMID: 11448770
  • Sharma CM, Papenfort K, Pernitzsch SR, Mollenkopf HJ, Hinton JC, Vogel J. Pervasive post-transcriptional control of genes involved in amino acid metabolism by the Hfq-dependent GcvB small RNA. Mol Microbiol 2011; 81:1144 - 65; http://dx.doi.org/10.1111/j.1365-2958.2011.07751.x; PMID: 21696468
  • Bordeau V, Felden B. Curli synthesis and biofilm formation in enteric bacteria are controlled by a dynamic small RNA module made up of a pseudoknot assisted by an RNA chaperone. Nucleic Acids Res 2014; 42:4682 - 96; http://dx.doi.org/10.1093/nar/gku098; PMID: 24489123
  • Antal M, Bordeau V, Douchin V, Felden B. A small bacterial RNA regulates a putative ABC transporter. J Biol Chem 2005; 280:7901 - 8; http://dx.doi.org/10.1074/jbc.M413071200; PMID: 15618228
  • Tsui HC, Leung HC, Winkler ME. Characterization of broadly pleiotropic phenotypes caused by an hfq insertion mutation in Escherichia coli K-12. Mol Microbiol 1994; 13:35 - 49; http://dx.doi.org/10.1111/j.1365-2958.1994.tb00400.x; PMID: 7984093
  • Muffler A, Traulsen DD, Fischer D, Lange R, Hengge-Aronis R. The RNA-binding protein HF-I plays a global regulatory role which is largely, but not exclusively, due to its role in expression of the sigmaS subunit of RNA polymerase in Escherichia coli.. J Bacteriol 1997; 179:297 - 300; PMID: 8982015
  • Kröger C, Dillon SC, Cameron AD, Papenfort K, Sivasankaran SK, Hokamp K, Chao Y, Sittka A, Hébrard M, Händler K, et al. The transcriptional landscape and small RNAs of Salmonella enterica serovar Typhimurium.. Proc Natl Acad Sci U S A 2012; 109:E1277 - 86; http://dx.doi.org/10.1073/pnas.1201061109; PMID: 22538806
  • Fröhlich KS, Papenfort K, Berger AA, Vogel J. A conserved RpoS-dependent small RNA controls the synthesis of major porin OmpD. Nucleic Acids Res 2012; 40:3623 - 40; http://dx.doi.org/10.1093/nar/gkr1156; PMID: 22180532
  • Opdyke JA, Kang JG, Storz G. GadY, a small-RNA regulator of acid response genes in Escherichia coli.. J Bacteriol 2004; 186:6698 - 705; http://dx.doi.org/10.1128/JB.186.20.6698-6705.2004; PMID: 15466020
  • Silva IJ, Ortega AD, Viegas SC, García-Del Portillo F, Arraiano CM. An RpoS-dependent sRNA regulates the expression of a chaperone involved in protein folding. RNA 2013; 19:1253 - 65; http://dx.doi.org/10.1261/rna.039537.113; PMID: 23893734
  • Gutierrez A, Laureti L, Crussard S, Abida H, Rodríguez-Rojas A, Blázquez J, Baharoglu Z, Mazel D, Darfeuille F, Vogel J, et al. β-Lactam antibiotics promote bacterial mutagenesis via an RpoS-mediated reduction in replication fidelity. Nat Commun 2013; 4:1610; http://dx.doi.org/10.1038/ncomms2607; PMID: 23511474
  • Tucker DL, Tucker N, Ma Z, Foster JW, Miranda RL, Cohen PS, Conway T. Genes of the GadX-GadW regulon in Escherichia coli.. J Bacteriol 2003; 185:3190 - 201; http://dx.doi.org/10.1128/JB.185.10.3190-3201.2003; PMID: 12730179
  • Opdyke JA, Fozo EM, Hemm MR, Storz G. RNase III participates in GadY-dependent cleavage of the gadX-gadW mRNA. J Mol Biol 2011; 406:29 - 43; http://dx.doi.org/10.1016/j.jmb.2010.12.009; PMID: 21147125
  • Tramonti A, De Canio M, De Biase D. GadX/GadW-dependent regulation of the Escherichia coli acid fitness island: transcriptional control at the gadY-gadW divergent promoters and identification of four novel 42 bp GadX/GadW-specific binding sites. Mol Microbiol 2008; 70:965 - 82; PMID: 18808381
  • Ferbitz L, Maier T, Patzelt H, Bukau B, Deuerling E, Ban N. Trigger factor in complex with the ribosome forms a molecular cradle for nascent proteins. Nature 2004; 431:590 - 6; http://dx.doi.org/10.1038/nature02899; PMID: 15334087
  • Levine E, Zhang Z, Kuhlman T, Hwa T. Quantitative characteristics of gene regulation by small RNA. PLoS Biol 2007; 5:e229; http://dx.doi.org/10.1371/journal.pbio.0050229; PMID: 17713988
  • Battesti A, Gottesman S. Roles of adaptor proteins in regulation of bacterial proteolysis. Curr Opin Microbiol 2013; 16:140 - 7; http://dx.doi.org/10.1016/j.mib.2013.01.002; PMID: 23375660