714
Views
18
CrossRef citations to date
0
Altmetric
Extra View

Ca2+-dependent Ras/Erk signaling mediates negative selection of autoreactive B cells

&
Pages 282-288 | Received 11 Jul 2011, Accepted 18 Aug 2011, Published online: 01 Sep 2011

References

  • Genot E, Cantrell DA. Ras regulation and function in lymphocytes. Curr Opin Immunol 2000; 12:289 - 294; PMID: 10781411; http://dx.doi.org/10.1016/S0952-7915(00)00089-3
  • Kolch W. Coordinating ERK/MAPK signalling through scaffolds and inhibitors. Nat Rev Mol Cell Biol 2005; 6:827 - 837; PMID: 16227978; http://dx.doi.org/10.1038/nrm1743
  • Murphy LO, Blenis J. MAPK signal specificity: the right place at the right time. Trends Biochem Sci 2006; 31:268 - 275; PMID: 16603362; http://dx.doi.org/10.1016/j.tibs.2006.03.009
  • Downward J, Graves JD, Warne PH, Rayter S, Cantrell DA. Stimulation of p21ras upon T-cell activation. Nature 1990; 346:719 - 723; PMID: 2201921; http://dx.doi.org/10.1038/346719a0
  • Roose J, Weiss A. T cells: getting a GRP on Ras. Nat Immunol 2000; 1:275 - 276; PMID: 11017094; http://dx.doi.org/10.1038/79713
  • Aiba Y, Oh-hora M, Kiyonaka S, Kimura Y, Hijikata A, Mori Y, et al. Activation of RasGRP3 by phosphorylation of Thr-133 is required for B cell receptormediated Ras activation. Proc Natl Acad Sci USA 2004; 101:16612 - 16617; PMID: 15545601; http://dx.doi.org/10.1073/pnas.0407468101
  • Oh-hora M, Johmura S, Hashimoto A, Hikida M, Kurosaki T. Requirement for Ras guanine nucleotide releasing protein 3 in coupling phospholipase C-gamma2 to Ras in B cell receptor signaling. J Exp Med 2003; 198:1841 - 1851; PMID: 14676298; http://dx.doi.org/10.1084/jem.20031547
  • Zheng Y, Liu H, Coughlin J, Zheng J, Li L, Stone JC. Phosphorylation of RasGRP3 on threonine 133 provides a mechanistic link between PKC and Ras signaling systems in B cells. Blood 2005; 105:3648 - 3654; PMID: 15657177; http://dx.doi.org/10.1182/blood-2004-10-3916
  • Margarit SM, Sondermann H, Hall BE, Nagar B, Hoelz A, Pirruccello M, et al. Structural evidence for feedback activation by Ras.GTP of the Ras-specific nucleotide exchange factor SOS. Cell 2003; 112:685 - 695; PMID: 12628188; http://dx.doi.org/10.1016/S0092-8674(03)00149-1
  • Das J, Ho M, Zikherman J, Govern C, Yang M, Weiss A, et al. Digital signaling and hysteresis characterize ras activation in lymphoid cells. Cell 2009; 136:337 - 351; PMID: 19167334; http://dx.doi.org/10.1016/j.cell.2008.11.051
  • Roose JP, Mollenauer M, Ho M, Kurosaki T, Weiss A. Unusual interplay of two types of Ras activators, RasGRP and SOS, establishes sensitive and robust Ras activation in lymphocytes. Mol Cell Biol 2007; 27:2732 - 2745; PMID: 17283063; http://dx.doi.org/10.1128/MCB.01882-06
  • Cullen PJ, Lockyer PJ. Integration of calcium and Ras signalling. Nat Rev Mol Cell Biol 2002; 3:339 - 348; PMID: 11988768; http://dx.doi.org/10.1038/nrm808
  • Liou J, Kim ML, Heo WD, Jones JT, Myers JW, Ferrell JE Jr, et al. STIM is a Ca2+ sensor essential for Ca2+-store-depletion-triggered Ca2+ influx. Curr Biol 2005; 15:1235 - 1241; PMID: 16005298; http://dx.doi.org/10.1016/j.cub.2005.05.055
  • Roos J, DiGregorio PJ, Yeromin AV, Ohlsen K, Lioudyno M, Zhang S, et al. STIM1, an essential and conserved component of store-operated Ca2+ channel function. J Cell Biol 2005; 169:435 - 445; PMID: 15866891; http://dx.doi.org/10.1083/jcb.200502019
  • Zhang SL, Yu Y, Roos J, Kozak JA, Deerinck TJ, Ellisman MH, et al. STIM1 is a Ca2+ sensor that activates CRAC channels and migrates from the Ca2+ store to the plasma membrane. Nature 2005; 437:902 - 905; PMID: 16208375; http://dx.doi.org/10.1038/nature04147
  • Baba Y, Hayashi K, Fujii Y, Mizushima A, Watarai H, Wakamori M, et al. Coupling of STIM1 to store-operated Ca2+ entry through its constitutive and inducible movement in the endoplasmic reticulum. Proc Natl Acad Sci USA 2006; 103:16704 - 16709; PMID: 17075073; http://dx.doi.org/10.1073/pnas.0608358103
  • Luik RM, Wu MM, Buchanan J, Lewis RS. The elementary unit of store-operated Ca2+ entry: local activation of CRAC channels by STIM1 at ER-plasma membrane junctions. J Cell Biol 2006; 174:815 - 825; PMID: 16966423; http://dx.doi.org/10.1083/jcb.200604015
  • Wu MM, Buchanan J, Luik RM, Lewis RS. Ca2+ store depletion causes STIM1 to accumulate in ER regions closely associated with the plasma membrane. J Cell Biol 2006; 174:803 - 813; PMID: 16966422; http://dx.doi.org/10.1083/jcb.200604014
  • Spassova MA, Soboloff J, He LP, Xu W, Dziadek MA, Gill DL. STIM1 has a plasma membrane role in the activation of store-operated Ca(2+) channels. Proc Natl Acad Sci USA 2006; 103:4040 - 4045; PMID: 16537481; http://dx.doi.org/10.1073/pnas.0510050103
  • Hauser CT, Tsien RY. A hexahistidine-Zn2+-dye label reveals STIM1 surface exposure. Proc Natl Acad Sci USA 2007; 104:3693 - 3697; PMID: 17360414; http://dx.doi.org/10.1073/pnas.0611713104
  • Liou J, Fivaz M, Inoue T, Meyer T. Live-cell imaging reveals sequential oligomerization and local plasma membrane targeting of stromal interaction molecule 1 after Ca2+ store depletion. Proc Natl Acad Sci USA 2007; 104:9301 - 9306; PMID: 17517596; http://dx.doi.org/10.1073/pnas.0702866104
  • Park CY, Hoover PJ, Mullins FM, Bachhawat P, Covington ED, Raunser S, et al. STIM1 clusters and activates CRAC channels via direct binding of a cytosolic domain to Orai1. Cell 2009; 136:876 - 890; PMID: 19249086; http://dx.doi.org/10.1016/j.cell.2009.02.014
  • Limnander A, Depeille P, Freedman TS, Liou J, Leitges M, Kurosaki T, et al. STIM1, PKCdelta and RasGRP set a threshold for proapoptotic Erk signaling during B cell development. Nat Immunol 2011; 12:425 - 433; PMID: 21441934; http://dx.doi.org/10.1038/ni.2016
  • Roose JP, Mollenauer M, Gupta VA, Stone J, Weiss A. A diacylglycerol-protein kinase C-RasGRP1 pathway directs Ras activation upon antigen receptor stimulation of T cells. Mol Cell Biol 2005; 25:4426 - 4441; PMID: 15899849; http://dx.doi.org/10.1128/MCB.25.11.4426-41.2005
  • Guilbault B, Kay RJ. RasGRP1 sensitizes an immature B cell line to antigen receptor-induced apoptosis. J Biol Chem 2004; 279:19523 - 19530; PMID: 14970203; http://dx.doi.org/10.1074/jbc.M314273200
  • Benschop RJ, Brandl E, Chan AC, Cambier JC. Unique signaling properties of B cell antigen receptor in mature and immature B cells: implications for tolerance and activation. J Immunol 2001; 167:4172 - 4179; PMID: 11591737
  • Gross AJ, Lyandres JR, Panigrahi AK, Prak ET, DeFranco AL. Developmental acquisition of the Lyn-CD22-SHP-1 inhibitory pathway promotes B cell tolerance. J Immunol 2009; 182:5382 - 5392; PMID: 19380785; http://dx.doi.org/10.4049/jimmunol.0803941
  • Hoek KL, Antony P, Lowe J, Shinners N, Sarmah B, Wente SR, et al. Transitional B cell fate is associated with developmental stage-specific regulation of diacylglycerol and calcium signaling upon B cell receptor engagement. J Immunol 2006; 177:5405 - 5413; PMID: 17015726
  • King LB, Norvell A, Monroe JG. Antigen receptor-induced signal transduction imbalances associated with the negative selection of immature B cells. J Immunol 1999; 162:2655 - 2662; PMID: 10072508
  • Perez de Castro I, Bivona TG, Philips MR, Pellicer A. Ras activation in Jurkat T cells following low-grade stimulation of the T-cell receptor is specific to N-Ras and occurs only on the Golgi apparatus. Mol Cell Biol 2004; 24:3485 - 3496; PMID: 15060167; http://dx.doi.org/10.1128/MCB.24.8.3485-96.2004
  • Delgoffe GM, Pollizzi KN, Waickman AT, Heikamp E, Meyers DJ, Horton MR, et al. The kinase mTOR regulates the differentiation of helper T cells through the selective activation of signaling by mTORC1 and mTORC2. Nat Immunol 2011; 12:295 - 303; PMID: 21358638; http://dx.doi.org/10.1038/ni.2005
  • Kim DH, Sarbassov DD, Ali SM, King JE, Latek RR, Erdjument-Bromage H, et al. mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery. Cell 2002; 110:163 - 175; PMID: 12150925; http://dx.doi.org/10.1016/S0092-8674(02)00808-5
  • Sarbassov DD, Ali SM, Kim DH, Guertin DA, Latek RR, Erdjument-Bromage H, et al. Rictor, a novel binding partner of mTOR, defines a rapamycin-insensitive and raptor-independent pathway that regulates the cytoskeleton. Curr Biol 2004; 14:1296 - 1302; PMID: 15268862; http://dx.doi.org/10.1016/j.cub.2004.06.054
  • Therrien M, Wong AM, Kwan E, Rubin GM. Functional analysis of CNK in RAS signaling. Proc Natl Acad Sci USA 1999; 96:13259 - 13263; PMID: 10557308; http://dx.doi.org/10.1073/pnas.96.23.13259
  • Therrien M, Michaud NR, Rubin GM, Morrison DK. KSR modulates signal propagation within the MAPK cascade. Genes Dev 1996; 10:2684 - 2695; PMID: 8946910; http://dx.doi.org/10.1101/gad.10.21.2684
  • Therrien M, Wong AM, Rubin GM. CNK, a RAF-binding multidomain protein required for RAS signaling. Cell 1998; 95:343 - 353; PMID: 9814705; http://dx.doi.org/10.1016/S0092-8674(00)81766-3
  • Schaeffer HJ, Catling AD, Eblen ST, Collier LS, Krauss A, Weber MJ. MP1: a MEK binding partner that enhances enzymatic activation of the MAP kinase cascade. Science 1998; 281:1668 - 1671; PMID: 9733512; http://dx.doi.org/10.1126/science.281.5383.1668
  • Torii S, Kusakabe M, Yamamoto T, Maekawa M, Nishida E. Sef is a spatial regulator for Ras/MAP kinase signaling. Dev Cell 2004; 7:33 - 44; PMID: 15239952; http://dx.doi.org/10.1016/j.devcel.2004.05.019
  • Bivona TG, Perez De Castro I, Ahearn IM, Grana TM, Chiu VK, Lockyer PJ, et al. Phospholipase Cgamma activates Ras on the Golgi apparatus by means of RasGRP1. Nature 2003; 424:694 - 698; PMID: 12845332; http://dx.doi.org/10.1038/nature01806
  • Mor A, Campi G, Du G, Zheng Y, Foster DA, Dustin ML, et al. The lymphocyte function-associated antigen-1 receptor costimulates plasma membrane Ras via phospholipase D2. Nat Cell Biol 2007; 9:713 - 719; PMID: 17486117; http://dx.doi.org/10.1038/ncb1592
  • Tazmini G, Beaulieu N, Woo A, Zahedi B, Goulding RE, Kay RJ. Membrane localization of RasGRP1 is controlled by an EF-hand, and by the GEF domain. Biochim Biophys Acta 2009; 1793:447 - 461; PMID: 19168098
  • Spitaler M, Emslie E, Wood CD, Cantrell D. Diacylglycerol and protein kinase D localization during T lymphocyte activation. Immunity 2006; 24:535 - 546; PMID: 16713972; http://dx.doi.org/10.1016/j.immuni.2006.02.013
  • Quann EJ, Merino E, Furuta T, Huse M. Localized diacylglycerol drives the polarization of the microtubule-organizing center in T cells. Nat Immunol 2009; 10:627 - 635; PMID: 19430478; http://dx.doi.org/10.1038/ni.1734
  • Barr VA, Bernot KM, Shaffer MH, Burkhardt JK, Samelson LE. Formation of STIM and Orai complexes: puncta and distal caps. Immunol Rev 2009; 231:148 - 159; PMID: 19754895; http://dx.doi.org/10.1111/j.1600-065X.2009.00812.x
  • Barr VA, Bernot KM, Srikanth S, Gwack Y, Balagopalan L, Regan CK, et al. Dynamic movement of the calcium sensor STIM1 and the calcium channel Orai1 in activated T-cells: puncta and distal caps. Mol Biol Cell 2008; 19:2802 - 2817; PMID: 18448669; http://dx.doi.org/10.1091/mbc.E08-02-0146
  • Daniels MA, Teixeiro E, Gill J, Hausmann B, Roubaty D, Holmberg K, et al. Thymic selection threshold defined by compartmentalization of Ras/MAPK signalling. Nature 2006; 444:724 - 729; PMID: 17086201; http://dx.doi.org/10.1038/nature05269
  • Patterson KI, Brummer T, O'Brien PM, Daly RJ. Dual-specificity phosphatases: critical regulators with diverse cellular targets. Biochem J 2009; 418:475 - 489; PMID: 19228121
  • Chi H, Barry SP, Roth RJ, Wu JJ, Jones EA, Bennett AM, et al. Dynamic regulation of pro- and anti-inflammatory cytokines by MAPK phosphatase 1 (MKP-1) in innate immune responses. Proc Natl Acad Sci USA 2006; 103:2274 - 2279; PMID: 16461893; http://dx.doi.org/10.1073/pnas.0510965103
  • Hammer M, Mages J, Dietrich H, Servatius A, Howells N, Cato AC, et al. Dual specificity phosphatase 1 (DUSP1) regulates a subset of LPS-induced genes and protects mice from lethal endotoxin shock. J Exp Med 2006; 203:15 - 20; PMID: 16380512; http://dx.doi.org/10.1084/jem.20051753
  • Jeffrey KL, Brummer T, Rolph MS, Liu SM, Callejas NA, Grumont RJ, et al. Positive regulation of immune cell function and inflammatory responses by phosphatase PAC-1. Nat Immunol 2006; 7:274 - 283; PMID: 16474395; http://dx.doi.org/10.1038/ni1310
  • Lang R, Hammer M, Mages J. DUSP meet immunology: dual specificity MAPK phosphatases in control of the inflammatory response. J Immunol 2006; 177:7497 - 7504; PMID: 17114416
  • Salojin KV, Owusu IB, Millerchip KA, Potter M, Platt KA, Oravecz T. Essential role of MAPK phosphatase-1 in the negative control of innate immune responses. J Immunol 2006; 176:1899 - 1907; PMID: 16424221
  • Zhang Y, Blattman JN, Kennedy NJ, Duong J, Nguyen T, Wang Y, et al. Regulation of innate and adaptive immune responses by MAP kinase phosphatase 5. Nature 2004; 430:793 - 797; PMID: 15306813; http://dx.doi.org/10.1038/nature02764
  • Zhao Q, Wang X, Nelin LD, Yao Y, Matta R, Manson ME, et al. MAP kinase phosphatase 1 controls innate immune responses and suppresses endotoxic shock. J Exp Med 2006; 203:131 - 140; PMID: 16380513; http://dx.doi.org/10.1084/jem.20051794
  • Mecklenbräuker I, Saijo K, Zheng NY, Leitges M, Tarakhovsky A. Protein kinase Cdelta controls self-antigen-induced B-cell tolerance. Nature 2002; 416:860 - 865; PMID: 11976686; http://dx.doi.org/10.1038/416860a
  • Coughlin JJ, Stang SL, Dower NA, Stone JC. RasGRP1 and RasGRP3 regulate B cell proliferation by facilitating B cell receptor-Ras signaling. J Immunol 2005; 175:7179 - 7184; PMID: 16301621
  • Dower NA, Stang SL, Bottorff DA, Ebinu JO, Dickie P, Ostergaard HL, et al. RasGRP is essential for mouse thymocyte differentiation and TCR signaling. Nat Immunol 2000; 1:317 - 321; PMID: 11017103; http://dx.doi.org/10.1038/80799
  • Layer K, Lin G, Nencioni A, Hu W, Schmucker A, Antov AN, et al. Autoimmunity as the consequence of a spontaneous mutation in Rasgrp1. Immunity 2003; 19:243 - 255; PMID: 12932358; http://dx.doi.org/10.1016/S1074-7613(03)00209-7
  • Rebhun JF, Castro AF, Quilliam LA. Identification of guanine nucleotide exchange factors (GEFs) for the Rap1 GTPase. Regulation of MR-GEF by M-Ras-GTP interaction. J Biol Chem 2000; 275:34901 - 34908; PMID: 10934204; http://dx.doi.org/10.1074/jbc.M005327200
  • Stope MB, Vom Dorp F, Szatkowski D, Bohm A, Keiper M, Nolte J, et al. Rap2B-dependent stimulation of phospholipase C-epsilon by epidermal growth factor receptor mediated by c-Src phosphorylation of RasGRP3. Mol Cell Biol 2004; 24:4664 - 4676; PMID: 15143162; http://dx.doi.org/10.1128/MCB.24.11.4664-76.2004
  • Cagnol S, Chambard JC. ERK and cell death: mechanisms of ERK-induced cell death-apoptosis, autophagy and senescence. FEBS J 2010; 277:2 - 21; PMID: 19843174; http://dx.doi.org/10.1111/j.1742-4658.2009.07366.x
  • Cheung EC, Slack RS. Emerging role for ERK as a key regulator of neuronal apoptosis. Sci STKE 2004; 2004:45
  • Subramaniam S, Zirrgiebel U, von Bohlen, Und Halbach O, Strelau J, Laliberte C, et al. ERK activation promotes neuronal degeneration predominantly through plasma membrane damage and independently of caspase-3. J Cell Biol 2004; 165:357 - 369; PMID: 15123736; http://dx.doi.org/10.1083/jcb.200403028
  • Fam NP, Fan WT, Wang Z, Zhang LJ, Chen H, Moran MF. Cloning and characterization of Ras-GRF2, a novel guanine nucleotide exchange factor for Ras. Mol Cell Biol 1997; 17:1396 - 1406; PMID: 9032266
  • Farnsworth CL, Freshney NW, Rosen LB, Ghosh A, Greenberg ME, Feig LA. Calcium activation of Ras mediated by neuronal exchange factor Ras-GRF. Nature 1995; 376:524 - 527; PMID: 7637786; http://dx.doi.org/10.1038/376524a0