1,189
Views
2
CrossRef citations to date
0
Altmetric
Commentary

The scat mouse model highlights RASA3, a GTPase activating protein, as a key regulator of vertebrate erythropoiesis and megakaryopoiesis

, &
Pages 47-50 | Received 28 Oct 2012, Accepted 27 Nov 2012, Published online: 06 Dec 2012

References

  • Paigen K. One hundred years of mouse genetics: an intellectual history. II. The molecular revolution (1981-2002). Genetics 2003; 163:1227 - 35; PMID: 12702670
  • Paigen K. One hundred years of mouse genetics: an intellectual history. I. The classical period (1902-1980). Genetics 2003; 163:1 - 7; PMID: 12586691
  • Peters LL, Barker JE. Spontaneous and targeted mutations in erythrocyte membrane skeleton genes: mouse models of hereditary spherocytosis. In: Zon LI, ed. Hematopoiesis: Oxford University Press, 2001:582-608.
  • Peters LL, McFarland-Starr EC, Wood BG, Barker JE. Heritable severe combined anemia and thrombocytopenia in the mouse: description of the disease and successful therapy. Blood 1990; 76:745 - 54; PMID: 2383655
  • Iwashita S, Kobayashi M, Kubo Y, Hinohara Y, Sezaki M, Nakamura K, et al. Versatile roles of R-Ras GAP in neurite formation of PC12 cells and embryonic vascular development. J Biol Chem 2007; 282:3413 - 7; http://dx.doi.org/10.1074/jbc.C600293200; PMID: 17179160
  • Blanc L, Ciciotte SL, Gwynn B, Hildick-Smith GJ, Pierce EL, Soltis KA, et al. Critical function for the Ras-GTPase activating protein RASA3 in vertebrate erythropoiesis and megakaryopoiesis. Proc Natl Acad Sci U S A 2012; 109:12099 - 104; http://dx.doi.org/10.1073/pnas.1204948109; PMID: 22773809
  • Peters LL, Barker JE. Novel inheritance of the murine severe combined anemia and thrombocytopenia (Scat) phenotype. Cell 1993; 74:135 - 42; http://dx.doi.org/10.1016/0092-8674(93)90301-6; PMID: 8334700
  • Yarwood S, Bouyoucef-Cherchalli D, Cullen PJ, Kupzig S. The GAP1 family of GTPase-activating proteins: spatial and temporal regulators of small GTPase signalling. Biochem Soc Trans 2006; 34:846 - 50; http://dx.doi.org/10.1042/BST0340846; PMID: 17052212
  • Fukuda M, Mikoshiba K. Structure-function relationships of the mouse Gap1m. Determination of the inositol 1,3,4,5-tetrakisphosphate-binding domain. J Biol Chem 1996; 271:18838 - 42; http://dx.doi.org/10.1074/jbc.271.31.18838; PMID: 8702543
  • Kupzig S, Deaconescu D, Bouyoucef D, Walker SA, Liu Q, Polte CL, et al. GAP1 family members constitute bifunctional Ras and Rap GTPase-activating proteins. J Biol Chem 2006; 281:9891 - 900; http://dx.doi.org/10.1074/jbc.M512802200; PMID: 16431904
  • Cozier GE, Lockyer PJ, Reynolds JS, Kupzig S, Bottomley JR, Millard TH, et al. GAP1IP4BP contains a novel group I pleckstrin homology domain that directs constitutive plasma membrane association. J Biol Chem 2000; 275:28261 - 8; PMID: 10869341
  • Cullen PJ, Hsuan JJ, Truong O, Letcher AJ, Jackson TR, Dawson AP, et al. Identification of a specific Ins(1,3,4,5)P4-binding protein as a member of the GAP1 family. Nature 1995; 376:527 - 30; http://dx.doi.org/10.1038/376527a0; PMID: 7637787
  • Lockyer PJ, Bottomley JR, Reynolds JS, McNulty TJ, Venkateswarlu K, Potter BV, et al. Distinct subcellular localisations of the putative inositol 1,3,4,5-tetrakisphosphate receptors GAP1IP4BP and GAP1m result from the GAP1IP4BP PH domain directing plasma membrane targeting. Curr Biol 1997; 7:1007 - 10; http://dx.doi.org/10.1016/S0960-9822(06)00423-4; PMID: 9382842
  • Bos JL, Rehmann H, Wittinghofer A. GEFs and GAPs: critical elements in the control of small G proteins. Cell 2007; 129:865 - 77; http://dx.doi.org/10.1016/j.cell.2007.05.018; PMID: 17540168
  • Cozier G, Sessions R, Bottomley JR, Reynolds JS, Cullen PJ. Molecular modelling and site-directed mutagenesis of the inositol 1,3,4,5-tetrakisphosphate-binding pleckstrin homology domain from the Ras GTPase-activating protein GAP1IP4BP. Biochem J 2000; 349:333 - 42; http://dx.doi.org/10.1042/0264-6021:3490333; PMID: 10861245
  • Chen Y, Yu M, Podd A, Wen R, Chrzanowska-Wodnicka M, White GC, et al. A critical role of Rap1b in B-cell trafficking and marginal zone B-cell development. Blood 2008; 111:4627 - 36; http://dx.doi.org/10.1182/blood-2007-12-128140; PMID: 18319399
  • Li Y, Yan J, De P, Chang HC, Yamauchi A, Christopherson KW 2nd, et al. Rap1a null mice have altered myeloid cell functions suggesting distinct roles for the closely related Rap1a and 1b proteins. J Immunol 2007; 180:8322 - 31; PMID: 18056377
  • Blanc L, Vidal M. Reticulocyte membrane remodeling: contribution of the exosome pathway. Curr Opin Hematol 2010; 17:177 - 83; PMID: 20173636
  • Johnstone RM. Revisiting the road to the discovery of exosomes. Blood Cells Mol Dis 2005; 34:214 - 9; http://dx.doi.org/10.1016/j.bcmd.2005.03.002; PMID: 15885604
  • Pan BT, Johnstone RM. Fate of the transferrin receptor during maturation of sheep reticulocytes in vitro: selective externalization of the receptor. Cell 1983; 33:967 - 78; http://dx.doi.org/10.1016/0092-8674(83)90040-5; PMID: 6307529
  • Buschow SI, Liefhebber JM, Wubbolts R, Stoorvogel W. Exosomes contain ubiquitinated proteins. Blood Cells Mol Dis 2005; 35:398 - 403; http://dx.doi.org/10.1016/j.bcmd.2005.08.005; PMID: 16203162
  • Katzmann DJ, Babst M, Emr SD. Ubiquitin-dependent sorting into the multivesicular body pathway requires the function of a conserved endosomal protein sorting complex, ESCRT-I. Cell 2001; 106:145 - 55; http://dx.doi.org/10.1016/S0092-8674(01)00434-2; PMID: 11511343
  • Stringer DK, Piper RC. A single ubiquitin is sufficient for cargo protein entry into MVBs in the absence of ESCRT ubiquitination. J Cell Biol 2011; 192:229 - 42; http://dx.doi.org/10.1083/jcb.201008121; PMID: 21242292
  • Kim W, Bennett EJ, Huttlin EL, Guo A, Li J, Possemato A, et al. Systematic and quantitative assessment of the ubiquitin-modified proteome. Mol Cell 2011; 44:325 - 40; http://dx.doi.org/10.1016/j.molcel.2011.08.025; PMID: 21906983
  • Clague MJ, Urbé S. Ubiquitin: same molecule, different degradation pathways. Cell 2010; 143:682 - 5; http://dx.doi.org/10.1016/j.cell.2010.11.012; PMID: 21111229
  • Ciehanover A, Hod Y, Hershko A. A heat-stable polypeptide component of an ATP-dependent proteolytic system from reticulocytes. Biochem Biophys Res Commun 1978; 81:1100 - 5; http://dx.doi.org/10.1016/0006-291X(78)91249-4; PMID: 666810
  • Liu J, Guo X, Mohandas N, Chasis JA, An X. Membrane remodeling during reticulocyte maturation. Blood 2010; 115:2021 - 7; http://dx.doi.org/10.1182/blood-2009-08-241182; PMID: 20038785
  • Jagadeeswaran P, Sheehan JP, Craig FE, Troyer D. Identification and characterization of zebrafish thrombocytes. Br J Haematol 1999; 107:731 - 8; http://dx.doi.org/10.1046/j.1365-2141.1999.01763.x; PMID: 10606877
  • Paulson RF, Shi L, Wu DC. Stress erythropoiesis: new signals and new stress progenitor cells. Curr Opin Hematol 2011; 18:139 - 45; http://dx.doi.org/10.1097/MOH.0b013e32834521c8; PMID: 21372709
  • Tsangaris E, Klaassen R, Fernandez CV, Yanofsky R, Shereck E, Champagne J, et al. Genetic analysis of inherited bone marrow failure syndromes from one prospective, comprehensive and population-based cohort and identification of novel mutations. J Med Genet 2011; 48:618 - 28; http://dx.doi.org/10.1136/jmg.2011.089821; PMID: 21659346

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.