5,013
Views
136
CrossRef citations to date
0
Altmetric
Review

P21 activated kinases

Structure, regulation, and functions

&
Article: e28003 | Received 07 Oct 2013, Accepted 27 Jan 2014, Published online: 21 Mar 2014

References

  • Daniels RH, Bokoch GM. p21-activated protein kinase: a crucial component of morphological signaling?. Trends Biochem Sci 1999; 24:350 - 5; http://dx.doi.org/10.1016/S0968-0004(99)01442-5; PMID: 10470034
  • Knaus UG, Bokoch GM. The p21Rac/Cdc42-activated kinases (PAKs). Int J Biochem Cell Biol 1998; 30:857 - 62; http://dx.doi.org/10.1016/S1357-2725(98)00059-4; PMID: 9744077
  • Sells MA, Chernoff J. Emerging from the Pak: the p21-activated protein kinase family. Trends Cell Biol 1997; 7:162 - 7; http://dx.doi.org/10.1016/S0962-8924(97)01003-9; PMID: 17708935
  • Manser E, Leung T, Salihuddin H, Zhao ZS, Lim L. A brain serine/threonine protein kinase activated by Cdc42 and Rac1. Nature 1994; 367:40 - 6; http://dx.doi.org/10.1038/367040a0; PMID: 8107774
  • Whale A, Hashim FN, Fram S, Jones GE, Wells CM. Signalling to cancer cell invasion through PAK family kinases. Front Biosci (Landmark Ed) 2011; 16:849 - 64; http://dx.doi.org/10.2741/3724; PMID: 21196207
  • Abo A, Qu J, Cammarano MS, Dan C, Fritsch A, Baud V, Belisle B, Minden A. PAK4, a novel effector for Cdc42Hs, is implicated in the reorganization of the actin cytoskeleton and in the formation of filopodia. EMBO J 1998; 17:6527 - 40; http://dx.doi.org/10.1093/emboj/17.22.6527; PMID: 9822598
  • Dan C, Kelly A, Bernard O, Minden A. Cytoskeletal changes regulated by the PAK4 serine/threonine kinase are mediated by LIM kinase 1 and cofilin. J Biol Chem 2001; 276:32115 - 21; http://dx.doi.org/10.1074/jbc.M100871200; PMID: 11413130
  • Qu J, Cammarano MS, Shi Q, Ha KC, de Lanerolle P, Minden A. Activated PAK4 regulates cell adhesion and anchorage-independent growth. Mol Cell Biol 2001; 21:3523 - 33; http://dx.doi.org/10.1128/MCB.21.10.3523-3533.2001; PMID: 11313478
  • Dan C, Nath N, Liberto M, Minden A. PAK5, a new brain-specific kinase, promotes neurite outgrowth in N1E-115 cells. Mol Cell Biol 2002; 22:567 - 77; http://dx.doi.org/10.1128/MCB.22.2.567-577.2002; PMID: 11756552
  • Pandey A, Dan I, Kristiansen TZ, Watanabe NM, Voldby J, Kajikawa E, Khosravi-Far R, Blagoev B, Mann M. Cloning and characterization of PAK5, a novel member of mammalian p21-activated kinase-II subfamily that is predominantly expressed in brain. Oncogene 2002; 21:3939 - 48; http://dx.doi.org/10.1038/sj.onc.1205478; PMID: 12032833
  • Yang F, Li X, Sharma M, Zarnegar M, Lim B, Sun Z. Androgen receptor specifically interacts with a novel p21-activated kinase, PAK6. J Biol Chem 2001; 276:15345 - 53; http://dx.doi.org/10.1074/jbc.M010311200; PMID: 11278661
  • Callow MG, Clairvoyant F, Zhu S, Schryver B, Whyte DB, Bischoff JR, Jallal B, Smeal T. Requirement for PAK4 in the anchorage-independent growth of human cancer cell lines. J Biol Chem 2002; 277:550 - 8; http://dx.doi.org/10.1074/jbc.M105732200; PMID: 11668177
  • Lee SR, Ramos SM, Ko A, Masiello D, Swanson KD, Lu ML, Balk SP. AR and ER interaction with a p21-activated kinase (PAK6). Mol Endocrinol 2002; 16:85 - 99; http://dx.doi.org/10.1210/mend.16.1.0753; PMID: 11773441
  • Schrantz N, da Silva Correia J, Fowler B, Ge Q, Sun Z, Bokoch GM. Mechanism of p21-activated kinase 6-mediated inhibition of androgen receptor signaling. J Biol Chem 2004; 279:1922 - 31; http://dx.doi.org/10.1074/jbc.M311145200; PMID: 14573606
  • Baskaran Y, Ng YW, Selamat W, Ling FT, Manser E. Group I and II mammalian PAKs have different modes of activation by Cdc42. EMBO Rep 2012; 13:653 - 9; http://dx.doi.org/10.1038/embor.2012.75; PMID: 22653441
  • Radu M, Semenova G, Kosoff R, Chernoff J. PAK signalling during the development and progression of cancer. Nat Rev Cancer 2014; 14:13 - 25; http://dx.doi.org/10.1038/nrc3645; PMID: 24505617
  • Pirruccello M, Sondermann H, Pelton JG, Pellicena P, Hoelz A, Chernoff J, Wemmer DE, Kuriyan J. A dimeric kinase assembly underlying autophosphorylation in the p21 activated kinases. J Mol Biol 2006; 361:312 - 26; http://dx.doi.org/10.1016/j.jmb.2006.06.017; PMID: 16837009
  • Zhao ZS, Manser E. PAK family kinases: Physiological roles and regulation. Cell Logist 2012; 2:59 - 68; http://dx.doi.org/10.4161/cl.21912; PMID: 23162738
  • Lei M, Lu W, Meng W, Parrini MC, Eck MJ, Mayer BJ, Harrison SC. Structure of PAK1 in an autoinhibited conformation reveals a multistage activation switch. Cell 2000; 102:387 - 97; http://dx.doi.org/10.1016/S0092-8674(00)00043-X; PMID: 10975528
  • Buchwald G, Hostinova E, Rudolph MG, Kraemer A, Sickmann A, Meyer HE, Scheffzek K, Wittinghofer A. Conformational switch and role of phosphorylation in PAK activation. Mol Cell Biol 2001; 21:5179 - 89; http://dx.doi.org/10.1128/MCB.21.15.5179-5189.2001; PMID: 11438672
  • Bokoch GM. Biology of the p21-activated kinases. Annu Rev Biochem 2003; 72:743 - 81; http://dx.doi.org/10.1146/annurev.biochem.72.121801.161742; PMID: 12676796
  • Parrini MC, Lei M, Harrison SC, Mayer BJ. Pak1 kinase homodimers are autoinhibited in trans and dissociated upon activation by Cdc42 and Rac1. Mol Cell 2002; 9:73 - 83; http://dx.doi.org/10.1016/S1097-2765(01)00428-2; PMID: 11804587
  • Ching YP, Leong VY, Wong CM, Kung HF. Identification of an autoinhibitory domain of p21-activated protein kinase 5. J Biol Chem 2003; 278:33621 - 4; http://dx.doi.org/10.1074/jbc.C300234200; PMID: 12860998
  • Ha BH, Davis MJ, Chen C, Lou HJ, Gao J, Zhang R, Krauthammer M, Halaban R, Schlessinger J, Turk BE, et al. Type II p21-activated kinases (PAKs) are regulated by an autoinhibitory pseudosubstrate. Proc Natl Acad Sci U S A 2012; 109:16107 - 12; http://dx.doi.org/10.1073/pnas.1214447109; PMID: 22988085
  • Manser E, Loo TH, Koh CG, Zhao ZS, Chen XQ, Tan L, Tan I, Leung T, Lim L. PAK kinases are directly coupled to the PIX family of nucleotide exchange factors. Mol Cell 1998; 1:183 - 92; http://dx.doi.org/10.1016/S1097-2765(00)80019-2; PMID: 9659915
  • Obermeier A, Ahmed S, Manser E, Yen SC, Hall C, Lim L. PAK promotes morphological changes by acting upstream of Rac. EMBO J 1998; 17:4328 - 39; http://dx.doi.org/10.1093/emboj/17.15.4328; PMID: 9687501
  • Loo T-H, Ng Y-W, Lim L, Manser E. GIT1 activates p21-activated kinase through a mechanism independent of p21 binding. Mol Cell Biol 2004; 24:3849 - 59; http://dx.doi.org/10.1128/MCB.24.9.3849-3859.2004; PMID: 15082779
  • Zhao ZS, Lim JP, Ng YW, Lim L, Manser E. The GIT-associated kinase PAK targets to the centrosome and regulates Aurora-A. Mol Cell 2005; 20:237 - 49; http://dx.doi.org/10.1016/j.molcel.2005.08.035; PMID: 16246726
  • Wells CM, Abo A, Ridley AJ. PAK4 is activated via PI3K in HGF-stimulated epithelial cells. J Cell Sci 2002; 115:3947 - 56; http://dx.doi.org/10.1242/jcs.00080; PMID: 12244132
  • Lu Y, Pan ZZ, Devaux Y, Ray P. p21-activated protein kinase 4 (PAK4) interacts with the keratinocyte growth factor receptor and participates in keratinocyte growth factor-mediated inhibition of oxidant-induced cell death. J Biol Chem 2003; 278:10374 - 80; http://dx.doi.org/10.1074/jbc.M205875200; PMID: 12529371
  • Ramos E, Wysolmerski RB, Masaracchia RA. Myosin phosphorylation by human cdc42-dependent S6/H4 kinase/gammaPAK from placenta and lymphoid cells. Recept Signal Transduct 1997; 7:99 - 110; PMID: 9392438
  • Van Eyk JE, Arrell DK, Foster DB, Strauss JD, Heinonen TY, Furmaniak-Kazmierczak E, Côté GP, Mak AS. Different molecular mechanisms for Rho family GTPase-dependent, Ca2+-independent contraction of smooth muscle. J Biol Chem 1998; 273:23433 - 9; http://dx.doi.org/10.1074/jbc.273.36.23433; PMID: 9722579
  • Szczepanowska J. Involvement of Rac/Cdc42/PAK pathway in cytoskeletal rearrangements.. Acta Biochim Pol 2009; 56:225 - 34; PMID: 19513348
  • Chew TL, Masaracchia RA, Goeckeler ZM, Wysolmerski RB. Phosphorylation of non-muscle myosin II regulatory light chain by p21-activated kinase (gamma-PAK). J Muscle Res Cell Motil 1998; 19:839 - 54; http://dx.doi.org/10.1023/A:1005417926585; PMID: 10047984
  • Zhang H, Webb DJ, Asmussen H, Niu S, Horwitz AF. A GIT1/PIX/Rac/PAK signaling module regulates spine morphogenesis and synapse formation through MLC. J Neurosci 2005; 25:3379 - 88; http://dx.doi.org/10.1523/JNEUROSCI.3553-04.2005; PMID: 15800193
  • Buss F, Kendrick-Jones J, Lionne C, Knight AE, Côté GP, Paul Luzio J. The localization of myosin VI at the golgi complex and leading edge of fibroblasts and its phosphorylation and recruitment into membrane ruffles of A431 cells after growth factor stimulation. J Cell Biol 1998; 143:1535 - 45; http://dx.doi.org/10.1083/jcb.143.6.1535; PMID: 9852149
  • Sanders LC, Matsumura F, Bokoch GM, de Lanerolle P. Inhibition of myosin light chain kinase by p21-activated kinase. Science 1999; 283:2083 - 5; http://dx.doi.org/10.1126/science.283.5410.2083; PMID: 10092231
  • Goeckeler ZM, Masaracchia RA, Zeng Q, Chew TL, Gallagher P, Wysolmerski RB. Phosphorylation of myosin light chain kinase by p21-activated kinase PAK2. J Biol Chem 2000; 275:18366 - 74; http://dx.doi.org/10.1074/jbc.M001339200; PMID: 10748018
  • Callow MG, Zozulya S, Gishizky ML, Jallal B, Smeal T. PAK4 mediates morphological changes through the regulation of GEF-H1. J Cell Sci 2005; 118:1861 - 72; http://dx.doi.org/10.1242/jcs.02313; PMID: 15827085
  • Zenke FT, Krendel M, DerMardirossian C, King CC, Bohl BP, Bokoch GM. p21-activated kinase 1 phosphorylates and regulates 14-3-3 binding to GEF-H1, a microtubule-localized Rho exchange factor. J Biol Chem 2004; 279:18392 - 400; http://dx.doi.org/10.1074/jbc.M400084200; PMID: 14970201
  • Edwards DC, Sanders LC, Bokoch GM, Gill GN. Activation of LIM-kinase by Pak1 couples Rac/Cdc42 GTPase signalling to actin cytoskeletal dynamics. Nat Cell Biol 1999; 1:253 - 9; http://dx.doi.org/10.1038/12963; PMID: 10559936
  • Arber S, Barbayannis FA, Hanser H, Schneider C, Stanyon CA, Bernard O, Caroni P. Regulation of actin dynamics through phosphorylation of cofilin by LIM-kinase. Nature 1998; 393:805 - 9; http://dx.doi.org/10.1038/31729; PMID: 9655397
  • Yang N, Higuchi O, Ohashi K, Nagata K, Wada A, Kangawa K, Nishida E, Mizuno K. Cofilin phosphorylation by LIM-kinase 1 and its role in Rac-mediated actin reorganization. Nature 1998; 393:809 - 12; http://dx.doi.org/10.1038/31735; PMID: 9655398
  • Soosairajah J, Maiti S, Wiggan O, Sarmiere P, Moussi N, Sarcevic B, Sampath R, Bamburg JR, Bernard O. Interplay between components of a novel LIM kinase-slingshot phosphatase complex regulates cofilin. EMBO J 2005; 24:473 - 86; http://dx.doi.org/10.1038/sj.emboj.7600543; PMID: 15660133
  • Li X, Ke Q, Li Y, Liu F, Zhu G, Li F. DGCR6L, a novel PAK4 interaction protein, regulates PAK4-mediated migration of human gastric cancer cell via LIMK1. Int J Biochem Cell Biol 2010; 42:70 - 9; http://dx.doi.org/10.1016/j.biocel.2009.09.008; PMID: 19778628
  • Vadlamudi RK, Li F, Adam L, Nguyen D, Ohta Y, Stossel TP, Kumar R. Filamin is essential in actin cytoskeletal assembly mediated by p21-activated kinase 1. Nat Cell Biol 2002; 4:681 - 90; http://dx.doi.org/10.1038/ncb838; PMID: 12198493
  • Dummler B, Ohshiro K, Kumar R, Field J. Pak protein kinases and their role in cancer. Cancer Metastasis Rev 2009; 28:51 - 63; http://dx.doi.org/10.1007/s10555-008-9168-1; PMID: 19165420
  • Maroto B, Ye MB, von Lohneysen K, Schnelzer A, Knaus UG. P21-activated kinase is required for mitotic progression and regulates Plk1. Oncogene 2008; 27:4900 - 8; http://dx.doi.org/10.1038/onc.2008.131; PMID: 18427546
  • Vadlamudi RK, Adam L, Wang RA, Mandal M, Nguyen D, Sahin A, Chernoff J, Hung MC, Kumar R. Regulatable expression of p21-activated kinase-1 promotes anchorage-independent growth and abnormal organization of mitotic spindles in human epithelial breast cancer cells. J Biol Chem 2000; 275:36238 - 44; http://dx.doi.org/10.1074/jbc.M002138200; PMID: 10945974
  • Daub H, Gevaert K, Vandekerckhove J, Sobel A, Hall A. Rac/Cdc42 and p65PAK regulate the microtubule-destabilizing protein stathmin through phosphorylation at serine 16. J Biol Chem 2001; 276:1677 - 80; http://dx.doi.org/10.1074/jbc.C000635200; PMID: 11058583
  • Bompard G, Rabeharivelo G, Frank M, Cau J, Delsert C, Morin N. Subgroup II PAK-mediated phosphorylation regulates Ran activity during mitosis. J Cell Biol 2010; 190:807 - 22; http://dx.doi.org/10.1083/jcb.200912056; PMID: 20805321
  • Wong LE, Reynolds AB, Dissanayaka NT, Minden A. p120-catenin is a binding partner and substrate for Group B Pak kinases. J Cell Biochem 2010; 110:1244 - 54; http://dx.doi.org/10.1002/jcb.22639; PMID: 20564219
  • Dohn MR, Brown MV, Reynolds AB. An essential role for p120-catenin in Src- and Rac1-mediated anchorage-independent cell growth. J Cell Biol 2009; 184:437 - 50; http://dx.doi.org/10.1083/jcb.200807096; PMID: 19188496
  • Li Z, Zhang H, Lundin L, Thullberg M, Liu Y, Wang Y, Claesson-Welsh L, Strömblad S. p21-activated kinase 4 phosphorylation of integrin beta5 Ser-759 and Ser-762 regulates cell migration. J Biol Chem 2010; 285:23699 - 710; http://dx.doi.org/10.1074/jbc.M110.123497; PMID: 20507994
  • Hoefen RJ, Berk BC. The multifunctional GIT family of proteins. J Cell Sci 2006; 119:1469 - 75; http://dx.doi.org/10.1242/jcs.02925; PMID: 16598076
  • Bentley D, O’Connor TP. Cytoskeletal events in growth cone steering. Curr Opin Neurobiol 1994; 4:43 - 8; http://dx.doi.org/10.1016/0959-4388(94)90030-2; PMID: 8173324
  • Mueller BK. Growth cone guidance: first steps towards a deeper understanding. Annu Rev Neurosci 1999; 22:351 - 88; http://dx.doi.org/10.1146/annurev.neuro.22.1.351; PMID: 10202543
  • Suter DM, Forscher P. An emerging link between cytoskeletal dynamics and cell adhesion molecules in growth cone guidance. Curr Opin Neurobiol 1998; 8:106 - 16; http://dx.doi.org/10.1016/S0959-4388(98)80014-7; PMID: 9568398
  • Brown MD, Cornejo BJ, Kuhn TB, Bamburg JR. Cdc42 stimulates neurite outgrowth and formation of growth cone filopodia and lamellipodia. J Neurobiol 2000; 43:352 - 64; http://dx.doi.org/10.1002/1097-4695(20000615)43:4<352::AID-NEU4>3.0.CO;2-T; PMID: 10861561
  • Luo L, Liao YJ, Jan LY, Jan YN. Distinct morphogenetic functions of similar small GTPases: Drosophila Drac1 is involved in axonal outgrowth and myoblast fusion. Genes Dev 1994; 8:1787 - 802; http://dx.doi.org/10.1101/gad.8.15.1787; PMID: 7958857
  • Daniels RH, Hall PS, Bokoch GM. Membrane targeting of p21-activated kinase 1 (PAK1) induces neurite outgrowth from PC12 cells. EMBO J 1998; 17:754 - 64; http://dx.doi.org/10.1093/emboj/17.3.754; PMID: 9451000
  • Kaufmann N, Wills ZP, Van Vactor D. Drosophila Rac1 controls motor axon guidance. Development 1998; 125:453 - 61; PMID: 9425140
  • Lamoureux P, Altun-Gultekin ZF, Lin C, Wagner JA, Heidemann SR. Rac is required for growth cone function but not neurite assembly. J Cell Sci 1997; 110:635 - 41; PMID: 9092945
  • Steven R, Kubiseski TJ, Zheng H, Kulkarni S, Mancillas J, Ruiz Morales A, Hogue CW, Pawson T, Culotti J. UNC-73 activates the Rac GTPase and is required for cell and growth cone migrations in C. elegans. Cell 1998; 92:785 - 95; http://dx.doi.org/10.1016/S0092-8674(00)81406-3; PMID: 9529254
  • Zipkin ID, Kindt RM, Kenyon CJ. Role of a new Rho family member in cell migration and axon guidance in C. elegans. Cell 1997; 90:883 - 94; http://dx.doi.org/10.1016/S0092-8674(00)80353-0; PMID: 9298900
  • Harden N, Lee J, Loh HY, Ong YM, Tan I, Leung T, Manser E, Lim L. A Drosophila homolog of the Rac- and Cdc42-activated serine/threonine kinase PAK is a potential focal adhesion and focal complex protein that colocalizes with dynamic actin structures. Mol Cell Biol 1996; 16:1896 - 908; PMID: 8628256
  • Melzig J, Rein KH, Schäfer U, Pfister H, Jäckle H, Heisenberg M, Raabe T. A protein related to p21-activated kinase (PAK) that is involved in neurogenesis in the Drosophila adult central nervous system. Curr Biol 1998; 8:1223 - 6; http://dx.doi.org/10.1016/S0960-9822(07)00514-3; PMID: 9811608
  • Allen KM, Gleeson JG, Bagrodia S, Partington MW, MacMillan JC, Cerione RA, Mulley JC, Walsh CA. PAK3 mutation in nonsyndromic X-linked mental retardation. Nat Genet 1998; 20:25 - 30; http://dx.doi.org/10.1038/1675; PMID: 9731525
  • Bagrodia S, Dérijard B, Davis RJ, Cerione RA. Cdc42 and PAK-mediated signaling leads to Jun kinase and p38 mitogen-activated protein kinase activation. J Biol Chem 1995; 270:27995 - 8; http://dx.doi.org/10.1074/jbc.270.47.27995; PMID: 7499279
  • Stanyon CA, Bernard O. LIM-kinase1. Int J Biochem Cell Biol 1999; 31:389 - 94; http://dx.doi.org/10.1016/S1357-2725(98)00116-2; PMID: 10224665
  • Meberg PJ, Bamburg JR. Increase in neurite outgrowth mediated by overexpression of actin depolymerizing factor. J Neurosci 2000; 20:2459 - 69; PMID: 10729326
  • Kelly ML, Chernoff J. Mouse models of PAK function. Cell Logist 2012; 2:84 - 8; http://dx.doi.org/10.4161/cl.21381; PMID: 23162740
  • Tian Y, Lei L, Minden A. A key role for Pak4 in proliferation and differentiation of neural progenitor cells. Dev Biol 2011; 353:206 - 16; http://dx.doi.org/10.1016/j.ydbio.2011.02.026; PMID: 21382368
  • Gnesutta N, Minden A. Death receptor-induced activation of initiator caspase 8 is antagonized by serine/threonine kinase PAK4. Mol Cell Biol 2003; 23:7838 - 48; http://dx.doi.org/10.1128/MCB.23.21.7838-7848.2003; PMID: 14560027
  • Arias-Romero LE, Chernoff J. A tale of two Paks. Biol Cell 2008; 100:97 - 108; http://dx.doi.org/10.1042/BC20070109; PMID: 18199048
  • Qu J, Li X, Novitch BG, Zheng Y, Kohn M, Xie JM, Kozinn S, Bronson R, Beg AA, Minden A. PAK4 kinase is essential for embryonic viability and for proper neuronal development. Mol Cell Biol 2003; 23:7122 - 33; http://dx.doi.org/10.1128/MCB.23.20.7122-7133.2003; PMID: 14517283
  • Allen JD, Jaffer ZM, Park SJ, Burgin S, Hofmann C, Sells MA, Chen S, Derr-Yellin E, Michels EG, McDaniel A, et al. p21-activated kinase regulates mast cell degranulation via effects on calcium mobilization and cytoskeletal dynamics. Blood 2009; 113:2695 - 705; http://dx.doi.org/10.1182/blood-2008-06-160861; PMID: 19124833
  • Wang Z, Oh E, Clapp DW, Chernoff J, Thurmond DC. Inhibition or ablation of p21-activated kinase (PAK1) disrupts glucose homeostatic mechanisms in vivo. J Biol Chem 2011; 286:41359 - 67; http://dx.doi.org/10.1074/jbc.M111.291500; PMID: 21969371
  • Liu W, Zi M, Naumann R, Ulm S, Jin J, Taglieri DM, Prehar S, Gui J, Tsui H, Xiao RP, et al. Pak1 as a novel therapeutic target for antihypertrophic treatment in the heart. Circulation 2011; 124:2702 - 15; http://dx.doi.org/10.1161/CIRCULATIONAHA.111.048785; PMID: 22082674
  • Nekrasova T, Minden A. Role for p21-activated kinase PAK4 in development of the mammalian heart. Transgenic Res 2012; 21:797 - 811; http://dx.doi.org/10.1007/s11248-011-9578-7; PMID: 22173944
  • Ke Y, Wang L, Pyle WG, de Tombe PP, Solaro RJ. Intracellular localization and functional effects of P21-activated kinase-1 (Pak1) in cardiac myocytes. Circ Res 2004; 94:194 - 200; http://dx.doi.org/10.1161/01.RES.0000111522.02730.56; PMID: 14670848
  • Tian Y, Lei L, Cammarano M, Nekrasova T, Minden A. Essential role for the Pak4 protein kinase in extraembryonic tissue development and vessel formation. Mech Dev 2009; 126:710 - 20; http://dx.doi.org/10.1016/j.mod.2009.05.002; PMID: 19464366
  • Eswaran J, Soundararajan M, Knapp S. Targeting group II PAKs in cancer and metastasis. Cancer Metastasis Rev 2009; 28:209 - 17; http://dx.doi.org/10.1007/s10555-008-9181-4; PMID: 19160016
  • Gnesutta N, Qu J, Minden A. The serine/threonine kinase PAK4 prevents caspase activation and protects cells from apoptosis. J Biol Chem 2001; 276:14414 - 9; PMID: 11278822
  • Li X, Minden A. PAK4 functions in tumor necrosis factor (TNF) alpha-induced survival pathways by facilitating TRADD binding to the TNF receptor. J Biol Chem 2005; 280:41192 - 200; http://dx.doi.org/10.1074/jbc.M506884200; PMID: 16227624
  • Paliouras GN, Naujokas MA, Park M. Pak4, a novel Gab1 binding partner, modulates cell migration and invasion by the Met receptor. Mol Cell Biol 2009; 29:3018 - 32; http://dx.doi.org/10.1128/MCB.01286-08; PMID: 19289496
  • Ahmed T, Shea K, Masters JR, Jones GE, Wells CM. A PAK4-LIMK1 pathway drives prostate cancer cell migration downstream of HGF. Cell Signal 2008; 20:1320 - 8; http://dx.doi.org/10.1016/j.cellsig.2008.02.021; PMID: 18424072
  • Gringel A, Walz D, Rosenberger G, Minden A, Kutsche K, Kopp P, Linder S. PAK4 and alphaPIX determine podosome size and number in macrophages through localized actin regulation. J Cell Physiol 2006; 209:568 - 79; http://dx.doi.org/10.1002/jcp.20777; PMID: 16897755
  • Bao W, Thullberg M, Zhang H, Onischenko A, Strömblad S. Cell attachment to the extracellular matrix induces proteasomal degradation of p21(CIP1) via Cdc42/Rac1 signaling. Mol Cell Biol 2002; 22:4587 - 97; http://dx.doi.org/10.1128/MCB.22.13.4587-4597.2002; PMID: 12052868
  • Ye DZ, Field J. PAK signaling in cancer. Cell Logist 2012; 2:105 - 16; http://dx.doi.org/10.4161/cl.21882; PMID: 23162742
  • Reddy SD, Ohshiro K, Rayala SK, Kumar R. MicroRNA-7, a homeobox D10 target, inhibits p21-activated kinase 1 and regulates its functions. Cancer Res 2008; 68:8195 - 200; http://dx.doi.org/10.1158/0008-5472.CAN-08-2103; PMID: 18922890
  • Cotteret S, Jaffer ZM, Beeser A, Chernoff J. p21-Activated kinase 5 (Pak5) localizes to mitochondria and inhibits apoptosis by phosphorylating BAD. Mol Cell Biol 2003; 23:5526 - 39; http://dx.doi.org/10.1128/MCB.23.16.5526-5539.2003; PMID: 12897128
  • Wang X, Gong W, Qing H, Geng Y, Wang X, Zhang Y, Peng L, Zhang H, Jiang B. p21-activated kinase 5 inhibits camptothecin-induced apoptosis in colorectal carcinoma cells. Tumour Biol 2010; 31:575 - 82; http://dx.doi.org/10.1007/s13277-010-0071-3; PMID: 20567954
  • Jin S, Zhuo Y, Guo W, Field J. p21-activated Kinase 1 (Pak1)-dependent phosphorylation of Raf-1 regulates its mitochondrial localization, phosphorylation of BAD, and Bcl-2 association. J Biol Chem 2005; 280:24698 - 705; http://dx.doi.org/10.1074/jbc.M413374200; PMID: 15849194
  • Frost JA, Swantek JL, Stippec S, Yin MJ, Gaynor R, Cobb MH. Stimulation of NFkappa B activity by multiple signaling pathways requires PAK1. J Biol Chem 2000; 275:19693 - 9; http://dx.doi.org/10.1074/jbc.M909860199; PMID: 10779525
  • Friedland JC, Lakins JN, Kazanietz MG, Chernoff J, Boettiger D, Weaver VM. alpha6beta4 integrin activates Rac-dependent p21-activated kinase 1 to drive NF-kappaB-dependent resistance to apoptosis in 3D mammary acini. J Cell Sci 2007; 120:3700 - 12; http://dx.doi.org/10.1242/jcs.03484; PMID: 17911169
  • Mazumdar A, Kumar R. Estrogen regulation of Pak1 and FKHR pathways in breast cancer cells. FEBS Lett 2003; 535:6 - 10; http://dx.doi.org/10.1016/S0014-5793(02)03846-2; PMID: 12560069
  • Lin R, Bagrodia S, Cerione R, Manor D. A novel Cdc42Hs mutant induces cellular transformation. Curr Biol 1997; 7:794 - 7; http://dx.doi.org/10.1016/S0960-9822(06)00338-1; PMID: 9368762
  • Lin R, Cerione RA, Manor D. Specific contributions of the small GTPases Rho, Rac, and Cdc42 to Dbl transformation. J Biol Chem 1999; 274:23633 - 41; http://dx.doi.org/10.1074/jbc.274.33.23633; PMID: 10438546
  • Qiu RG, Abo A, McCormick F, Symons M. Cdc42 regulates anchorage-independent growth and is necessary for Ras transformation. Mol Cell Biol 1997; 17:3449 - 58; PMID: 9154844
  • Kimmelman AC, Hezel AF, Aguirre AJ, Zheng H, Paik JH, Ying H, Chu GC, Zhang JX, Sahin E, Yeo G, et al. Genomic alterations link Rho family of GTPases to the highly invasive phenotype of pancreas cancer. Proc Natl Acad Sci U S A 2008; 105:19372 - 7; http://dx.doi.org/10.1073/pnas.0809966105; PMID: 19050074
  • Zhang HJ, Siu MK, Yeung MC, Jiang LL, Mak VC, Ngan HY, Wong OG, Zhang HQ, Cheung AN. Overexpressed PAK4 promotes proliferation, migration and invasion of choriocarcinoma. Carcinogenesis 2011; 32:765 - 71; http://dx.doi.org/10.1093/carcin/bgr033; PMID: 21325635
  • Kim JH, Kim HN, Lee KT, Lee JK, Choi SH, Paik SW, Rhee JC, Lowe AW. Gene expression profiles in gallbladder cancer: the close genetic similarity seen for early and advanced gallbladder cancers may explain the poor prognosis. Tumour Biol 2008; 29:41 - 9; http://dx.doi.org/10.1159/000132570; PMID: 18497548
  • Liu Y, Xiao H, Tian Y, Nekrasova T, Hao X, Lee HJ, Suh N, Yang CS, Minden A. The pak4 protein kinase plays a key role in cell survival and tumorigenesis in athymic mice. Mol Cancer Res 2008; 6:1215 - 24; http://dx.doi.org/10.1158/1541-7786.MCR-08-0087; PMID: 18644984
  • Ahn HK, Jang J, Lee J, Se Hoon P, Park JO, Park YS, Lim HY, Kim KM, Kang WK. P21-activated kinase 4 overexpression in metastatic gastric cancer patients. Transl Oncol 2011; 4:345 - 9; PMID: 22190998
  • Siu MKY, Chan HY, Kong DS, Wong ESY, Wong OGW, Ngan HYS, Tam KF, Zhang H, Li Z, Chan QKY, et al. p21-activated kinase 4 regulates ovarian cancer cell proliferation, migration, and invasion and contributes to poor prognosis in patients. Proc Natl Acad Sci U S A 2010; 107:18622 - 7; http://dx.doi.org/10.1073/pnas.0907481107; PMID: 20926745
  • Parsons DW, Wang TL, Samuels Y, Bardelli A, Cummins JM, DeLong L, Silliman N, Ptak J, Szabo S, Willson JK, et al. Colorectal cancer: mutations in a signalling pathway. Nature 2005; 436:792; http://dx.doi.org/10.1038/436792a; PMID: 16094359
  • Chen S, Auletta T, Dovirak O, Hutter C, Kuntz K, El-ftesi S, Kendall J, Han H, Von Hoff DD, Ashfaq R, et al. Copy number alterations in pancreatic cancer identify recurrent PAK4 amplification. Cancer Biol Ther 2008; 7:1793 - 802; http://dx.doi.org/10.4161/cbt.7.11.6840; PMID: 18836286
  • Mahlamäki EH, Kauraniemi P, Monni O, Wolf M, Hautaniemi S, Kallioniemi A. High-resolution genomic and expression profiling reveals 105 putative amplification target genes in pancreatic cancer. Neoplasia 2004; 6:432 - 9; http://dx.doi.org/10.1593/neo.04130; PMID: 15548351
  • Begum A, Imoto I, Kozaki K, Tsuda H, Suzuki E, Amagasa T, Inazawa J. Identification of PAK4 as a putative target gene for amplification within 19q13.12-q13.2 in oral squamous-cell carcinoma. Cancer Sci 2009; 100:1908 - 16; http://dx.doi.org/10.1111/j.1349-7006.2009.01252.x; PMID: 19594544
  • Yu W, Kanaan Y, Bae YK, Gabrielson E. Chromosomal changes in aggressive breast cancers with basal-like features. Cancer Genet Cytogenet 2009; 193:29 - 37; http://dx.doi.org/10.1016/j.cancergencyto.2009.03.017; PMID: 19602461
  • Mak GW, Chan MM, Leong VY, Lee JM, Yau TO, Ng IO, Ching YP. Overexpression of a novel activator of PAK4, the CDK5 kinase-associated protein CDK5RAP3, promotes hepatocellular carcinoma metastasis. Cancer Res 2011; 71:2949 - 58; http://dx.doi.org/10.1158/0008-5472.CAN-10-4046; PMID: 21385901
  • Hou J, Lin L, Zhou W, Wang Z, Ding G, Dong Q, Qin L, Wu X, Zheng Y, Yang Y, et al. Identification of miRNomes in human liver and hepatocellular carcinoma reveals miR-199a/b-3p as therapeutic target for hepatocellular carcinoma. Cancer Cell 2011; 19:232 - 43; http://dx.doi.org/10.1016/j.ccr.2011.01.001; PMID: 21316602
  • Gong W, An Z, Wang Y, Pan X, Fang W, Jiang B, Zhang H. P21-activated kinase 5 is overexpressed during colorectal cancer progression and regulates colorectal carcinoma cell adhesion and migration. Int J Cancer 2009; 125:548 - 55; http://dx.doi.org/10.1002/ijc.24428; PMID: 19415746
  • Kaur R, Yuan X, Lu ML, Balk SP. Increased PAK6 expression in prostate cancer and identification of PAK6 associated proteins. Prostate 2008; 68:1510 - 6; http://dx.doi.org/10.1002/pros.20787; PMID: 18642328
  • Zhang M, Siedow M, Saia G, Chakravarti A. Inhibition of p21-activated kinase 6 (PAK6) increases radiosensitivity of prostate cancer cells. Prostate 2010; 70:807 - 16; PMID: 20054820
  • Wang Y, Yu Q, Cho AH, Rondeau G, Welsh J, Adamson E, Mercola D, McClelland M. Survey of differentially methylated promoters in prostate cancer cell lines. Neoplasia 2005; 7:748 - 60; http://dx.doi.org/10.1593/neo.05289; PMID: 16207477
  • Kumar R, Gururaj AE, Barnes CJ. p21-activated kinases in cancer. Nat Rev Cancer 2006; 6:459 - 71; http://dx.doi.org/10.1038/nrc1892; PMID: 16723992
  • Goc A, Al-Azayzih A, Abdalla M, Al-Husein B, Kavuri S, Lee J, Moses K, Somanath PR. P21 activated kinase-1 (Pak1) promotes prostate tumor growth and microinvasion via inhibition of transforming growth factor β expression and enhanced matrix metalloproteinase 9 secretion. J Biol Chem 2013; 288:3025 - 35; http://dx.doi.org/10.1074/jbc.M112.424770; PMID: 23258534
  • Ong CC, Jubb AM, Jakubiak D, Zhou W, Rudolph J, Haverty PM, Kowanetz M, Yan Y, Tremayne J, Lisle R, et al. P21-activated kinase 1 (PAK1) as a therapeutic target in BRAF wild-type melanoma. J Natl Cancer Inst 2013; 105:606 - 7; http://dx.doi.org/10.1093/jnci/djt054; PMID: 23535073
  • Ye DZ, Field J. PAK signaling in cancer. Cell Logist 2012; 2:105 - 16; http://dx.doi.org/10.4161/cl.21882; PMID: 23162742
  • Wang RA, Zhang H, Balasenthil S, Medina D, Kumar R. PAK1 hyperactivation is sufficient for mammary gland tumor formation. Oncogene 2006; 25:2931 - 6; http://dx.doi.org/10.1038/sj.onc.1209309; PMID: 16331248
  • Arias-Romero LE, Villamar-Cruz O, Pacheco A, Kosoff R, Huang M, Muthuswamy SK, Chernoff J. A Rac-Pak signaling pathway is essential for ErbB2-mediated transformation of human breast epithelial cancer cells. Oncogene 2010; 29:5839 - 49; http://dx.doi.org/10.1038/onc.2010.318; PMID: 20711231
  • Soule HD, Maloney TM, Wolman SR, Peterson WD Jr., Brenz R, McGrath CM, Russo J, Pauley RJ, Jones RF, Brooks SC. Isolation and characterization of a spontaneously immortalized human breast epithelial cell line, MCF-10. Cancer Res 1990; 50:6075 - 86; PMID: 1975513
  • Miller FR, Santner SJ, Tait L, Dawson PJ. MCF10DCIS.com xenograft model of human comedo ductal carcinoma in situ. J Natl Cancer Inst 2000; 92:1185 - 6; http://dx.doi.org/10.1093/jnci/92.14.1185A; PMID: 10904098
  • Basolo F, Elliott J, Tait L, Chen XQ, Maloney T, Russo IH, Pauley R, Momiki S, Caamano J, Klein-Szanto AJ, et al. Transformation of human breast epithelial cells by c-Ha-ras oncogene. Mol Carcinog 1991; 4:25 - 35; http://dx.doi.org/10.1002/mc.2940040106; PMID: 2009132
  • Dawson PJ, Wolman SR, Tait L, Heppner GH, Miller FR. MCF10AT: a model for the evolution of cancer from proliferative breast disease. Am J Pathol 1996; 148:313 - 9; PMID: 8546221
  • So JY, Lee HJ, Kramata P, Minden A, Suh N. Lee., H.J., Kramata, P, Minden, A., Suh, N., Differential expression of key signaling proteins in MCF10 cell lines, a human breast cancer progression model.. Mol Cell Pharmacol 2012; 4:31 - 40; PMID: 24558516
  • Li Q, Mullins SR, Sloane BF, Mattingly RR. p21-Activated kinase 1 coordinates aberrant cell survival and pericellular proteolysis in a three-dimensional culture model for premalignant progression of human breast cancer. Neoplasia 2008; 10:314 - 29; PMID: 18392133
  • Liu Y, Chen N, Cui X, Zheng X, Deng L, Price S, Karantza V, Minden A. The protein kinase Pak4 disrupts mammary acinar architecture and promotes mammary tumorigenesis. Oncogene 2010; 29:5883 - 94; http://dx.doi.org/10.1038/onc.2010.329; PMID: 20697354
  • Karantza-Wadsworth V, White E. A mouse mammary epithelial cell model to identify molecular mechanisms regulating breast cancer progression. Methods Enzymol 2008; 446:61 - 76; http://dx.doi.org/10.1016/S0076-6879(08)01604-2; PMID: 18603116
  • Debnath J, Mills KR, Collins NL, Reginato MJ, Muthuswamy SK, Brugge JS. The role of apoptosis in creating and maintaining luminal space within normal and oncogene-expressing mammary acini. Cell 2002; 111:29 - 40; http://dx.doi.org/10.1016/S0092-8674(02)01001-2; PMID: 12372298
  • Karantza-Wadsworth V, Patel S, Kravchuk O, Chen G, Mathew R, Jin S, White E. Autophagy mitigates metabolic stress and genome damage in mammary tumorigenesis. Genes Dev 2007; 21:1621 - 35; http://dx.doi.org/10.1101/gad.1565707; PMID: 17606641
  • Tang Y, Marwaha S, Rutkowski JL, Tennekoon GI, Phillips PC, Field J. A role for Pak protein kinases in Schwann cell transformation. Proc Natl Acad Sci U S A 1998; 95:5139 - 44; http://dx.doi.org/10.1073/pnas.95.9.5139; PMID: 9560242
  • Xiao GH, Beeser A, Chernoff J, Testa JR. p21-activated kinase links Rac/Cdc42 signaling to merlin. J Biol Chem 2002; 277:883 - 6; http://dx.doi.org/10.1074/jbc.C100553200; PMID: 11719502
  • Kissil JL, Johnson KC, Eckman MS, Jacks T. Merlin phosphorylation by p21-activated kinase 2 and effects of phosphorylation on merlin localization. J Biol Chem 2002; 277:10394 - 9; http://dx.doi.org/10.1074/jbc.M200083200; PMID: 11782491
  • Coleman N, Kissil J. Recent advances in the development of p21-activated kinase inhibitors. Cell Logist 2012; 2:132 - 5; http://dx.doi.org/10.4161/cl.21667; PMID: 23162744
  • Deacon SW, Beeser A, Fukui JA, Rennefahrt UEE, Myers C, Chernoff J, Peterson JR. An isoform-selective, small-molecule inhibitor targets the autoregulatory mechanism of p21-activated kinase. Chem Biol 2008; 15:322 - 31; http://dx.doi.org/10.1016/j.chembiol.2008.03.005; PMID: 18420139
  • Zhao Z-S, Manser E, Chen XQ, Chong C, Leung T, Lim L. A conserved negative regulatory region in alphaPAK: inhibition of PAK kinases reveals their morphological roles downstream of Cdc42 and Rac1. Mol Cell Biol 1998; 18:2153 - 63; PMID: 9528787
  • Hashimoto H, Sudo T, Maruta H, Nishimura R. The direct PAK1 inhibitor, TAT-PAK18, blocks preferentially the growth of human ovarian cancer cell lines in which PAK1 is abnormally activated by autophosphorylation at Thr 423. Drug Discov Ther 2010; 4:1 - 4; PMID: 22491145
  • Maruta H, He H, Tikoo A, Nur-e-Kamal M. Cytoskeletal tumor suppressors that block oncogenic RAS signaling. Ann N Y Acad Sci 1999; 886:48 - 57; http://dx.doi.org/10.1111/j.1749-6632.1999.tb09399.x; PMID: 10667202
  • Yi C, Wilker EW, Yaffe MB, Stemmer-Rachamimov A, Kissil JL. Validation of the p21-activated kinases as targets for inhibition in neurofibromatosis type 2. Cancer Res 2008; 68:7932 - 7; http://dx.doi.org/10.1158/0008-5472.CAN-08-0866; PMID: 18829550
  • Maksimoska J, Feng L, Harms K, Yi C, Kissil J, Marmorstein R, Meggers E. Targeting large kinase active site with rigid, bulky octahedral ruthenium complexes. J Am Chem Soc 2008; 130:15764 - 5; http://dx.doi.org/10.1021/ja805555a; PMID: 18973295
  • Feng L, Geisselbrecht Y, Blanck S, Wilbuer A, Atilla-Gokcumen GE, Filippakopoulos P, Kräling K, Celik MA, Harms K, Maksimoska J, et al. Structurally sophisticated octahedral metal complexes as highly selective protein kinase inhibitors. J Am Chem Soc 2011; 133:5976 - 86; http://dx.doi.org/10.1021/ja1112996; PMID: 21446733
  • Zhao ZS, Manser E. Do PAKs make good drug targets?. F1000 Biol Rep 2010; 2:70 - 3; PMID: 21173843
  • Murray BW, Guo C, Piraino J, Westwick JK, Zhang C, Lamerdin J, Dagostino E, Knighton D, Loi CM, Zager M, et al. Small-molecule p21-activated kinase inhibitor PF-3758309 is a potent inhibitor of oncogenic signaling and tumor growth. Proc Natl Acad Sci U S A 2010; 107:9446 - 51; http://dx.doi.org/10.1073/pnas.0911863107; PMID: 20439741
  • Rosen LS, Blumenkopf TA, Breazna A, Darang S, Gallo JD, Goldman J, Want D, Mileshkin L, Eckhardt SG. Phase 1, dose-escalateion, safety, pharmacokinetic and pharmacodynamic study of single agent PF-03758309, an oral PAK inhibitor, in patients with advanced solid tumors. AACR-NCI-EORTC International Conference: Molecular Targets and Cancer Therapeutics, 2011. 10(11): p. ABSTRACT A177.
  • Crawford JJ, Hoeflich KP, Rudolph J. p21-Activated kinase inhibitors: a patent review. Expert Opin Ther Pat 2012; 22:293 - 310; http://dx.doi.org/10.1517/13543776.2012.668758; PMID: 22404134
  • Zhang J, Wang J, Guo Q, Wang Y, Zhou Y, Peng H, Cheng M, Zhao D, Li F. LCH-7749944, a novel and potent p21-activated kinase 4 inhibitor, suppresses proliferation and invasion in human gastric cancer cells. Cancer Lett 2012; 317:24 - 32; http://dx.doi.org/10.1016/j.canlet.2011.11.007; PMID: 22085492
  • Staben ST, Feng J, Lyle K, Belvin M, Boggs J, Burch JD, Chua C, Cui H, DiPasquale AG, Friedman LS, et al. Back pocket flexibility provides group II PAK selectivity for type 1-1/2 kinase inhibitors. J Med Chem 2014; In press http://dx.doi.org/10.1021/jm401768t

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.