4,966
Views
98
CrossRef citations to date
0
Altmetric
Review

Cerebral malaria

Mysteries at the blood-brain barrier

, , , , , , & show all
Pages 193-201 | Published online: 01 Mar 2012

References

  • Greenwood BM, Fidock DA, Kyle DE, Kappe SH, Alonso PL, Collins FH, et al. Malaria: progress, perils, and prospects for eradication. J Clin Invest 2008; 118:1266 - 76; http://dx.doi.org/10.1172/JCI33996; PMID: 18382739
  • Snow RW, Omumbo JA. Malaria. In: Jamison DT, Feachem RG, Makgoba MW, Bos ER, Baingana FK, Hofman KJ, Rogo KO, eds. Disease and Mortality in Sub-Saharan Africa. 2nd. Washington DC: World Bank; 2006.
  • Amino R, Menard R, Frischknecht F. In vivo imaging of malaria parasites - recent advances and future directions. Curr Opin Microbiol 2005; 8:407 - 14; http://dx.doi.org/10.1016/j.mib.2005.06.019; PMID: 16019254
  • Severe falciparum malaria. World Health Organization, Communicable Diseases Cluster. Trans R Soc Trop Med Hyg 2000; 94:S1 - 90; PMID: 11103309
  • Laveran A. Paludisme. In: Traite de Medecine et Therapeutique. 1 ed. Paris: BaillSres, J.-B. et Fils; 1897. p. 38-1154.
  • Marchiafava E, Bignami A. Malaria. Twentieth century practice of Medicine.London: Sampson Lowe; 1900.
  • Newton CRJ, Pasvol G, Winstanley PA, Warrell DA. Cerebral malaria: what is unarousable coma?. Lancet 1990; 335:472; http://dx.doi.org/10.1016/0140-6736(90)90703-8; PMID: 1968190
  • Idro R, Jenkins NE, Newton CRJ. Pathogenesis, clinical features, and neurological outcome of cerebral malaria. Lancet Neurol 2005; 4:827 - 40; http://dx.doi.org/10.1016/S1474-4422(05)70247-7; PMID: 16297841
  • Lewallen S, Bakker H, Taylor TE, Wills BA, Courtright P, Molyneux ME. Retinal findings predictive of outcome in cerebral malaria. Trans R Soc Trop Med Hyg 1996; 90:144 - 6; http://dx.doi.org/10.1016/S0035-9203(96)90116-9; PMID: 8761574
  • Berkley JA, Mwangi I, Mellington F, Mwarumba S, Marsh K. Cerebral malaria versus bacterial meningitis in children with impaired consciousness. QJM 1999; 92:151 - 7; http://dx.doi.org/10.1093/qjmed/92.3.151; PMID: 10326074
  • Marsh K, Forster D, Waruiru CM, Mwangi I, Winstanley MT, Marsh V, et al. Indicators of life-threatening malaria in african children. N Engl J Med 1995; 332:1399 - 404; http://dx.doi.org/10.1056/NEJM199505253322102; PMID: 7723795
  • Troye-Blomberg M, Berzins K. Immune interactions in malaria co-infections with other endemic infectious diseases: implications for the development of improved disease interventions. Microbes Infect 2008; 10:948 - 52; http://dx.doi.org/10.1016/j.micinf.2008.07.014; PMID: 18672089
  • Taylor TE, Wirima JJ, Molyneun ME, Davis TME, Brewster DR, Hill AVS, et al. Hypoglycaemia and cerebral malaria. Lancet 1990; 336:950 - 1; http://dx.doi.org/10.1016/0140-6736(90)92329-G; PMID: 1976969
  • Taylor TE, Borgstein A, Molyneux ME. Acid-base status in paediatric Plasmodium falciparum malaria. Q J Med 1993; 86:99 - 109; PMID: 8464997
  • Haldar K, Murphy SC, Milner DA, Taylor TE. Malaria: Mechanisms of Erythrocytic Infection and Pathological Correlates of Severe Disease. Annu Rev Pathol 2007; 2:217 - 49; http://dx.doi.org/10.1146/annurev.pathol.2.010506.091913; PMID: 18039099
  • Newton CRJ, Krishna S. Severe falciparum malaria in children: current understanding of pathophysiology and supportive treatment. Pharmacol Ther 1998; 79:1 - 53; http://dx.doi.org/10.1016/S0163-7258(98)00008-4; PMID: 9719344
  • Brewster DR, Kwiatkowski DP, White NJ. Neurological Sequelae of Cerebral Malaria in Children. Lancet 1990; 336:1039 - 43; http://dx.doi.org/10.1016/0140-6736(90)92498-7; PMID: 1977027
  • Idro R, Carter JA, Fegan G, Neville BG, Newton CRJ. Risk factors for persisting neurological and cognitive impairments following cerebral malaria. Arch Dis Child 2006; 91:142 - 8; http://dx.doi.org/10.1136/adc.2005.077784; PMID: 16326798
  • Holding PA, Snow RW. Impact of Plasmodium falciparum malaria on performance and learning: review of the evidence. Am J Trop Med Hyg 2001; 64:68 - 75; PMID: 11425179
  • Durk H. Uber die bei malaria comatosa aufretenden veranderungen des zentranervensystem. Archiv Schiffs Tropenhygien 1917; 21:117 - 32
  • Gaskell SJ, Millar WL. Studies on malignant malaaria in Macedonia. QJM 1920; 24:317 - 22
  • Kean BH, Smith JA. Death due to estivo-autumnal malaria. A resume of one hundred autopsy cases, 1925-1942. Am J Trop Med 1944; 24:317 - 22
  • Margulis MS. Zur frage der pathologish-anatomischen verunderungen bei busartige malaria. Neurologische Zentralblat 1914; 33:1019 - 24
  • Rigdon RH, Fletcher DE. Lesions of brain associated with malaria. Pathologic study on man and on experimental animals. Arch Neurol Psychiatry 1944; 53:191 - 8
  • Spitz S. Pathology of tropical diseases. Philadelphia: Saunders Co; 1961.
  • MacPherson GG, Warrell MJ, White NJ, Looareesuwan S, Warrell DA. Human cerebral malaria. A quantitative ultrastructural analysis of parasitized erythrocyte sequestration. Am J Pathol 1985; 119:385 - 401; PMID: 3893148
  • Dorovini-Zis K, Schmidt K, Huynh H, Fu W, Whitten RO, Milner D, et al. The neuropathology of fatal cerebral malaria in malawian children. Am J Pathol 2011; 178:2146 - 58; http://dx.doi.org/10.1016/j.ajpath.2011.01.016; PMID: 21514429
  • Taylor TE, Fu WJ, Carr RA, Whitten RO, Mueller JG, Fosiko NG, et al. Differentiating the pathologies of cerebral malaria by postmortem parasite counts. Nat Med 2004; 10:143 - 5; http://dx.doi.org/10.1038/nm986; PMID: 14745442
  • Berendt AR, Turner GDH, Newbold CI. Cerebral malaria: the sequestration hypothesis. Parasitol Today 1994; 10:412 - 4; http://dx.doi.org/10.1016/0169-4758(94)90238-0; PMID: 15275553
  • Grau GE, Mackenzie CD, Carr RA, Redard M, Pizzolato G, Allasia C, et al. Platelet accumulation in brain microvessels in fatal pediatric cerebral malaria. J Infect Dis 2003; 187:461 - 6; http://dx.doi.org/10.1086/367960; PMID: 12552430
  • Patnaik JK, Das BS, Mishra SK, Mohanty S, Satpathy SK, Mohanty D. Vascular clogging, mononuclear cell margination, and enhanced vascular permeability in the pathogenesis of human cerebral malaria. Am J Trop Med Hyg 1994; 51:642 - 7; PMID: 7985757
  • Silamut K, Phu NH, Whitty C, Turner GDH, Louwrier K, Mai NT, et al. A quantitative analysis of the microvascular sequestration of malaria parasites in the human brain. Am J Pathol 1999; 155:395 - 410; http://dx.doi.org/10.1016/S0002-9440(10)65136-X; PMID: 10433933
  • Pongponratn E, Turner GDH, Day NP, Phu NH, Simpson JA, Stepniewska K, et al. An ultrastructural study of the brain in fatal Plasmodium falciparum malaria. Am J Trop Med Hyg 2003; 69:345 - 59; PMID: 14640492
  • Grau GE, Taylor TE, Molyneux ME, Wirima JJ, Vassalli P, Hommel M, et al. Tumor necrosis factor and disease severity in children with falciparum Malaria. N Engl J Med 1989; 320:1586 - 91; http://dx.doi.org/10.1056/NEJM198906153202404; PMID: 2657427
  • Kwiatkowski D, Hill AVS, Sambou I, Twumasi PM, Castracane J, Manogue K, et al. TNF concentration in fatal cerebral, non fatal cerebral, and uncomplicated Plasmodium falciparum malaria. Lancet 1990; 336:1201 - 4; http://dx.doi.org/10.1016/0140-6736(90)92827-5; PMID: 1978068
  • Lyke KE, Burges R, Cissoko Y, Sangare L, Dao M, Diarra I, et al. Serum Levels of the Proinflammatory Cytokines Interleukin-1 Beta (IL-1beta), IL-6, IL-8, IL-10, Tumor Necrosis Factor Alpha, and IL-12(p70) in Malian Children with Severe Plasmodium falciparum Malaria and Matched Uncomplicated Malaria or Healthy Controls. Infect Immun 2004; 72:5630 - 7; http://dx.doi.org/10.1128/IAI.72.10.5630-5637.2004; PMID: 15385460
  • Campino S, Kwiatkowski DP, Dessein A. Mendelian and complex genetics of susceptibility and resistance to parasitic infections. Semin Immunol 2006; 18:411 - 22; http://dx.doi.org/10.1016/j.smim.2006.07.011; PMID: 17023176
  • Carvalho LJ. Murine cerebral malaria: how far from human cerebral malaria?. Trends Parasitol 2010; 26:271 - 2; http://dx.doi.org/10.1016/j.pt.2010.03.001; PMID: 20335068
  • Langhorne J, Buffet P, Galinski MR, Good MF, Harty J, Leroy D, et al. The relevance of non-human primate and rodent malaria models for humans. Malar J 2011; 10:23; http://dx.doi.org/10.1186/1475-2875-10-23; PMID: 21288352
  • Rénia L, Gruner AC, Snounou G. Cerebral malaria: in praise of epistemes. Trends Parasitol 2010; 26:275 - 7; http://dx.doi.org/10.1016/j.pt.2010.03.005; PMID: 20363672
  • Riley EM, Couper KN, Helmby H, Hafalla JC, de Souza JB, Langhorne J, et al. Neuropathogenesis of human and murine malaria. Trends Parasitol 2010; 26:277 - 8; http://dx.doi.org/10.1016/j.pt.2010.03.002; PMID: 20338809
  • Stevenson MM, Gros P, Olivier M, Fortin A, Serghides L. Cerebral malaria: human versus mouse studies. Trends Parasitol 2010; 26:274 - 5; http://dx.doi.org/10.1016/j.pt.2010.03.008; PMID: 20382077
  • White NJ, Turner GDH, Medana IM, Dondorp AM, Day NP. The murine cerebral malaria phenomenon. Trends Parasitol 2010; 26:11 - 5; http://dx.doi.org/10.1016/j.pt.2009.10.007; PMID: 19932638
  • Hall N, Karras M, Raine JD, Carlton JMR, Kooij TW, Berriman M, et al. A comprehensive survey of the Plasmodium life cycle by genomic, transcriptomic, and proteomic analyses. Science 2005; 307:82 - 6; http://dx.doi.org/10.1126/science.1103717; PMID: 15637271
  • Tomas AM, van der Wel AM, Thomas AW, Janse CJ, Waters AP. Transfection systems for animal models of malaria. Parasitol Today 1998; 14:245 - 9; http://dx.doi.org/10.1016/S0169-4758(98)01248-4; PMID: 17040769
  • Engwerda C, Belnoue E, Gruner AC, Renia L. Experimental models of cerebral malaria. Curr Top Microbiol Immunol 2005; 297:103 - 43; http://dx.doi.org/10.1007/3-540-29967-X_4; PMID: 16265904
  • Amani V, Boubou MI, Pied S, Marussig M, Walliker D, Mazier D, et al. Cloned lines of Plasmodium berghei ANKA differ in their abilities to induce experimental cerebral malaria. Infect Immun 1998; 66:4093 - 9; PMID: 9712753
  • Bagot S, Nogueira F, Collette A, Do Rosario VE, Lemonier F, Cazenave PA, et al. Comparative Study of Brain CD8+ T Cells Induced by Sporozoites and Those Induced by Blood-Stage Plasmodium berghei ANKA Involved in the Development of Cerebral Malaria. Infect Immun 2004; 72:2817 - 26; http://dx.doi.org/10.1128/IAI.72.5.2817-2826.2004; PMID: 15102792
  • Kordes M, Matuschewski K, Hafalla JC. Caspase-1 Activation of Interleukin-1beta (IL-1beta) and IL-18 Is Dispensable for Induction of Experimental Cerebral Malaria. Infect Immun 2011; 79:3633 - 41; http://dx.doi.org/10.1128/IAI.05459-11; PMID: 21708993
  • del Portillo HA, Fernandez-Becerra C, Bowman S, Oliver K, Preuss M, Sanchez CP, et al. A superfamily of variant genes encoded in the subtelomeric region of Plasmodium vivax. Nature 2001; 410:839 - 42; http://dx.doi.org/10.1038/35071118; PMID: 11298455
  • Roberts DJ, Craig AG, Berendt AR, Pinches RA, Nash GB, Marsh K, et al. Rapid switching to multiple antigenic and adhesive phenotypes in malaria. Nature 1992; 357:689 - 92; http://dx.doi.org/10.1038/357689a0; PMID: 1614515
  • Hearn J, Rayment N, Landon DN, Katz DR, de Souza JB. Immunopathology of Cerebral Malaria: Morphological Evidence of Parasite Sequestration in Murine Brain Microvasculature. Infect Immun 2000; 68:5364 - 76; http://dx.doi.org/10.1128/IAI.68.9.5364-5376.2000; PMID: 10948166
  • Jennings VM, Actor JK, Lal AA, Hunter RL. Cytokine profile suggesting that murine cerebral malaria is an encephalitis. Infect Immun 1997; 65:4883 - 7; PMID: 9353082
  • Hulier E, Petour P, Snounou G, Nivez MP, Miltgen F, Mazier D, et al. A method for the quantitative assessment of malaria parasite development in organs of the mammalian host. Mol Biochem Parasitol 1996; 77:127 - 35; http://dx.doi.org/10.1016/0166-6851(96)02584-4; PMID: 8813659
  • Amante FH, Haque A, Stanley AC, de Labastida Rivera F, Randall LM, Wilson YA, et al. Immune-Mediated Mechanisms of Parasite Tissue Sequestration during Experimental Cerebral Malaria. J Immunol 2010; 185:3632 - 42; http://dx.doi.org/10.4049/jimmunol.1000944; PMID: 20720206
  • Claser C, Malleret B, Gun SY, Wong AY, Chang ZW, Teo P, et al. CD8 T Cells and IFN-gamma Mediate the Time-Dependent Accumulation of Infected Red Blood Cells in Deep Organs during Experimental Cerebral Malaria. PLoS ONE 2011; 6:e18720; http://dx.doi.org/10.1371/journal.pone.0018720; PMID: 21494565
  • Baptista FG, Pamplona A, Pena AC, Mota MM, Pied S, Vigario AM. Accumulation of Plasmodium-infected red blood cells in the brain is crucial for the development of cerebral malaria in mice. Infect Immun 2010; 78:4033 - 9; http://dx.doi.org/10.1128/IAI.00079-10; PMID: 20605973
  • Haque A, Best SE, Unosson K, Amante FH, de Labastida F, Anstey NM, et al. Granzyme B Expression by CD8+ T Cells Is Required for the Development of Experimental Cerebral Malaria. J Immunol 2011; 186:6148 - 56; http://dx.doi.org/10.4049/jimmunol.1003955; PMID: 21525386
  • McQuillan JA, Mitchell AJ, Ho YF, Combes V, Ball HJ, Golenser J, et al. Coincident parasite and CD8+ T cell sequestration is required for development of experimental cerebral malaria. Int J Parasitol 2011; 41:155 - 63; http://dx.doi.org/10.1016/j.ijpara.2010.08.003; PMID: 20828575
  • Belnoue E, Kayibanda M, Vigario AM, Deschemin JC, van RN, Viguier M, et al. On the pathogenic role of brain-sequestered alphabeta CD8+ T cells in experimental cerebral malaria. J Immunol 2002; 169:6369 - 75; PMID: 12444144
  • Belnoue E, Kayibanda M, Deschemin JC, Viguier M, Mack M, Kuziel WA, et al. CCR5 deficiency decreases susceptibility to experimental cerebral malaria. Blood 2003; 101:4253 - 9; http://dx.doi.org/10.1182/blood-2002-05-1493; PMID: 12560237
  • Belnoue E, Costa FTM, Vigario AM, Voza T, Gonnet F, Landau I, et al. Chemokine receptor CCR2 is not essential for the development of experimental cerebral malaria. Infect Immun 2003; 71:3648 - 51; http://dx.doi.org/10.1128/IAI.71.6.3648-3651.2003; PMID: 12761155
  • Belnoue E, Potter SM, Rosa DS, Mauduit M, Gruner AC, Kayibanda M, et al. Control of pathogenic CD8+ T cell migration to the brain by IFN-gamma during experimental cerebral malaria. Parasite Immunol 2008; 30:544 - 53; http://dx.doi.org/10.1111/j.1365-3024.2008.01053.x; PMID: 18665903
  • van der Heyde HC, Gramaglia I, Sun G, Woods C. Platelet depletion by anti-CD41 (alphaIIb) mAb injection early but not late in the course of disease protects against Plasmodium berghei pathogenesis by altering the levels of pathogenic cytokines. Blood 2005; 105:1956 - 63; http://dx.doi.org/10.1182/blood-2004-06-2206; PMID: 15494426
  • Chen L, Zhang Z, Sendo F. Neutrophils play a critical role in the pathogenesis of experimental cerebral malaria. Clin Exp Immunol 2000; 120:125 - 33; http://dx.doi.org/10.1046/j.1365-2249.2000.01196.x; PMID: 10759773
  • Chen L, Sendo F. Cytokine and chemokine mRNA expression in neutrophils from CBA/NSlc mice infected with Plasmodium berghei ANKA that induces experimental cerebral malaria. Parasitol Int 2001; 50:139 - 43; http://dx.doi.org/10.1016/S1383-5769(01)00063-0; PMID: 11438437
  • Yañez DM, Manning DD, Cooley AJ, Weidanz WP, van der Heyde HC. Participation of lymphocyte subpopulations in the pathogenesis of experimental murine cerebral malaria. J Immunol 1996; 157:1620 - 4; PMID: 8759747
  • Hansen DS, Bernard NJ, Nie CQ, Schofield L. NK cells stimulate recruitment of CXCR3+ T cells to the brain during Plasmodium berghei-mediated cerebral malaria. J Immunol 2007; 178:5779 - 88; PMID: 17442962
  • Walzer T, Blery M, Chaix J, Fuseri N, Chasson L, Robbins SH, et al. Identification, activation, and selective in vivo ablation of mouse NK cells via NKp46. Proc Natl Acad Sci USA 2007; 104:3384 - 9; http://dx.doi.org/10.1073/pnas.0609692104; PMID: 17360655
  • Assarsson E, Kambayashi T, Sandberg JK, Hong S, Taniguchi M, Van Kaer L, et al. CD8+ T cells rapidly acquire NK1.1 and NK cell-associated molecules upon stimulation in vitro and in vivo. J Immunol 2000; 165:3673 - 9; PMID: 11034371
  • Nitcheu J, Bonduelle O, Combadiere C, Tefit M, Seilhean D, Mazier D, et al. Perforin-dependent brain-infiltrating cytotoxic CD8+ T lymphocytes mediate experimental cerebral malaria pathogenesis. J Immunol 2003; 170:2221 - 8; PMID: 12574396
  • Miyakoda M, Kimura D, Yuda M, Chinzei Y, Shibata Y, Honma K, et al. Malaria-specific and nonspecific activation of CD8+ T cells during blood stage of Plasmodium berghei infection. J Immunol 2008; 181:1420 - 8; PMID: 18606696
  • Boubou MI, Collette A, Voegtle D, Mazier D, Cazenave PA, Pied S. T cell response in malaria pathogenesis: selective increase in T cells carrying the TCR Vbeta8 during experimental cerebral malaria. Int Immunol 1999; 11:1553 - 62; http://dx.doi.org/10.1093/intimm/11.9.1553; PMID: 10464176
  • Rénia L, Potter SM, Mauduit M, Rosa DS, Kayibanda M, Deschemin JC, et al. Pathogenic T cells in cerebral malaria. Int J Parasitol 2006; 36:547 - 54; http://dx.doi.org/10.1016/j.ijpara.2006.02.007; PMID: 16600241
  • Jambou R, Combes V, Jambou MJ, Weksler BB, Couraud PO, Grau GE. Plasmodium falciparum adhesion on human brain microvascular endothelial cells involves transmigration-like cup formation and induces opening of intercellular junctions. PLoS Pathog 2010; 6:e1001021; http://dx.doi.org/10.1371/journal.ppat.1001021; PMID: 20686652
  • Cardoso FL, Brites D, Brito MA. Looking at the blood-brain barrier: molecular anatomy and possible investigation approaches. Brain Res Rev 2010; 64:328 - 63; http://dx.doi.org/10.1016/j.brainresrev.2010.05.003; PMID: 20685221
  • Neuwelt EA, Bauer B, Fahlke C, Fricker G, Iadecola C, Janigro D, et al. Engaging neuroscience to advance translational research in brain barrier biology. Nat Rev Neurosci 2011; 12:169 - 82; http://dx.doi.org/10.1038/nrn2995; PMID: 21331083
  • Levin BE, Magnan C, Dunn-Meynell A, Le FC. Metabolic sensing and the brain: who, what, where, and how?. Endocrinology 2011; 152:2552 - 7; http://dx.doi.org/10.1210/en.2011-0194; PMID: 21521751
  • Miller DW. Immunobiology of the blood-brain barrier. J Neurovirol 1999; 5:570 - 8; http://dx.doi.org/10.3109/13550289909021286; PMID: 10602398
  • Maegraith B, Fletcher A. The pathogenesis of mammalian malaria. Adv Parasitol 1972; 10:49 - 75; http://dx.doi.org/10.1016/S0065-308X(08)60172-4; PMID: 4626184
  • Adams S, Brown H, Turner GD. Breaking down the blood-brain barrier: signaling a path to cerebral malaria?. Trends Parasitol 2002; 18:360 - 6; http://dx.doi.org/10.1016/S1471-4922(02)02353-X; PMID: 12377286
  • Medana IM, Turner GD. Human cerebral malaria and the blood-brain barrier. Int J Parasitol 2006; 36:555 - 68; http://dx.doi.org/10.1016/j.ijpara.2006.02.004; PMID: 16616145
  • Grab DJ, Chakravorty SJ, van der Heyde HC, Stins MF. How can microbial interactions with the blood brain barrier modulate astroglial and neuronal function?. Cell Microbiol 2011; 13:1470 - 8; http://dx.doi.org/10.1111/j.1462-5822.2011.01661.x; PMID: 21824246
  • Warrell DA, Looareesuwan S, Phillips RE, White NJ, Warrell MJ, Chapel HM, et al. Function of the blood-cerebrospinal fluid barrier in human cerebral malaria: rejection of the permeability hypothesis. Am J Trop Med Hyg 1986; 35:882 - 9; PMID: 2429567
  • Brown HC, Chau TT, Mai NT, Day NP, Sinh DX, White NJ, et al. Blood-brain barrier function in cerebral malaria and CNS infections in Vietnam. Neurology 2000; 55:104 - 11; PMID: 10891914
  • Brown H, Rogerson S, Taylor T, Tembo M, Mwenechanya J, Molyneux M, et al. Blood-brain barrier function in cerebral malaria in Malawian children. Am J Trop Med Hyg 2001; 64:207 - 13; PMID: 11442219
  • Chapel HM, Warrell DA, Looareesuwan S, White NJ, Phillips RE, Warrell MJ, et al. Intrathecal immunoglobulin synthesis in cerebral malaria. Clin Exp Immunol 1987; 67:524 - 30; PMID: 3301098
  • Turner GDH, Morrison H, Jones M, Davis TME, Looareesuwan S, Buley ID, et al. An immunohistochemical study of the pathology of fatal malaria - Evidence for widespread endothelial activation and a potential role for intercellular adhesion molecule-1 in cerebral sequestration. Am J Pathol 1994; 145:1057 - 69; PMID: 7526692
  • Combes V, El-Assaad F, Faille D, Jambou R, Hunt NH, Grau GE. Microvesiculation and cell interactions at the brain-endothelial interface in cerebral malaria pathogenesis. Prog Neurobiol 2010; 91:140 - 51; http://dx.doi.org/10.1016/j.pneurobio.2010.01.007; PMID: 20117166
  • Larkin D, de LB, Jenkins PV, Bunn J, Craig AG, Terraube V, et al. Severe Plasmodium falciparum malaria is associated with circulating ultra-large von Willebrand multimers and ADAMTS13 inhibition. PLoS Pathog 2009; 5:e1000349; http://dx.doi.org/10.1371/journal.ppat.1000349; PMID: 19300493
  • Brown H, Hien TT, Day N, Mai NT, Chuong LV, Chau TT, et al. Evidence of blood-brain barrier dysfunction in human cerebral malaria. Neuropathol Appl Neurobiol 1999; 25:331 - 40; http://dx.doi.org/10.1046/j.1365-2990.1999.00188.x; PMID: 10476050
  • Deininger MH, Kremsner PG, Meyermann R, Schluesener H. Macrophages/microglial cells in patients with cerebral malaria. Eur Cytokine Netw 2002; 13:173 - 85; PMID: 12101073
  • Newton CRJ, Peshu N, Kendall B, Kirkham FJ, Sowunmi A, Waruiru C, et al. Brain swelling and ischaemia in Kenyans with cerebral malaria. Arch Dis Child 1994; 70:281 - 7; http://dx.doi.org/10.1136/adc.70.4.281; PMID: 8185359
  • Patankar TF, Karnad DR, Shetty PG, Desai AP, Prasad SR. Adult cerebral malaria: prognostic importance of imaging findings and correlation with postmortem findings. Radiology 2002; 224:811 - 6; http://dx.doi.org/10.1148/radiol.2243010588; PMID: 12202719
  • Medana IM, Day NP, Sachanonta N, Mai NT, Dondorp AM, Pongponrat E, et al. Coma in fatal adult human malaria is not caused by cerebral oedema. Malar J 2011; 10:267; http://dx.doi.org/10.1186/1475-2875-10-267; PMID: 21923924
  • Shinjo K, Tsuda S, Hayami T, Asahi T, Kawaharada H. Increase in permeability of human endothelial cell monolayer by recombinant human lymphotoxin. Biochem Biophys Res Commun 1989; 162:1431 - 7; http://dx.doi.org/10.1016/0006-291X(89)90834-6; PMID: 2788411
  • Royall JA, Berkow RL, Beckman JS, Cunningham MK, Matalon S, Freeman BA. Tumor necrosis factor and interleukin 1 alpha increase vascular endothelial permeability. Am J Physiol 1989; 257:L399 - 410; PMID: 2610269
  • Mark KS, Miller DW. Increased permeability of primary cultured brain microvessel endothelial cell monolayers following TNF-alpha exposure. Life Sci 1999; 64:1941 - 53; http://dx.doi.org/10.1016/S0024-3205(99)00139-3; PMID: 10353592
  • Gloor SM, Weber A, Adachi N, Frei K. Interleukin-1 modulates protein tyrosine phosphatase activity and permeability of brain endothelial cells. Biochem Biophys Res Commun 1997; 239:804 - 9; http://dx.doi.org/10.1006/bbrc.1997.7557; PMID: 9367850
  • Clark IA, Cowden WB, Rockett KA. Nitric oxide and cerebral malaria. Lancet 1993; 341:632 - 3; http://dx.doi.org/10.1016/0140-6736(93)90393-U; PMID: 7679766
  • Pino P, Vouldoukis I, Dugas N, Hassani-Loppion G, Dugas B, Mazier D. Redox-Dependent Apoptosis in Human Endothelial Cells after Adhesion of Plasmodium falciparum-Infected Erythrocytes. Ann N Y Acad Sci 2003; 1010:582 - 6; http://dx.doi.org/10.1196/annals.1299.109; PMID: 15033796
  • Taoufiq Z, Pino P, Dugas N, Conti M, Tefit M, Mazier D, et al. Transient supplementation of superoxide dismutase protects endothelial cells against Plasmodium falciparum-induced oxidative stress. Mol Biochem Parasitol 2006; 150:166 - 73; http://dx.doi.org/10.1016/j.molbiopara.2006.07.008; PMID: 16930739
  • Lopansri BK, Anstey NM, Weinberg JB, Stoddard GJ, Hobbs MR, Levesque MC, et al. Low plasma arginine concentrations in children with cerebral malaria and decreased nitric oxide production. Lancet 2003; 361:676 - 8; http://dx.doi.org/10.1016/S0140-6736(03)12564-0; PMID: 12606182
  • Weinberg JB, Lopansri BK, Mwaikambo E, Granger DL. Arginine, nitric oxide, carbon monoxide, and endothelial function in severe malaria. Curr Opin Infect Dis 2008; 21:468 - 75; http://dx.doi.org/10.1097/QCO.0b013e32830ef5cf; PMID: 18725795
  • Clark IA, Awburn MM, Whitten RO, Harper CG, Liomba NG, Molyneux ME, et al. Tissue distribution of migration inhibitory factor and inducible nitric oxide synthase in falciparum malaria and sepsis in African children. Malar J 2003; 2:6; http://dx.doi.org/10.1186/1475-2875-2-6; PMID: 12716455
  • Maneerat Y, Viriyavejakul P, Punpoowong B, Jones M, Wilairatana P, Pongponratn E, et al. Inducible nitric oxide synthase expression is increased in the brain in fatal cerebral malaria. Histopathology 2000; 37:269 - 77; http://dx.doi.org/10.1046/j.1365-2559.2000.00989.x; PMID: 10971704
  • Wong D, Dorovini-Zis K, Vincent SR. Cytokines, nitric oxide, and cGMP modulate the permeability of an in vitro model of the human blood-brain barrier. Exp Neurol 2004; 190:446; http://dx.doi.org/10.1016/j.expneurol.2004.08.008; PMID: 15530883
  • Udeinya IJ, Akogyeram CO. Induction of adhesiveness in human endothelial cells by Plasmodium falciparum-infected erythrocytes. Am J Trop Med Hyg 1993; 48:488 - 95; PMID: 8480856
  • Treeratanapiboon L, Psathaki K, Wegener J, Looareesuwan S, Galla HJ, Udomsangpetch R. In vitro study of malaria parasite induced disruption of blood-brain barrier. Biochem Biophys Res Commun 2005; 335:810 - 8; http://dx.doi.org/10.1016/j.bbrc.2005.07.151; PMID: 16105659
  • Brown H, Turner GDH, Rogerson SJ, Tembo M, Mwenechanya J, Molyneux ME, et al. Cytokine expression in the brain in human cerebral malaria. J Infect Dis 1999; 180:1742 - 6; http://dx.doi.org/10.1086/315078; PMID: 10515846
  • Tripathi AK, Sullivan DJ, Stins MF. Plasmodium falciparum-infected erythrocytes increase intercellular adhesion molecule 1 expression on brain endothelium through NF-kappaB. Infect Immun 2006; 74:3262 - 70; http://dx.doi.org/10.1128/IAI.01625-05; PMID: 16714553
  • Tripathi AK, Sha W, Shulaev V, Stins MF, Sullivan DJ Jr. Plasmodium falciparum-infected erythrocytes induce NF-kappaB regulated inflammatory pathways in human cerebral endothelium. Blood 2009; 114:4243 - 52; http://dx.doi.org/10.1182/blood-2009-06-226415; PMID: 19713460
  • Zougbédé S, Miller F, Ravassard P, Rebollo A, Ciceron L, Couraud PO, et al. Metabolic acidosis induced by Plasmodium falciparum intraerythrocytic stages alters blood-brain barrier integrity. J Cereb Blood Flow Metab 2011; 31:514 - 26; http://dx.doi.org/10.1038/jcbfm.2010.121; PMID: 20683453
  • Maneerat Y, Pongponratn E, Viriyavejakul P, Punpoowong B, Looareesuwan S, Udomsangpetch R. Cytokines associated with pathology in the brain tissue of fatal malaria. Southeast Asian J Trop Med Public Health 1999; 30:643 - 9; PMID: 10928354
  • Baruch DI, Pasloske BL, Singh HB, Bi X, Ma XC, Feldman M, et al. Cloning the Plasmodium falciparum gene encoding PfEMP1, a malarial variant antigen and adherence receptor on the surface of parasitized human erythrocytes. Cell 1995; 82:77 - 87; http://dx.doi.org/10.1016/0092-8674(95)90054-3; PMID: 7541722
  • Su XZ, Heatwole VM, Wertheimer SP, Guinet F, Herrfeldt JA, Peterson DS, et al. The large diverse gene family var encodes proteins involved in cytoadherence and antigenic variation of Plasmodium falciparum-infected erythrocytes. Cell 1995; 82:89 - 100; http://dx.doi.org/10.1016/0092-8674(95)90055-1; PMID: 7606788
  • Smith JD, Chitnis CE, Craig AG, Roberts DJ, Hudson-Taylor DE, Peterson DS, et al. Switches in expression of Plasmodium falciparum var genes correlate with changes in antigenic and cytoadherent phenotypes of infected erythrocytes. Cell 1995; 82:101 - 10; http://dx.doi.org/10.1016/0092-8674(95)90056-X; PMID: 7606775
  • Pasloske BL, Howard RJ. Malaria, the red cell, and the endothelium. Annu Rev Med 1994; 45:283 - 95; http://dx.doi.org/10.1146/annurev.med.45.1.283; PMID: 8198384
  • Schofield L, Grau GE. Immunological processes in malaria pathogenesis. Nat Rev Immunol 2005; 5:722 - 35; http://dx.doi.org/10.1038/nri1686; PMID: 16138104
  • Biswas AK, Hafiz A, Banerjee B, Kim KS, Datta K, Chitnis CE. Plasmodium falciparum uses gC1qR/HABP1/p32 as a receptor to bind to vascular endothelium and for platelet-mediated clumping. PLoS Pathog 2007; 3:1271 - 80; http://dx.doi.org/10.1371/journal.ppat.0030130; PMID: 17907801
  • Hatabu T, Kawazu SI, Aikawa M, Kano S. Binding of Plasmodium falciparum-infected erythrocytes to the membrane-bound form of Fractalkine/CX3CL1. Proc Natl Acad Sci USA 2003; 100:15942 - 6; http://dx.doi.org/10.1073/pnas.2534560100; PMID: 14665693
  • Etienne-Manneville S, Manneville JB, Adamson P, Wilbourn B, Greenwood J, Couraud PO. ICAM-1-coupled cytoskeletal rearrangements and transendothelial lymphocyte migration involve intracellular calcium signaling in brain endothelial cell lines. J Immunol 2000; 165:3375 - 83; PMID: 10975856
  • Couty JP, Rampon C, Leveque M, Laran-Chich MP, Bourdoulous S, Greenwood J, et al. PECAM-1 engagement counteracts ICAM-1-induced signaling in brain vascular endothelial cells. J Neurochem 2007; 103:793 - 801; http://dx.doi.org/10.1111/j.1471-4159.2007.04782.x; PMID: 17662049
  • Pino P, Vouldoukis I, Kolb JP, Mahmoudi N, Desportes-Livage I, Bricaire F, et al. Plasmodium falciparum-Infected Erythrocyte Adhesion Induces Caspase Activation and Apoptosis in Human Endothelial Cells. J Infect Dis 2003; 187:1283 - 90; http://dx.doi.org/10.1086/373992; PMID: 12696008
  • Touré FS, Ouwe-Missi-Oukem-Boyer O, Bisvigou U, Moussa O, Rogier C, Pino P, et al. Apoptosis: a potential triggering mechanism of neurological manifestation in Plasmodium falciparum malaria. Parasite Immunol 2008; 30:47 - 51; PMID: 18086016
  • Wassmer SC, Moxon CA, Taylor T, Grau GE, Molyneux ME, Craig AG. Vascular endothelial cells cultured from patients with cerebral or uncomplicated malaria exhibit differential reactivity to TNF. Cell Microbiol 2011; 13:198 - 209; http://dx.doi.org/10.1111/j.1462-5822.2010.01528.x; PMID: 21029292
  • Siau A, Toure FS, Ouwe-Missi-Oukem-Boyer O, Ciceron L, Mahmoudi N, Vaquero C, et al. Whole-transcriptome analysis of Plasmodium falciparum field isolates: identification of new pathogenicity factors. J Infect Dis 2007; 196:1603 - 12; http://dx.doi.org/10.1086/522012; PMID: 18008243
  • Pino P, Taoufiq Z, Nitcheu J, Vouldoukis I, Mazier D. Blood-brain barrier breakdown during cerebral malaria: suicide or murder?. Thromb Haemost 2005; 94:336 - 40; PMID: 16113823
  • Faille D, El-Assaad F, Alessi MC, Fusai T, Combes V, Grau GE. Platelet-endothelial cell interactions in cerebral malaria: the end of a cordial understanding. Thromb Haemost 2009; 102:1093 - 102; PMID: 19967139
  • Deininger MH, Kremsner PG, Meyermann R, Schluesener HJ. Differential cellular accumulation of transforming growth factor-beta1, -beta2, and -beta3 in brains of patients who died with cerebral malaria. J Infect Dis 2000; 181:2111 - 5; http://dx.doi.org/10.1086/315493; PMID: 10837206
  • Rogerson SJ, Grau GE, Hunt NH. The microcirculation in severe malaria. Microcirculation 2004; 11:559 - 76; http://dx.doi.org/10.1080/10739680490503311; PMID: 15513866
  • Dondorp AM, Pongponratn E, White NJ. Reduced microcirculatory flow in severe falciparum malaria: pathophysiology and electron-microscopic pathology. Acta Trop 2004; 89:309 - 17; http://dx.doi.org/10.1016/j.actatropica.2003.10.004; PMID: 14744557
  • Migasena P, Maegraith BG. The movement of the dye (disulphine blue) from blood into brain tissue examined by dye method in normal and Plasmodium berghei-infected mice. Med J Malaya 1968; 22:252; PMID: 4234391
  • Ma N, Madigan MC, Chan-Ling T, Hunt NH. Compromised blood-nerve barrier, astrogliosis, and myelin disruption in optic nerves during fatal murine cerebral malaria. Glia 1997; 19:135 - 51; http://dx.doi.org/10.1002/(SICI)1098-1136(199702)19:2<135::AID-GLIA5>3.0.CO;2-#; PMID: 9034830
  • Thumwood CM, Hunt NH, Clark IA, Cowden WB. Breakdown of the blood-brain barrier in murine cerebral malaria. Parasitology 1988; 96:579 - 89; http://dx.doi.org/10.1017/S0031182000080203; PMID: 2457201
  • van der Heyde HC, Bauer PR, Sun G, Chang WL, Yin L, Fuseler J, et al. Assessing vascular permeability during experimental cerebral malaria by a Radiolabeled Monoclonal Antibody Technique. Infect Immun 2001; 69:3460 - 5; http://dx.doi.org/10.1128/IAI.69.5.3460-3465.2001; PMID: 11292776
  • Neill AL, Chan-Ling T, Hunt NH. Comparisons between microvascular changes in cerebral and non-cerebral malaria in mice, using the retinal whole-mount technique. Parasitology 1993; 107:477 - 87; http://dx.doi.org/10.1017/S0031182000068050; PMID: 8295787
  • Chang-Ling T, Neill AL, Hunt NH. Early microvascular changes in murine cerebral malaria detected in retinal wholemounts. Am J Pathol 1992; 140:1121 - 30; PMID: 1374593
  • Medana IM, Hunt NH, Chan-Ling T. Early activation of microglia in the pathogenesis of fatal murine cerebral malaria. Glia 1997; 19:91 - 103; http://dx.doi.org/10.1002/(SICI)1098-1136(199702)19:2<91::AID-GLIA1>3.0.CO;2-C; PMID: 9034826
  • Penet MF, Viola A, Confort-Gouny S, Le Fur Y, Duhamel G, Kober F, et al. Imaging experimental cerebral malaria in vivo: significant role of ischemic brain oedema. J Neurosci 2005; 25:7352 - 8; http://dx.doi.org/10.1523/JNEUROSCI.1002-05.2005; PMID: 16093385
  • Penet MF, Kober F, Confort-Gouny S, Le Fur Y, Dalmasso C, Coltel N, et al. Magnetic resonance spectroscopy reveals an impaired brain metabolic profile in mice resistant to cerebral malaria infected with Plasmodium berghei ANKA. J Biol Chem 2007; 282:14505 - 14; http://dx.doi.org/10.1074/jbc.M608035200; PMID: 17369263
  • Ammapawong S, Combes V, Hunt NH, Radford J, Chan-Ling T, Pongponratn E, et al. Quantitation of brain oedema and localisation of aquaporin 4 expression in relation to susceptibility to experimental cerebral malaria Int J. Clin Exp Pathol 2011; 4:566 - 74
  • Huynh HK, Dorovini-Zis K. Effects of interferon-gamma on primary cultures of human brain microvessel endothelial cells. Am J Pathol 1993; 142:1265 - 78; PMID: 8475997
  • Bauer PR, van der Heyde HC, Sun G, Specian RD, Granger DN. Regulation of endothelial cell adhesion molecule expression in an experimental model of cerebral malaria. Microcirculation 2002; 9:463 - 70; PMID: 12483543
  • von Zur Muhlen C, Sibson NR, Peter K, Campbell SJ, Wilainam P, Grau GE, et al. A contrast agent recognizing activated platelets reveals murine cerebral malaria pathology undetectable by conventional MRI. J Clin Invest 2008; 118:1198 - 207; PMID: 18274670
  • Lou J, Donati YR, Juillard P, Giroud C, Vesin C, Mili N, et al. Platelets play an important role in TNF-induced microvascular endothelial cell pathology. Am J Pathol 1997; 151:1397 - 405; PMID: 9358766
  • Cabrales P, Zanini GM, Meays D, Frangos JA, Carvalho LJ. Nitric Oxide Protection Against Murine Cerebral Malaria Is Associated With Improved Cerebral Microcirculatory Physiology. J Infect Dis 2011; 203:1454 - 63; http://dx.doi.org/10.1093/infdis/jir058; PMID: 21415018
  • Gramaglia I, Sobolewski P, Meays D, Contreras R, Nolan JP, Frangos JA, et al. Low nitric oxide bioavailability contributes to the genesis of experimental cerebral malaria. Nat Med 2006; 12:1417 - 22; http://dx.doi.org/10.1038/nm1499; PMID: 17099710
  • Potter S, Chan-Ling T, Ball HJ, Mansour H, Mitchell A, Maluish L, et al. Perforin mediated apoptosis of cerebral microvascular endothelial cells during experimental cerebral malaria. Int J Parasitol 2006; 36:485 - 96; http://dx.doi.org/10.1016/j.ijpara.2005.12.005; PMID: 16500656
  • Suidan GL, McDole JR, Chen Y, Pirko I, Johnson AJ. Induction of blood brain barrier tight junction protein alterations by CD8 T cells. PLoS ONE 2008; 3:e3037; http://dx.doi.org/10.1371/journal.pone.0003037; PMID: 18725947