7,953
Views
102
CrossRef citations to date
0
Altmetric
Review

Animal models of external traumatic wound infections

, , , , &
Pages 296-315 | Received 29 Apr 2011, Accepted 08 Jun 2011, Published online: 01 Jul 2011

References

  • Pruitt BA Jr, McManus AT, Kim SH, Goodwin CW. Burn wound infections: current status. World J Surg 1998; 22:135 - 145
  • Murray CK. Infections in burns. J Trauma 2007; 62:73
  • Cheadle WG, Turina M. Infection and organ failure in the surgical patient: a tribute to seminal contributions by Polk HC Jr. Am J Surg 2005; 190:173 - 177
  • Sebeny PJ, Riddle MS, Petersen K. Acinetobacter baumannii skin and soft-tissue infection associated with war trauma. Clin Infect Dis 2008; 47:444 - 449
  • Evans RP. Surgical site infection prevention and control: an emerging paradigm. J Bone Joint Surg Am 2009; 91:2 - 9
  • Neubauer T, Bayer GS, Wagner M. Open fractures and infection. Acta Chir Orthop Traumatol Cech 2006; 73:301 - 312
  • Broex EC, van Asselt AD, Bruggeman CA, van Tiel FH. Surgical site infections: how high are the costs?. J Hosp Infect 2009; 72:193 - 201
  • Zak O, O'Reilly T. Animal models in the evaluation of antimicrobial agents. Antimicrob Agents Chemother 1991; 35:1527 - 1531
  • Kaiser AB, Kernodle DS, Parker RA. Low-inoculum model of surgical wound infection. J Infect Dis 1992; 166:393 - 399
  • McRipley RJ, Whitney RR. Characterization and quantitation of experimental surgical-wound infections used to evaluate topical antibacterial agents. Antimicrob Agents Chemother 1976; 10:38 - 44
  • Gilpin DA. Calculation of a new Meeh constant and experimental determination of burn size. Burns 1996; 22:607 - 611
  • Rittenhouse S, Singley C, Hoover J, Page R, Payne D. Use of the surgical wound infection model to determine the efficacious dosing regimen of retapamulin, a novel topical antibiotic. Antimicrob Agents Chemother 2006; 50:3886 - 3888
  • Rupp ME, Ulphani JS, Fey PD, Bartscht K, Mack D. Characterization of the importance of polysaccharide intercellular adhesin/hemagglutinin of Staphylococcus epidermidis in the pathogenesis of biomaterial-based infection in a mouse foreign body infection model. Infect Immun 1999; 67:2627 - 2632
  • Kuklin NA, Pancari GD, Tobery TW, Cope L, Jackson J, Gill C, et al. Real-time monitoring of bacterial infection in vivo: development of bioluminescent staphylococcal foreign-body and deep-thigh-wound mouse infection models. Antimicrob Agents Chemother 2003; 47:2740 - 2748
  • Espersen F, Frimodt-Moller N, Corneliussen L, Riber U, Rosdahl VT, Skinhoj P. Effect of treatment with methicillin and gentamicin in a new experimental mouse model of foreign body infection. Antimicrob Agents Chemother 1994; 38:2047 - 2053
  • Actor P, Grappel SF. Efficacy of ceftizoxime and related compounds in animals models of infection. J Antimicrob Chemother 1982; 10:81 - 89
  • Ford CW, Hamel JC, Stapert D, Yancey RJ. Establishment of an experimental model of a Staphylococcus aureus abscess in mice by use of dextran and gelatin microcarriers. J Med Microbiol 1989; 28:259 - 266
  • Bunce C, Wheeler L, Reed G, Musser J, Barg N. Murine model of cutaneous infection with gram-positive cocci. Infect Immun 1992; 60:2636 - 2640
  • Yarboro SR, Baum EJ, Dahners LE. Locally administered antibiotics for prophylaxis against surgical wound infection. An in vivo study. J Bone Joint Surg Am 2007; 89:929 - 933
  • Cavanaugh DL, Berry J, Yarboro SR, Dahners LE. Better prophylaxis against surgical site infection with local as well as systemic antibiotics. An in vivo study. J Bone Joint Surg Am 2009; 91:1907 - 1912
  • Van Wijngaerden E, Peetermans WE, Vandersmissen J, Van Lierde S, Bobbaers H, Van Eldere J. Foreign body infection: a new rat model for prophylaxis and treatment. J Antimicrob Chemother 1999; 44:669 - 674
  • Bergamini TM, Lamont PM, Cheadle WG, Polk HC Jr. Combined topical and systemic antibiotic prophylaxis in experimental wound infection. Am J Surg 1984; 147:753 - 756
  • Fallon MT, Shafer W, Jacob E. Use of cefazolin microspheres to treat localized methicillin-resistant Staphylococcus aureus infections in rats. J Surg Res 1999; 86:97 - 102
  • Moesgaard F, Lykkegaard Nielsen MC, Justesen T. Experimental animal model of surgical wound infection applicable to antibiotic prophylaxis. Eur J Clin Microbiol 1983; 2:459 - 462
  • Stratford AF, Zoutman DE, Davidson JS. Effect of lidocaine and epinephrine on Staphylococcus aureus in a guinea pig model of surgical wound infection. Plast Reconstr Surg 2002; 110:1275 - 1279
  • Mangram AJ, Horan TC, Pearson ML, Silver LC, Jarvis WR. Guideline for prevention of surgical site infection, 1999. Hospital Infection Control Practices Advisory Committee. Infect Control Hosp Epidemiol 1999; 20:250 - 278
  • Dai T, Tegos GP, Zhiyentayev T, Mylonakis E, Hamblin MR. Photodynamic therapy for methicillin-resistant Staphylococcus aureus infection in a mouse skin abrasion model. Lasers Surg Med 2010; 42:38 - 44
  • Zolfaghari PS, Packer S, Singer M, Nair SP, Bennett J, Street C, et al. In vivo killing of Staphylococcus aureus using a light-activated antimicrobial agent. BMC Microbiol 2009; 9:27
  • Kraft WG, Johnson PT, David BC, Morgan DR. Cutaneous infection in normal and immunocompromised mice. Infect Immun 1986; 52:707 - 713
  • Hahn BL, Bischof TS, Sohnle PG. Superficial exudates of neutrophils prevent invasion of Bacillus anthracis bacilli into abraded skin of resistant mice. Int J Exp Pathol 2008; 89:180 - 187
  • Kugelberg E, Norstrom T, Petersen TK, Duvold T, Andersson DI, Hughes D. Establishment of a superficial skin infection model in mice by using Staphylococcus aureus and Streptococcus pyogenes. Antimicrob Agents Chemother 2005; 49:3435 - 3441
  • Hu Y, Shamaei-Tousi A, Liu Y, Coates A. A new approach for the discovery of antibiotics by targeting non-multiplying bacteria: a novel topical antibiotic for staphylococcal infections. PLoS One 2010; 5:11818
  • Onunkwo CC, Hahn BL, Sohnle PG. Clearance of experimental cutaneous Staphylococcus aureus infections in mice. Arch Dermatol Res 2010; 302:375 - 382
  • Gaspari AA, Burns R, Nasir A, Ramirez D, Barth RK, Haidaris CG. CD86 (B7-2), but not CD80 (B7-1), expression in the epidermis of transgenic mice enhances the immunogenicity of primary cutaneous Candida albicans infections. Infect Immun 1998; 66:4440 - 4449
  • Munster AM, Leary AG, Baird B. A simple trauma model in the rat. J Trauma 1973; 13:827 - 828
  • Jeray KJ, Banks DM, Phieffer LS, Middlebrooks ES, Frankenburg KP, Hudson MC, et al. Evaluation of standard surgical preparation performed on superficial dermal abrasions. J Orthop Trauma 2000; 14:206 - 211
  • Walker HL, Mason AD Jr. A standard animal burn. J Trauma 1968; 8:1049 - 1051
  • Fader RC, Nunez D, Unbehagen J, Linares HA. Experimental candidiasis after thermal injury. Infect Immun 1985; 49:780 - 784
  • Jones WG 2nd, Minei JP, Barber AE, Rayburn JL, Fahey TJ 3rd, Shires GT 3rd, et al. Bacterial translocation and intestinal atrophy after thermal injury and burn wound sepsis. Ann Surg 1990; 211:399 - 405
  • Salisbury RE, Bevin AG, Steinkraus GE, Enterline DS. Burn wound sepsis: effect of delayed treatment with topical chemotherapy on survival. J Trauma 1980; 20:120 - 122
  • Rode H, de Wet PM, Davies MR, Cywes S. An experimental evaluation of the germicidal efficacy of three topical antimicrobial agents in burns. Prog Pediatr Surg 1981; 14:189 - 208
  • Nakae H, Inaba H, Endo S. Usefulness of procalcitonin in Pseudomonas burn wound sepsis model. Tohoku J Exp Med 1999; 188:271 - 273
  • Barnea Y, Carmeli Y, Kuzmenko B, Gur E, Hammer-Munz O, Navon-Venezia S. The establishment of a Pseudomonas aeruginosa-infected burn-wound sepsis model and the effect of imipenem treatment. Ann Plast Surg 2006; 56:674 - 679
  • Chalekson CP, Neumeister MW, Jaynes J. Improvement in burn wound infection and survival with antimicrobial peptide D2A21 (Demegel). Plast Reconstr Surg 2002; 109:1338 - 1343
  • Steinstraesser L, Klein RD, Aminlari A, Fan MH, Khilanani V, Remick DG, et al. Protegrin-1 enhances bacterial killing in thermally injured skin. Crit Care Med 2001; 29:1431 - 1437
  • Steinstraesser L, Tack BF, Waring AJ, Hong T, Boo LM, Fan MH, et al. Activity of novispirin G10 against Pseudomonas aeruginosa in vitro and in infected burns. Antimicrob Agents Chemother 2002; 46:1837 - 1844
  • Jacobsen F, Mittler D, Hirsch T, Gerhards A, Lehnhardt M, Voss B, et al. Transient cutaneous adenoviral gene therapy with human host defense peptide hCAP-18/LL-37 is effective for the treatment of burn wound infections. Gene Ther 2005; 12:1494 - 1502
  • Ulkur E, Oncul O, Karagoz H, Celikoz B, Cavuslu S. Comparison of silver-coated dressing (Acticoat), chlorhexidine acetate 0.5% (Bactigrass) and silver sulfadiazine 1% (Silverdin) for topical antibacterial effect in Pseudomonas aeruginosa-contaminated, full-skin thickness burn wounds in rats. J Burn Care Rehabil 2005; 26:430 - 433
  • Chu CS, McManus AT, Mason AD, Pruitt BA Jr. Topical silver treatment after escharectomy of infected full thickness burn wounds in rats. J Trauma 2005; 58:1040 - 1046
  • Chu CS, McManus AT, Pruitt BA Jr, Mason AD Jr. Therapeutic effects of silver nylon dressings with weak direct current on Pseudomonas aeruginosa-infected burn wounds. J Trauma 1988; 28:1488 - 1492
  • Nakae H, Inaba H. Effectiveness of electrolyzed oxidized water irrigation in a burn-wound infection model. J Trauma 2000; 49:511 - 514
  • Gauglitz GG, Toliver-Kinsky TE, Williams FN, Song J, Cui W, Herndon DN, et al. Insulin increases resistance to burn wound infection-associated sepsis. Crit Care Med 2010; 38:202 - 208
  • Hahn EL, Tai HH, He LK, Gamelli RL. Burn injury with infection alters prostaglandin E2 synthesis and metabolism. J Trauma 1999; 47:1052 - 1057
  • White J, Thomas J, Maass DL, Horton JW. Cardiac effects of burn injury complicated by aspiration pneumonia-induced sepsis. Am J Physiol Heart Circ Physiol 2003; 285:47 - 58
  • Wang L, Quan J, Johnston WE, Maass DL, Horton JW, Thomas JA, et al. Age-dependent differences of interleukin-6 activity in cardiac function after burn complicated by sepsis. Burns 2010; 36:232 - 238
  • White J, Maass DL, Giroir B, Horton JW. Development of an acute burn model in adult mice for studies of cardiac function and cardiomyocyte cellular function. Shock 2001; 16:122 - 129
  • Horton JW. A model of myocardial inflammation and dysfunction in burn complicated by sepsis. Shock 2007; 28:326 - 333
  • Bjornson AB, Bjornson HS, Lincoln NA, Altemeier WA. Relative roles of burn injury, wound colonization and wound infection in induction of alterations of complement function in a guinea pig model of burn injury. J Trauma 1984; 24:106 - 115
  • Stieritz DD, Holder IA. Experimental studies of the pathogenesis of infections due to Pseudomonas aeruginosa: description of a burned mouse model. J Infect Dis 1975; 131:688 - 691
  • Cryz SJ Jr, Furer E, Germanier R. Prevention of fatal experimental burn-wound sepsis due to Klebsiella pneumoniae KP1-O by immunization with homologous capsular polysaccharide. J Infect Dis 1984; 150:817 - 822
  • Cryz SJ Jr, Furer F, Germanier R. Experimental Klebsiella pneumoniae burn wound sepsis: role of capsular polysaccharide. Infect Immun 1984; 43:440 - 441
  • Stover GB, Drake DR, Montie TC. Virulence of different Pseudomonas species in a burned mouse model: tissue colonization by Pseudomonas cepacia. Infect Immun 1983; 41:1099 - 1104
  • Felts AG, Giridhar G, Grainger DW, Slunt JB. Efficacy of locally delivered polyclonal immunoglobulin against Pseudomonas aeruginosa infection in a murine burn wound model. Burns 1999; 25:415 - 423
  • Katakura T, Yoshida T, Kobayashi M, Herndon DN, Suzuki F. Immunological control of methicillin-resistant Staphylococcus aureus (MRSA) infection in an immunodeficient murine model of thermal injuries. Clin Exp Immunol 2005; 142:419 - 425
  • Shigematsu K, Asai A, Kobayashi M, Herndon DN, Suzuki F. Enterococcus faecalis translocation in mice with severe burn injury: a pathogenic role of CCL2 and alternatively activated macrophages (M2aMphi and M2cMphi). J Leukoc Biol 2009; 86:999 - 1005
  • Tsuda Y, Shigematsu K, Kobayashi M, Herndon DN, Suzuki F. Role of polymorphonuclear neutrophils on infectious complications stemming from Enterococcus faecalis oral infection in thermally injured mice. J Immunol 2008; 180:4133 - 4138
  • Lyuksutova OI, Murphey ED, Toliver-Kinsky TE, Lin CY, Cui W, Williams DL, et al. Glucan phosphate treatment attenuates burn-induced inflammation and improves resistance to Pseudomonas aeruginosa burn wound infection. Shock 2005; 23:224 - 232
  • Stevens EJ, Ryan CM, Friedberg JS, Barnhill RL, Yarmush ML, Tompkins RG. A quantitative model of invasive Pseudomonas infection in burn injury. J Burn Care Rehabil 1994; 15:232 - 235
  • Lambrechts SA, Demidova TN, Aalders MC, Hasan T, Hamblin MR. Photodynamic therapy for Staphylococcus aureus infected burn wounds in mice. Photochem Photobiol Sci 2005; 4:503 - 509
  • Dai T, Tegos GP, Lu Z, Huang L, Zhiyentayev T, Franklin MJ, et al. Photodynamic therapy for Acinetobacter baumannii burn infections in mice. Antimicrob Agents Chemother 2009; 53:3929 - 3934
  • Dai T, Tegos GP, Burkatovskaya M, Castano AP, Hamblin MR. Chitosan acetate bandage as a topical antimicrobial dressing for infected burns. Antimicrob Agents Chemother 2009; 53:393 - 400
  • Ragas X, Sanchez-Garcia D, Ruiz-Gonzalez R, Dai T, Agut M, Hamblin MR, et al. Cationic porphycenes as potential photosensitizers for antimicrobial photodynamic therapy. J Med Chem 2010; 53:7796 - 7803
  • Busch NA, Zanzot EM, Loiselle PM, Carter EA, Allaire JE, Yarmush ML, et al. A model of infected burn wounds using Escherichia coli O18:K1:H7 for the study of Gram-negative bacteremia and sepsis. Infect Immun 2000; 68:3349 - 3351
  • Orenstein A, Klein D, Kopolovic J, Winkler E, Malik Z, Keller N, et al. The use of porphyrins for eradication of Staphylococcus aureus in burn wound infections. FEMS Immunol Med Microbiol 1997; 19:307 - 314
  • Stinnett JD, Loose LD, Miskell P, Tenney CL, Gonce SJ, Alexander JW. Synthetic immunomodulators for prevention of fatal infections in a burned guinea pig model. Ann Surg 1983; 198:53 - 57
  • Singer AJ, McClain SA. Persistent wound infection delays epidermal maturation and increases scarring in thermal burns. Wound Repair Regen 2002; 10:372 - 377
  • Breuing K, Kaplan S, Liu P, Onderdonk AB, Eriksson E. Wound fluid bacterial levels exceed tissue bacterial counts in controlled porcine partial-thickness burn infections. Plast Reconstr Surg 2003; 111:781 - 788
  • Wolfe RR, Miller HI. Burn shock in untreated and saline-resuscitated guinea pigs. Development of a model. J Surg Res 1976; 21:269 - 276
  • Herndon DN, Wilmore DW, Mason AD Jr. Development and analysis of a small animal model simulating the human postburn hypermetabolic response. J Surg Res 1978; 25:394 - 403
  • Kaufman T, Lusthaus SN, Sagher U, Wexler MR. Deep partial skin thickness burns: a reproducible animal model to study burn wound healing. Burns 1990; 16:13 - 16
  • Branski LK, Mittermayr R, Herndon DN, Norbury WB, Masters OE, Hofmann M, et al. A porcine model of full-thickness burn, excision and skin autografting. Burns 2008; 34:1119 - 1127
  • Manafi A, Kohanteb J, Mehrabani D, Japoni A, Amini M, Naghmachi M, et al. Active immunization using exotoxin A confers protection against Pseudomonas aeruginosa infection in a mouse burn model. BMC Microbiol 2009; 9:23
  • Kumari S, Harjai K, Chhibber S. Topical treatment of Klebsiella pneumoniae B5055 induced burn wound infection in mice using natural products. J Infect Dev Ctries 2010; 4:367 - 377
  • Calum H, Moser C, Jensen PO, Christophersen L, Maling DS, van Gennip M, et al. Thermal injury induces impaired function in polymorphonuclear neutrophil granulocytes and reduced control of burn wound infection. Clin Exp Immunol 2009; 156:102 - 110
  • Bahar T, Bilezikci B, Maral T, Borman H. A modified partial-thickness burn model in rats. Burns 2007; 33:52 - 53
  • Suzuki T, Hirayama T, Aihara K, Hirohata Y. Experimental studies of moderate temperature burns. Burns 1991; 17:443 - 451
  • Hollander JE, Singer AJ, Valentine SM, Shofer FS. Risk factors for infection in patients with traumatic lacerations. Acad Emerg Med 2001; 8:716 - 720
  • Edlich RF, Tsung MS, Rogers W, Rogers P, Wangensteen OH. Studies in management of the contaminated wound. I. Technique of closure of such wounds together with a note on a reproducible experimental model. J Surg Res 1968; 8:585 - 592
  • Edlich RF, Prusak M, Panek P, Madden J, Wangensteen OH, Thul J. Studies in the management of the contaminated wound. 8. Assessment of tissue adhesives for repair of contaminated tissue. Am J Surg 1971; 122:394 - 397
  • Edlich RF, Madden JE, Prusak M, Panek P, Thul J, Wangensteen OH. Studies in the management of the contaminated wound. VI. The therapeutic value of gentle scrubbing in prolonging the limited period of effectiveness of antibiotics in contaminated wounds. Am J Surg 1971; 121:668 - 672
  • Custer J, Edlich RF, Prusak M, Madden J, Panek P, Wangensteen OH. Studies in the management of the contaminated wound. V. An assessment of the effectiveness of pHisoHex and Betadine surgical scrub solutions. Am J Surg 1971; 121:572 - 575
  • Edlich RF, Custer J, Madden J, Dajani AS, Rogers W, Wangensteen OH. Studies in management of the contaminated wound. 3. Assessment of the effectiveness of irrigation with antiseptic agents. Am J Surg 1969; 118:21 - 30
  • Edlich RF, Rogers W, Kasper G, Kaufman D, Tsung MS, Wangensteen OH. Studies in the management of the contaminated wound. I. Optimal time for closure of contaminated open wounds. II. Comparison of resistance to infection of open and closed wounds during healing. Am J Surg 1969; 117:323 - 329
  • Howell JM, Dhindsa HS, Stair TO, Edwards BA. Effect of scrubbing and irrigation on staphylococcal and streptococcal counts in contaminated lacerations. Antimicrob Agents Chemother 1993; 37:2754 - 2755
  • Howell JM, Bresnahan KA, Stair TO, Dhindsa HS, Edwards BA. Comparison of effects of suture and cyanoacrylate tissue adhesive on bacterial counts in contaminated lacerations. Antimicrob Agents Chemother 1995; 39:559 - 560
  • Moscati R, Mayrose J, Fincher L, Jehle D. Comparison of normal saline with tap water for wound irrigation. Am J Emerg Med 1998; 16:379 - 381
  • Lammers R, Henry C, Howell J. Bacterial counts in experimental, contaminated crush wounds irrigated with various concentrations of cefazolin and penicillin. Am J Emerg Med 2001; 19:1 - 5
  • Gross A, Cutright DE, Bhaskar SN. Effectiveness of pulsating water jet lavage in treatment of contaminated crushed wounds. Am J Surg 1972; 124:373 - 377
  • Erdur B, Ersoy G, Yilmaz O, Ozkutuk A, Sis B, Karcioglu O, et al. A comparison of the prophylactic uses of topical mupirocin and nitrofurazone in murine crush contaminated wounds. Am J Emerg Med 2008; 26:137 - 143
  • Hamblin MR, O'Donnell DA, Murthy N, Contag CH, Hasan T. Rapid control of wound infections by targeted photodynamic therapy monitored by in vivo bioluminescence imaging. Photochem Photobiol 2002; 75:51 - 57
  • Burkatovskaya M, Tegos GP, Swietlik E, Demidova TN, A PC, Hamblin MR. Use of chitosan bandage to prevent fatal infections developing from highly contaminated wounds in mice. Biomaterials 2006; 27:4157 - 4164
  • Burkatovskaya M, Castano AP, Demidova-Rice TN, Tegos GP, Hamblin MR. Effect of chitosan acetate bandage on wound healing in infected and noninfected wounds in mice. Wound Repair Regen 2008; 16:425 - 431
  • Simonetti O, Cirioni O, Ghiselli R, Goteri G, Scalise A, Orlando F, et al. RNAIII-inhibiting peptide enhances healing of wounds infected with methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother 2008; 52:2205 - 2211
  • Mahoney E, Reichner J, Bostom LR, Mastrofrancesco B, Henry W, Albina J. Bacterial colonization and the expression of inducible nitric oxide synthase in murine wounds. Am J Pathol 2002; 161:2143 - 2152
  • Shi CM, Nakao H, Yamazaki M, Tsuboi R, Ogawa H. Mixture of sugar and povidone-iodine stimulates healing of MRSA-infected skin ulcers on db/db mice. Arch Dermatol Res 2007; 299:449 - 456
  • Schierle CF, De la Garza M, Mustoe TA, Galiano RD. Staphylococcal biofilms impair wound healing by delaying reepithelialization in a murine cutaneous wound model. Wound Repair Regen 2009; 17:354 - 359
  • Martinez LR, Han G, Chacko M, Mihu MR, Jacobson M, Gialanella P, et al. Antimicrobial and healing efficacy of sustained release nitric oxide nanoparticles against Staphylococcus aureus skin infection. J Invest Dermatol 2009; 129:2463 - 2469
  • Nayak BS, Maiya A, Kumar P. Influence of Helium-Neon laser photostimulation on excision wound healing in Wistar Rats. OnLine J Biol Sci 2007; 7:89 - 92
  • Chalekson CP, Neumeister MW, Jaynes J. Treatment of infected wounds with the antimicrobial peptide D2A21. J Trauma 2003; 54:770 - 774
  • Bracho DO, Barsan L, Arekapudi SR, Thompson JA, Hen J, Stern SA, et al. Antibacterial properties of an iron-based hemostatic agent in vitro and in a rat wound model. Acad Emerg Med 2009; 16:656 - 660
  • Adhirajan N, Shanmugasundaram N, Shanmuganathan S, Babu M. Collagen-based wound dressing for doxycycline delivery: in-vivo evaluation in an infected excisional wound model in rats. J Pharm Pharmacol 2009; 61:1617 - 1623
  • Saymen DG, Nathan P, Holder IA, Hill EO, Macmillan BG. Infected surface wound: an experimental model and a method for the quantitation of bacteria in infected tissues. Appl Microbiol 1972; 23:509 - 514
  • Fries RB, Wallace WA, Roy S, Kuppusamy P, Bergdall V, Gordillo GM, et al. Dermal excisional wound healing in pigs following treatment with topically applied pure oxygen. Mutat Res 2005; 579:172 - 181
  • Hirsch T, Spielmann M, Zuhaili B, Koehler T, Fossum M, Steinau HU, et al. Enhanced susceptibility to infections in a diabetic wound healing model. BMC Surg 2008; 8:5
  • Hirsch T, Spielmann M, Zuhaili B, Fossum M, Metzig M, Koehler T, et al. Human beta-defensin-3 promotes wound healing in infected diabetic wounds. J Gene Med 2009; 11:220 - 228
  • Kilpadi DV, Feeley TD, Kiel JW. Therapy normalizes vascular response of injured tissue in full-thickness wounds in rabbits. Ann Plast Surg 2007; 58:555 - 560
  • Quinn RH, Macias DJ. The management of open fractures. Wilderness Environ Med 2006; 17:41 - 48
  • Worlock P, Slack R, Harvey L, Mawhinney R. The prevention of infection in open fractures. An experimental study of the effect of antibiotic therapy. J Bone Joint Surg Am 1988; 70:1341 - 1347
  • Jacob E, Cierny G 3rd, Fallon MT, McNeill JF Jr, Siderys GS. Evaluation of biodegradable cefazolin sodium microspheres for the prevention of infection in rabbits with experimental open tibial fractures stabilized with internal fixation. J Orthop Res 1993; 11:404 - 411
  • Jacob E, Cierny G 3rd, Zorn K, McNeill JF, Fallon MT. Delayed local treatment of rabbit tibial fractures with biodegradable cefazolin microspheres. Clin Orthop Relat Res 1997; 278 - 285
  • Arens S, Schlegel U, Printzen G, Ziegler WJ, Perren SM, Hansis M. Influence of materials for fixation implants on local infection. An experimental study of steel versus titanium DCP in rabbits. J Bone Joint Surg Br 1996; 78:647 - 651
  • Arens S, Eijer H, Schlegel U, Printzen G, Perren SM, Hansis M. Influence of the design for fixation implants on local infection: experimental study of dynamic compression plates versus point contact fixators in rabbits. J Orthop Trauma 1999; 13:470 - 476
  • Khodaparast O, Coberly DM, Mathey J, Rohrich RJ, Levin LS, Brown SA. Effect of a transpositional muscle flap on VEGF mRNA expression in a canine fracture model. Plast Reconstr Surg 2003; 112:171 - 176
  • Buxton TB, Travis MT, O'Shea KJ, McPherson JC 3rd, Harvey SB, Plowman KM, et al. Low-dose infectivity of Staphylococcus aureus (SMH strain) in traumatized rat tibiae provides a model for studying early events in contaminated bone injuries. Comp Med 2005; 55:123 - 128
  • Hill PF, Clasper JC, Parker SJ, Watkins PE. Early intramedullary nailing in an animal model of a heavily contaminated fracture of the tibia. J Orthop Res 2002; 20:648 - 653
  • Svoboda SJ, Bice TG, Gooden HA, Brooks DE, Thomas DB, Wenke JC. Comparison of bulb syringe and pulsed lavage irrigation with use of a bioluminescent musculoskeletal wound model. J Bone Joint Surg Am 2006; 88:2167 - 2174
  • Curtis MJ, Brown PR, Dick JD, Jinnah RH. Contaminated fractures of the tibia: a comparison of treatment modalities in an animal model. J Orthop Res 1995; 13:286 - 295
  • Lindsey BA, Clovis NB, Smith ES, Salihu S, Hubbard DF. An animal model for open femur fracture and osteomyelitis: Part I. J Orthop Res 2010; 28:38 - 42
  • Lindsey BA, Clovis NB, Smith ES, Salihu S, Hubbard DF. An animal model for open femur fracture and osteomyelitis—Part II: Immunomodulation with systemic IL-12. J Orthop Res 2010; 28:43 - 47
  • Li B, Jiang B, Dietz MJ, Smith ES, Clovis NB, Rao KM. Evaluation of local MCP-1 and IL-12 nano-coatings for infection prevention in open fractures. J Orthop Res 2010; 28:48 - 54
  • Stewart RL, Cox JT, Volgas D, Stannard J, Duffy L, Waites KB, et al. The use of a biodegradable, load-bearing scaffold as a carrier for antibiotics in an infected open fracture model. J Orthop Trauma 2010; 24:587 - 591
  • Brown KV, Walker JA, Cortez DS, Murray CK, Wenke JC. Earlier debridement and antibiotic administration decrease infection. J Surg Orthop Adv 2010; 19:18 - 22
  • Merritt K, Dowd JD. Role of internal fixation in infection of open fractures: studies with Staphylococcus aureus and Proteus mirabilis. J Orthop Res 1987; 5:23 - 28
  • Grewe SR, Stephens BO, Perlino C, Riggins RS. Influence of internal fixation on wound infections. J Trauma 1987; 27:1051 - 1054
  • Mody RM, Zapor M, Hartzell JD, Robben PM, Waterman P, Wood-Morris R, et al. Infectious complications of damage control orthopedics in war trauma. J Trauma 2009; 67:758 - 761
  • Johnson EN, Burns TC, Hayda RA, Hospenthal DR, Murray CK. Infectious complications of open type III tibial fractures among combat casualties. Clin Infect Dis 2007; 45:409 - 415
  • An YH, Kang QK, Arciola CR. Animal models of osteomyelitis. Int J Artif Organs 2006; 29:407 - 420
  • Flajnik MF. Comparative analyses of immunoglobulin genes: surprises and portents. Nat Rev Immunol 2002; 2:688 - 698
  • Buer J, Balling R. Mice, microbes and models of infection. Nat Rev Genet 2003; 4:195 - 205
  • Zanotti-Cavazzoni SL, Goldfarb RD. Animal models of sepsis. Crit Care Clin 2009; 25:703 - 719
  • Neely AN, Holder IA, Warden GD. Then and now: studies using a burned mouse model reflect trends in burn research over the past 25 years. Burns 1999; 25:603 - 609
  • Rocchetta HL, Boylan CJ, Foley JW, Iversen PW, LeTourneau DL, McMillian CL, et al. Validation of a noninvasive, real-time imaging technology using bioluminescent Escherichia coli in the neutropenic mouse thigh model of infection. Antimicrob Agents Chemother 2001; 45:129 - 137
  • Francis KP, Joh D, Bellinger-Kawahara C, Hawkinson MJ, Purchio TF, Contag PR. Monitoring bioluminescent Staphylococcus aureus infections in living mice using a novel luxABCDE construct. Infect Immun 2000; 68:3594 - 3600
  • Francis KP, Yu J, Bellinger-Kawahara C, Joh D, Hawkinson MJ, Xiao G, et al. Visualizing pneumococcal infections in the lungs of live mice using bioluminescent Streptococcus pneumoniae transformed with a novel gram-positive lux transposon. Infect Immun 2001; 69:3350 - 3358
  • Demidova TN, Gad F, Zahra T, Francis KP, Hamblin MR. Monitoring photodynamic therapy of localized infections by bioluminescence imaging of genetically engineered bacteria. J Photochem Photobiol B 2005; 81:15 - 25
  • Thorn RM, Greenman J. A novel in vitro flat-bed perfusion biofilm model for determining the potential antimicrobial efficacy of topical wound treatments. J Appl Microbiol 2009; 107:2070 - 2079
  • Jawhara S, Mordon S. Monitoring of bactericidal action of laser by in vivo imaging of bioluminescent E. coli in a cutaneous wound infection. Lasers Med Sci 2006; 21:153 - 159
  • Jawhara S, Mordon S. In vivo imaging of bioluminescent Escherichia coli in a cutaneous wound infection model for evaluation of an antibiotic therapy. Antimicrob Agents Chemother 2004; 48:3436 - 3441
  • Enjalbert B, Rachini A, Vediyappan G, Pietrella D, Spaccapelo R, Vecchiarelli A, et al. A multifunctional, synthetic Gaussia princeps luciferase reporter for live imaging of Candida albicans infections. Infect Immun 2009; 77:4847 - 4858