2,033
Views
89
CrossRef citations to date
0
Altmetric
Review

Drosophila and Galleria insect model hosts

New tools for the study of fungal virulence, pharmacology and immunology

Pages 521-527 | Received 24 Oct 2011, Accepted 25 Oct 2011, Published online: 01 Nov 2011

References

  • Singh N. Trends in the epidemiology of opportunistic fungal infections: predisposing factors and the impact of antimicrobial use practices. Clin Infect Dis 2001; 33:1692 - 1696; PMID: 11641825; http://dx.doi.org/10.1086/323895
  • Mylonakis E, Aballay A. Worms and flies as genetically tractable animal models to study host-pathogen interactions. Infect Immun 2005; 73:3833 - 3841; PMID: 15972468; http://dx.doi.org/10.1128/IAI.73.7.3833-41.2005
  • Chamilos G, Lionakis MS, Lewis RE, Kontoyiannis DP. Role of mini-host models in the study of medically important fungi. Lancet Infect Dis 2007; 7:42 - 55; PMID: 17182343; http://dx.doi.org/10.1016/S14733099(06)70686-7
  • Olsen RJ, Watkins ME, Cantu CC, Beres SB, Musser JM. Virulence of serotype M3 Group A Streptococcus strains in wax worms (Galleria mellonella larvae). Virulence 2011; 2:111 - 119; PMID: 21258213; http://dx.doi.org/10.4161/viru.2.2.14338
  • Abebe E, Abebe-Akele F, Morrison J, Cooper V, Thomas WK. An insect pathogenic symbiosis between a Caenorhabditis and Serratia. Virulence 2011; 2:158 - 161; PMID: 21389770; http://dx.doi.org/10.4161/viru.2.2.15337
  • Peleg AY, Jara S, Monga D, Eliopoulos GM, Moellering RC Jr, Mylonakis E. Galleria mellonella as a model system to study Acinetobacter baumannii pathogenesis and therapeutics. Antimicrob Agents Chemother 2009; 53:2605 - 2609; PMID: 19332683; http://dx.doi.org/10.1128/AAC.01533-08
  • Mylonakis E, Casadevall A, Ausubel FM. Exploiting amoeboid and non-vertebrate animal model systems to study the virulence of human pathogenic fungi. PLoS Pathog 2007; 3:101; PMID: 17676994; http://dx.doi.org/10.1371/journal.ppat.0030101
  • Pukkila-Worley R, Mylonakis E. From the outside in and the inside out: Antifungal immune responses in Caenorhabditis elegans. Virulence 2010; 1:111 - 112; PMID: 21178428; http://dx.doi.org/10.4161/viru.1.3.11746
  • Hariharan IK, Haber DA. Yeast, flies, worms and fish in the study of human disease. N Engl J Med 2003; 348:2457 - 2463; PMID: 12802034; http://dx.doi.org/10.1056/NEJMon023158
  • Lemaitre B, Nicolas E, Michaut L, Reichhart JM, Hoffmann JA. The dorsoventral regulatory gene cassette spätzle/Toll/cactus controls the potent antifungal response in Drosophila adults. Cell 1996; 86:973 - 983; PMID: 8808632; http://dx.doi.org/10.1016/S00928674(00)80172-5
  • Lionakis MS, Lewis RE, May GS, Wiederhold NP, Albert ND, Halder G, et al. Toll-deficient Drosophila flies as a fast, high-throughput model for the study of antifungal drug efficacy against invasive aspergillosis and Aspergillus virulence. J Infect Dis 2005; 191:1188 - 1195; PMID: 15747256; http://dx.doi.org/10.1086/428587
  • Chamilos G, Lewis RE, Hu J, Xiao L, Zal T, Gilliet M, et al. Drosophila melanogaster as a model host to dissect the immunopathogenesis of zygomycosis. Proc Natl Acad Sci USA 2008; 105:9367 - 9372; PMID: 18583479; http://dx.doi.org/10.1073/pnas.0709578105
  • Lamaris GA, Chamilos G, Lewis RE, Kontoyiannis DP. Virulence studies of Scedosporium and Fusarium species in Drosophila melanogaster. J Infect Dis 2007; 196:1860 - 1864; PMID: 18190268; http://dx.doi.org/10.1086/523765
  • Chamilos G, Lionakis MS, Lewis RE, Lopez-Ribot JL, Saville SP, Albert ND, et al. Drosophila melanogaster as a facile model for large-scale studies of virulence mechanisms and antifungal drug efficacy in Candida species. J Infect Dis 2006; 193:1014 - 1022; PMID: 16518764; http://dx.doi.org/10.1086/500950
  • Apidianakis Y, Rahme LG, Heitman J, Ausubel FM, Calderwood SB, Mylonakis E. Challenge of Drosophila melanogaster with Cryptococcus neoformans and role of the innate immune response. Eukaryot Cell 2004; 3:413 - 419; PMID: 15075271; http://dx.doi.org/10.1128/EC.3.2.413-9.2004
  • Evans SE, Leventakos K, Ben-Ami R, You D, Thakkar SG, Lewis RE, et al. Toll-deficient Drosophila are resistant to infection by Pneumocystis spp: additional evidence of specificity to mammalian hosts. Virulence 2010; 1:523 - 525; PMID: 21178507; http://dx.doi.org/10.4161/viru.1.6.13903
  • Reeves EP, Messina CG, Doyle S, Kavanagh K. Correlation between gliotoxin production and virulence of Aspergillus fumigatus in Galleria mellonella. Mycopathologia 2004; 158:73 - 79; PMID: 15487324; http://dx.doi.org/10.1023/B:MYCO.0000038434.55764.16
  • Navarro-Velasco GY, Prados-Rosales RC, Ortíz-Urquiza A, Quesada-Moraga E, Di Pietro A. Galleria mellonella as model host for the trans-kingdom pathogen Fusarium oxysporum. Fungal Genet Biol 2011; In press; PMID: 21907298; http://dx.doi.org/10.1016/j.fgb.2011.08.004
  • Cotter G, Doyle S, Kavanagh K. Development of an insect model for the in vivo pathogenicity testing of yeasts. FEMS Immunol Med Microbiol 2000; 27:163 - 169; PMID: 10640612; http://dx.doi.org/10.1111/j.1574-695X.2000.tb01427.x
  • Mylonakis E, Moreno R, El Khoury JB, Idnurm A, Heitman J, Calderwood SB, et al. Galleria mellonella as a model system to study Cryptococcus neoformans pathogenesis. Infect Immun 2005; 73:3842 - 3850; PMID: 15972469; http://dx.doi.org/10.1128/IAI.73.7.3842-50.2005
  • Fuchs BB, Bishop LR, Kovacs JA, Mylonakis E. Galleria mellonella are resistant to Pneumocystis murina infection. Mycopathologia 2011; 171:273 - 277; PMID: 20922567; http://dx.doi.org/10.1007/s11046010-9368-4
  • Li W, Metin B, White TC, Heitman J. Organization and evolutionary trajectory of the mating type (MAT) locus in dermatophyte and dimorphic fungal pathogens. Eukaryot Cell 2010; 9:46 - 58; PMID: 19880755; http://dx.doi.org/10.1128/EC.00259-09
  • Hamamoto H, Kurokawa K, Kaito C, Kamura K, Manitra Razanajatovo I, Kusuhara H, et al. Quantitative evaluation of the therapeutic effects of antibiotics using silkworms infected with human pathogenic microorganisms. Antimicrob Agents Chemother 2004; 48:774 - 779; PMID: 14982763; http://dx.doi.org/10.1128/AAC.48.3.774-9.2004
  • Johnson CH, Ayyadevara S, McEwen JE, Shmookler Reis RJ. Histoplasma capsulatum and Caenorhabditis elegans: a simple nematode model for an innate immune response to fungal infection. Med Mycol 2009; 47:808 - 813; PMID: 20028234; http://dx.doi.org/10.3109/13693780802660532
  • Pukkila-Worley R, Peleg AY, Tampakakis E, Mylonakis E. Candida albicans hyphal formation and virulence assessed using a Caenorhabditis elegans infection model. Eukaryot Cell 2009; 8:1750 - 1758; PMID: 19666778; http://dx.doi.org/10.1128/EC.00163-09
  • Mylonakis E, Ausubel FM, Perfect JR, Heitman J, Calderwood SB. Killing of Caenorhabditis elegans by Cryptococcus neoformans as a model of yeast pathogenesis. Proc Natl Acad Sci USA 2002; 99:15675 - 15680; PMID: 12438649; http://dx.doi.org/10.1073/pnas.232568599
  • Steenbergen JN, Nosanchuk JD, Malliaris SD, Casadevall A. Interaction of Blastomyces dermatitidis, Sporothrix schenckii and Histoplasma capsulatum with Acanthamoeba castellanii. Infect Immun 2004; 72:3478 - 3488; PMID: 15155655; http://dx.doi.org/10.1128/IAI.72.6.3478-88.2004
  • Steenbergen JN, Shuman HA, Casadevall A. Cryptococcus neoformans interactions with amoebae suggest an explanation for its virulence and intracellular pathogenic strategy in macrophages. Proc Natl Acad Sci USA 2001; 98:15245 - 15250; PMID: 11742090; http://dx.doi.org/10.1073/pnas.261418798
  • Steenbergen JN, Nosanchuk JD, Malliaris SD, Casadevall A. Cryptococcus neoformans virulence is enhanced after growth in the genetically malleable host Dictyostelium discoideum. Infect Immun 2003; 71:4862 - 4872; PMID: 12933827; http://dx.doi.org/10.1128/IAI.71.9.4862-72.2003
  • Da Silva JB, De Albuquerque CM, De Araújo EC, Peixoto CA, Hurd H. Immune defense mechanisms of Culex quinquefasciatus (Diptera: Culicidae) against Candida albicans infection. J Invertebr Pathol 2000; 76:257 - 262; PMID: 11112370; http://dx.doi.org/10.1006/jipa.2000.4980
  • Kulshrestha V, Pathak SC. Aspergillosis in German cockroach Blattella germanica (L.) (Blattoidea: Blattellidae). Mycopathologia 1997; 139:75 - 78; PMID: 9549100; http://dx.doi.org/10.1023/A:1006859620780
  • Thatcher LF, Gardiner DM, Kazan K, Manners J. A highly conserved effector in Fusarium oxysporum is required for full virulence on Arabidopsis. Mol Plant Microbe Interact 2011; In press PMID: 21942452; http://dx.doi.org/10.1094/MPMI-08-11-0212
  • Alarco AM, Marcil A, Chen J, Suter B, Thomas D, Whiteway M. Immune-deficient Drosophila melanogaster: a model for the innate immune response to human fungal pathogens. J Immunol 2004; 172:5622 - 5628; PMID: 15100306
  • Pukkila-Worley R, Ausubel FM, Mylonakis E. Candida albicans infection of Caenorhabditis elegans induces antifungal immune defenses. PLoS Pathog 2011; 7:1002074; PMID: 21731485; http://dx.doi.org/10.1371/journal.ppat.1002074
  • Simonsen KT, Møller-Jensen J, Kristensen AR, Andersen JS, Riddle DL, Kallipolitis BH. Quantitative proteomics identifies ferritin in the innate immune response of C. elegans. Virulence 2011; 2:120 - 130; PMID: 21389771; http://dx.doi.org/10.4161/viru.2.2.15270
  • Means TK. Fungal pathogen recognition by scavenger receptors in nematodes and mammals. Virulence 2010; 1:37 - 41; PMID: 21178411; http://dx.doi.org/10.4161/viru.1.1.10228
  • Nierman WC, Pain A, Anderson MJ, Wortman JR, Kim HS, Arroyo J, et al. Genomic sequence of the pathogenic and allergenic filamentous fungus Aspergillus fumigatus. Nature 2005; 438:1151 - 1156; PMID: 16372009; http://dx.doi.org/10.1038/nature04332
  • Jones T, Federspiel NA, Chibana H, Dungan J, Kalman S, Magee BB, et al. The diploid genome sequence of Candida albicans. Proc Natl Acad Sci USA 2004; 101:7329 - 7334; PMID: 15123810; http://dx.doi.org/10.1073/pnas.0401648101
  • Loftus BJ, Fung E, Roncaglia P, Rowley D, Amedeo P, Bruno D, et al. The genome of the basidiomycetous yeast and human pathogen Cryptococcus neoformans. Science 2005; 307:1321 - 1324; PMID: 15653466; http://dx.doi.org/10.1126/science.1103773
  • Chamilos G, Nobile CJ, Bruno VM, Lewis RE, Mitchell AP, Kontoyiannis DP. Candida albicans Cas5, a regulator of cell wall integrity, is required for virulence in murine and toll mutant fly models. J Infect Dis 2009; 200:152 - 157; PMID: 19463063; http://dx.doi.org/10.1086/599363
  • Lionakis MS, Kontoyiannis DP. The growing promise of Toll-deficient Drosophila melanogaster as a model for studying Aspergillus pathogenesis and treatment. Virulence 2010; 1:488 - 499; PMID: 21178494; http://dx.doi.org/10.4161/viru.1.6.13311
  • Fuchs BB, O'Brien E, Khoury JB, Mylonakis E. Methods for using Galleria mellonella as a model host to study fungal pathogenesis. Virulence 2010; 1:475 - 482; PMID: 21178491; http://dx.doi.org/10.4161/viru.1.6.12985
  • Glittenberg MT, Silas S, MacCallum DM, Gow NA, Ligoxygakis P. Wild-type Drosophila melanogaster as an alternative model system for investigating the pathogenicity of Candida albicans. Dis Model Mech 2011; 4:504 - 514; PMID: 21540241; http://dx.doi.org/10.1242/dmm.006619
  • Chamilos G, Bignell EM, Schrettl M, Lewis RE, Leventakos K, May GS, et al. Exploring the concordance of Aspergillus fumigatus pathogenicity in mice and Toll-deficient flies. Med Mycol 2010; 48:506 - 510; PMID: 20370364; http://dx.doi.org/10.3109/13693780903225813
  • Brennan M, Thomas DY, Whiteway M, Kavanagh K. Correlation between virulence of Candida albicans mutants in mice and Galleria mellonella larvae. FEMS Immunol Med Microbiol 2002; 34:153 - 157; PMID: 12381467; http://dx.doi.org/10.1111/j.1574695X.2002.tb00617.x
  • Vilcinskas A. Coevolution between pathogen-derived proteinases and proteinase inhibitors of host insects. Virulence 2010; 1:206 - 214; PMID: 21178444; http://dx.doi.org/10.4161/viru.1.3.12072
  • Bhabhra R, Miley MD, Mylonakis E, Boettner D, Fortwendel J, Panepinto JC, et al. Disruption of the Aspergillus fumigatus gene encoding nucleolar protein CgrA impairs thermotolerant growth. Infect Immun 2004; 72:4731 - 4740; PMID: 15271935; http://dx.doi.org/10.1128/IAI.72.8.4731-40.2004
  • Mowlds P, Kavanagh K. Effect of pre-incubation temperature on susceptibility of Galleria mellonella larvae to infection by Candida albicans. Mycopathologia 2008; 165:5 - 12; PMID: 17922218; http://dx.doi.org/10.1007/s11046-007-9069-9
  • Wojda I, Jakubowicz T. Humoral immune response upon mild heat-shock conditions in Galleria mellonella larvae. J Insect Physiol 2007; 53:1134 - 1144; PMID: 17631308; http://dx.doi.org/10.1016/j.jinsphys.2007.06.003
  • Tsai HF, Chang YC, Washburn RG, Wheeler MH, Kwon-Chung KJ. The developmentally regulated alb1 gene of Aspergillus fumigatus: its role in modulation of conidial morphology and virulence. J Bacteriol 1998; 180:3031 - 3038; PMID: 9620950
  • Jackson JC, Higgins LA, Lin X. Conidiation color mutants of Aspergillus fumigatus are highly pathogenic to the heterologous insect host Galleria mellonella. PLoS ONE 2009; 4:4224; PMID: 19156203; http://dx.doi.org/10.1371/journal.pone.0004224
  • Rosamond J, Allsop A. Harnessing the power of the genome in the search for new antibiotics. Science 2000; 287:1973 - 1976; PMID: 10720317; http://dx.doi.org/10.1126/science.287.5460.1973
  • Gootz TD. Discovery and development of new antimicrobial agents. Clin Microbiol Rev 1990; 3:13 - 31; PMID: 2404566
  • Breger J, Fuchs BB, Aperis G, Moy TI, Ausubel FM, Mylonakis E. Antifungal chemical compounds identified using a C. elegans pathogenicity assay. PLoS Pathog 2007; 3:18; PMID: 17274686; http://dx.doi.org/10.1371/journal.ppat.0030018
  • Chang S, Bray SM, Li Z, Zarnescu DC, He C, Jin P, et al. Identification of small molecules rescuing fragile X syndrome phenotypes in Drosophila. Nat Chem Biol 2008; 4:256 - 263; PMID: 18327252; http://dx.doi.org/10.1038/nchembio.78
  • Cowen LE, Singh SD, Köhler JR, Collins C, Zaas AK, Schell WA, et al. Harnessing Hsp90 function as a powerful, broadly effective therapeutic strategy for fungal infectious disease. Proc Natl Acad Sci USA 2009; 106:2818 - 2823; PMID: 19196973; http://dx.doi.org/10.1073/pnas.0813394106
  • Manev H, Dimitrijevic N, Dzitoyeva S. Techniques: fruit flies as models for neuropharmacological research. Trends Pharmacol Sci 2003; 24:41 - 43; PMID: 12498730; http://dx.doi.org/10.1016/S01656147(02)00004-4
  • Cronin SJ, Nehme NT, Limmer S, Liegeois S, Pospisilik JA, Schramek D, et al. Genome-wide RNAi screen identifies genes involved in intestinal pathogenic bacterial infection. Science 2009; 325:340 - 343; PMID: 19520911; http://dx.doi.org/10.1126/science.1173164
  • Vogel H, Altincicek B, Glöckner G, Vilcinskas A. A comprehensive transcriptome and immune-gene repertoire of the lepidopteran model host Galleria mellonella. BMC Genomics 2011; 12:308; PMID: 21663692; http://dx.doi.org/10.1186/1471-2164-12-308
  • Ha EM, Oh CT, Bae YS, Lee WJ. A direct role for dual oxidase in Drosophila gut immunity. Science 2005; 310:847 - 850; PMID: 6272120; http://dx.doi.org/10.1126/science.1117311
  • Tzou P, Ohresser S, Ferrandon D, Capovilla M, Reichhart JM, Lemaitre B, et al. Tissue-specific inducible expression of antimicrobial peptide genes in Drosophila surface epithelia. Immunity 2000; 13:737 - 748; PMID: 11114385; http://dx.doi.org/10.1016/S1074-7613(00)00072-8
  • Apidianakis Y, Rahme LG. Drosophila melanogaster as a model for human intestinal infection and pathology. Dis Model Mech 2011; 4:21 - 30; PMID: 21183483; http://dx.doi.org/10.1242/dmm.003970
  • Glittenberg MT, Kounatidis I, Christensen D, Kostov M, Kimber S, Roberts I, et al. Pathogen and host factors are needed to provoke a systemic host response to gastrointestinal infection of Drosophila larvae by Candida albicans. Dis Model Mech 2011; 4:515 - 525; PMID: 21540243; http://dx.doi.org/10.1242/dmm.006627
  • Stroschein-Stevenson SL, Foley E, O'Farrell PH, Johnson AD. Identification of Drosophila gene products required for phagocytosis of Candida albicans. PLoS Biol 2006; 4:4; PMID: 16336044; http://dx.doi.org/10.1371/journal.pbio.0040004
  • Qin QM, Luo J, Lin X, Pei J, Li L, Ficht TA, et al. Functional analysis of host factors that mediate the intracellular lifestyle of Cryptococcus neoformans. PLoS Pathog 2011; 7:1002078; PMID: 21698225; http://dx.doi.org/10.1371/journal.ppat.1002078
  • Bergin D, Reeves EP, Renwick J, Wientjes FB, Kavanagh K. Superoxide production in Galleria mellonella hemocytes: identification of proteins homologous to the NADPH oxidase complex of human neutrophils. Infect Immun 2005; 73:4161 - 4170; PMID: 15972506; http://dx.doi.org/10.1128/IAI.73.7.4161-70.2005
  • Segal BH, Leto TL, Gallin JI, Malech HL, Holland SM. Genetic, biochemical and clinical features of chronic granulomatous disease. Medicine (Baltimore) 2000; 79:170 - 200; PMID: 10844936; http://dx.doi.org/10.1097/00005792-200005000-00004
  • Bergin D, Brennan M, Kavanagh K. Fluctuations in haemocyte density and microbial load may be used as indicators of fungal pathogenicity in larvae of Galleria mellonella. Microbes Infect 2003; 5:1389 - 1395; PMID: 14670452; http://dx.doi.org/10.1016/j.micinf.2003.09.019
  • Renwick J, Daly P, Reeves EP, Kavanagh K. Susceptibility of larvae of Galleria mellonella to infection by Aspergillus fumigatus is dependent upon stage of conidial germination. Mycopathologia 2006; 161:377 - 384; PMID: 16761185; http://dx.doi.org/10.1007/s11046-006-0021-1
  • St. Leger RJ, Screen SE, Shams-Pirzadeh B. Lack of host specialization in Aspergillus flavus. Appl Environ Microbiol 2000; 66:320 - 324; PMID: 10618242; http://dx.doi.org/10.1128/AEM.66.1.320-4.2000
  • Hoffmann JA. The immune response of Drosophila. Nature 2003; 426:33 - 38; PMID: 14603309; http://dx.doi.org/10.1038/nature02021
  • Becker T, Loch G, Beyer M, Zinke I, Aschenbrenner AC, Carrera P, et al. FOXO-dependent regulation of innate immune homeostasis. Nature 2010; 463:369 - 373; PMID: 20090753; http://dx.doi.org/10.1038/nature08698
  • Schuhmann B, Seitz V, Vilcinskas A, Podsiadlowski L. Cloning and expression ofgallerimycin, an antifungal peptide expressed in immune response of greater wax moth larvae, Galleria mellonella. Arch Insect Biochem Physiol 2003; 53:125 - 133; PMID: 12811766; http://dx.doi.org/10.1002/arch.10091
  • Wiesner J, Vilcinskas A. Antimicrobial peptides: the ancient arm of the human immune system. Virulence 2010; 1:440 - 464; PMID: 21178486; http://dx.doi.org/10.4161/viru.1.5.12983
  • Vilcinskas A. Anti-Infective therapeutics from the Lepidopteran model host Galleria mellonella. Curr Pharm Des 2011; 17:1240 - 1245; PMID: 21470117
  • Bergin D, Murphy L, Keenan J, Clynes M, Kavanagh K. Pre-exposure to yeast protects larvae of Galleria mellonella from a subsequent lethal infection by Candida albicans and is mediated by the increased expression of antimicrobial peptides. Microbes Infect 2006; 8:2105 - 2112; PMID: 16782387; http://dx.doi.org/10.1016/j.micinf.2006.03.005
  • Langen G, Imani J, Altincicek B, Kieseritzky G, Kogel KH, Vilcinskas A. Transgenic expression of gallerimycin, a novel antifungal insect defensin from the greater wax moth Galleria mellonella, confer resistance to pathogenic fungi in tobacco. Biol Chem 2006; 387:549 - 557; PMID: 16740126; http://dx.doi.org/10.1515/BC.2006.071
  • Fallon JP, Troy N, Kavanagh K. Pre-exposure of Galleria mellonella larvae to different doses of Aspergillus fumigatus conidia cause differential activation of cellular and humoral immune responses. Virulence 2011; 2:413 - 421; PMID: 21921688; http://dx.doi.org/10.4161/viru.2.5.17811
  • Lionakis MS, Lim JK, Lee CC, Murphy PM. Organ-specific innate immune responses in a mouse model of invasive candidiasis. J Innate Immun 2011; 3:180 - 199; PMID: 21063074; http://dx.doi.org/10.1159/000321157
  • Kontoyiannis DP, Lionakis MS, Halder G. Toll pathway in Drosophila melanogaster: A possible role to study the impact of immune senescence in poor responses against Aspergillus fumigatus. 14th Focus on Fungal Infections 2004; New Orleans LA, USA 31
  • Taylor K, Kimbrell DA. Host immune response and differential survival of the sexes in Drosophila. Fly (Austin) 2007; 1:197 - 204; PMID: 18820477
  • Castle SC. Clinical relevance of age-related immune dysfunction. Clin Infect Dis 2000; 31:578 - 585; PMID: 10987724; http://dx.doi.org/10.1086/313947
  • Bouman A, Heineman MJ, Faas MM. Sex hormones and the immune response in humans. Hum Reprod Update 2005; 11:411 - 423; PMID: 15817524; http://dx.doi.org/10.1093/humupd/dmi008
  • Willment JA, Brown GD. C-type lectin receptors in antifungal immunity. Trends Microbiol 2008; 16:27 - 32; PMID: 18160296; http://dx.doi.org/10.1016/j.tim.2007.10.012
  • Gottar M, Gobert V, Matskevich AA, Reichhart JM, Wang C, Butt TM, et al. Dual detection of fungal infections in Drosophila via recognition of glucans and sensing of virulence factors. Cell 2006; 127:1425 - 1437; PMID: 17190605; http://dx.doi.org/10.1016/j.cell.2006.10.046
  • Lee MH, Osaki T, Lee JY, Baek MJ, Zhang R, Park JW, et al. Peptidoglycan recognition proteins involved in 1,3-beta-D-glucan-dependent prophenoloxidase activation system of insect. J Biol Chem 2004; 279:3218 - 3227; PMID: 14583608; http://dx.doi.org/10.1074/jbc.M309821200
  • Lionakis MS. Genetic susceptibility to fungal infections in man. Curr Fungal Infect Rep 2011; In press