1,277
Views
33
CrossRef citations to date
0
Altmetric
Review

The potential impact of antifungal drug resistance mechanisms on the host immune response to Candida

, &
Pages 368-376 | Received 15 Apr 2012, Accepted 14 May 2012, Published online: 22 Jun 2012

References

  • Pappas PG, Kauffman CA, Andes D, Benjamin DK Jr., Calandra TF, Edwards JE Jr., et al, Infectious Diseases Society of America. Clinical practice guidelines for the management of candidiasis: 2009 update by the Infectious Diseases Society of America. Clin Infect Dis 2009; 48:503 - 35; http://dx.doi.org/10.1086/596757; PMID: 19191635
  • Pappas PG, Alexander BD, Andes DR, Hadley S, Kauffman CA, Freifeld A, et al. Invasive fungal infections among organ transplant recipients: results of the Transplant-Associated Infection Surveillance Network (TRANSNET). Clin Infect Dis 2010; 50:1101 - 11; http://dx.doi.org/10.1086/651262; PMID: 20218876
  • Horn DL, Neofytos D, Anaissie EJ, Fishman JA, Steinbach WJ, Olyaei AJ, et al. Epidemiology and outcomes of candidemia in 2019 patients: data from the prospective antifungal therapy alliance registry. Clin Infect Dis 2009; 48:1695 - 703; http://dx.doi.org/10.1086/599039; PMID: 19441981
  • Pfaller MA, Diekema DJ. Epidemiology of invasive candidiasis: a persistent public health problem. Clin Microbiol Rev 2007; 20:133 - 63; http://dx.doi.org/10.1128/CMR.00029-06; PMID: 17223626
  • Pfaller MA, Diekema DJ, Gibbs DL, Newell VA, Ellis D, Tullio V, et al, and the Global Antifungal Surveillance Group. Results from the ARTEMIS DISK Global Antifungal Surveillance Study, 1997 to 2007: a 10.5-year analysis of susceptibilities of Candida Species to fluconazole and voriconazole as determined by CLSI standardized disk diffusion. J Clin Microbiol 2010; 48:1366 - 77; http://dx.doi.org/10.1128/JCM.02117-09; PMID: 20164282
  • Pfaller MA, Castanheira M, Lockhart SR, Ahlquist AM, Messer SA, Jones RN. Frequency of decreased susceptibility and resistance to echinocandins among fluconazole-resistant bloodstream isolates of Candida glabrata. J Clin Microbiol 2012; 50:1199 - 203; http://dx.doi.org/10.1128/JCM.06112-11; PMID: 22278842
  • Netea MG, van der Graaf C, Van der Meer JWM, Kullberg BJ. Toll-like receptors and the host defense against microbial pathogens: bringing specificity to the innate-immune system. J Leukoc Biol 2004; 75:749 - 55; http://dx.doi.org/10.1189/jlb.1103543; PMID: 15075354
  • Gow NA, van de Veerdonk FL, Brown AJ, Netea MG. Candida albicans morphogenesis and host defence: discriminating invasion from colonization. Nat Rev Microbiol 2012; 10:112 - 22; http://dx.doi.org/10.1038/nrmicro2711; PMID: 22158429
  • Netea MG, Brown GD, Kullberg BJ, Gow NA. An integrated model of the recognition of Candida albicans by the innate immune system. Nat Rev Microbiol 2008; 6:67 - 78; http://dx.doi.org/10.1038/nrmicro1815; PMID: 18079743
  • Netea MG, Kullberg BJ. Epithelial sensing of fungal invasion. Cell Host Microbe 2010; 8:219 - 20; http://dx.doi.org/10.1016/j.chom.2010.08.008; PMID: 20833371
  • Romani L. Immunity to fungal infections. Nat Rev Immunol 2011; 11:275 - 88; http://dx.doi.org/10.1038/nri2939; PMID: 21394104
  • Netea MG, Maródi L. Innate immune mechanisms for recognition and uptake of Candida species. Trends Immunol 2010; 31:346 - 53; http://dx.doi.org/10.1016/j.it.2010.06.007; PMID: 20705510
  • Netea MG, Van Der Graaf CA, Vonk AG, Verschueren I, Van Der Meer JW, Kullberg BJ. The role of toll-like receptor (TLR) 2 and TLR4 in the host defense against disseminated candidiasis. J Infect Dis 2002; 185:1483 - 9; http://dx.doi.org/10.1086/340511; PMID: 11992285
  • Netea MG, Sutmuller R, Hermann C, Van der Graaf CA, Van der Meer JW, van Krieken JH, et al. Toll-like receptor 2 suppresses immunity against Candida albicans through induction of IL-10 and regulatory T cells. J Immunol 2004; 172:3712 - 8; PMID: 15004175
  • Cheng SC, van de Veerdonk FL, Lenardon M, Stoffels M, Plantinga T, Smeekens S, et al. The dectin-1/inflammasome pathway is responsible for the induction of protective T-helper 17 responses that discriminate between yeasts and hyphae of Candida albicans. J Leukoc Biol 2011; 90:357 - 66; http://dx.doi.org/10.1189/jlb.1210702; PMID: 21531876
  • van de Veerdonk FL, Joosten LA, Shaw PJ, Smeekens SP, Malireddi RK, van der Meer JW, et al. The inflammasome drives protective Th1 and Th17 cellular responses in disseminated candidiasis. Eur J Immunol 2011; 41:2260 - 8; http://dx.doi.org/10.1002/eji.201041226; PMID: 21681738
  • Zelante T, Iannitti RG, De Luca A, Arroyo J, Blanco N, Servillo G, et al. Sensing of mammalian IL-17A regulates fungal adaptation and virulence. Nat Commun 2012; 3:683; http://dx.doi.org/10.1038/ncomms1685; PMID: 22353714
  • Pfaller MA, Diekema DJ. Epidemiology of invasive mycoses in North America. Crit Rev Microbiol 2010; 36:1 - 53; http://dx.doi.org/10.3109/10408410903241444; PMID: 20088682
  • Pfaller MA, Castanheira M, Messer SA, Moet GJ, Jones RN. Variation in Candida spp. distribution and antifungal resistance rates among bloodstream infection isolates by patient age: report from the SENTRY Antimicrobial Surveillance Program (2008-2009). Diagn Microbiol Infect Dis 2010; 68:278 - 83; http://dx.doi.org/10.1016/j.diagmicrobio.2010.06.015; PMID: 20846808
  • Chapeland-Leclerc F, Hennequin C, Papon N, Noël T, Girard A, Socié G, et al. Acquisition of flucytosine, azole, and caspofungin resistance in Candida glabrata bloodstream isolates serially obtained from a hematopoietic stem cell transplant recipient. Antimicrob Agents Chemother 2010; 54:1360 - 2; http://dx.doi.org/10.1128/AAC.01138-09; PMID: 20038613
  • Fidel PL Jr., Vazquez JA, Sobel JD. Candida glabrata: review of epidemiology, pathogenesis, and clinical disease with comparison to C. albicans. Clin Microbiol Rev 1999; 12:80 - 96; PMID: 9880475
  • Kaur R, Domergue R, Zupancic ML, Cormack BP. A yeast by any other name: Candida glabrata and its interaction with the host. Curr Opin Microbiol 2005; 8:378 - 84; http://dx.doi.org/10.1016/j.mib.2005.06.012; PMID: 15996895
  • Maccallum DM. Hosting infection: experimental models to assay Candida virulence. Int J Microbiol 2012; 2012:363764; http://dx.doi.org/10.1155/2012/363764; PMID: 22235206
  • Jacobsen ID, Brunke S, Seider K, Schwarzmüller T, Firon A, d’Enfért C, et al. Candida glabrata persistence in mice does not depend on host immunosuppression and is unaffected by fungal amino acid auxotrophy. Infect Immun 2010; 78:1066 - 77; http://dx.doi.org/10.1128/IAI.01244-09; PMID: 20008535
  • Seider K, Heyken A, Lüttich A, Miramón P, Hube B. Interaction of pathogenic yeasts with phagocytes: survival, persistence and escape. Curr Opin Microbiol 2010; 13:392 - 400; http://dx.doi.org/10.1016/j.mib.2010.05.001; PMID: 20627672
  • Seider K, Brunke S, Schild L, Jablonowski N, Wilson D, Majer O, et al. The facultative intracellular pathogen Candida glabrata subverts macrophage cytokine production and phagolysosome maturation. J Immunol 2011; 187:3072 - 86; http://dx.doi.org/10.4049/jimmunol.1003730; PMID: 21849684
  • Baltch AL, Lawrence DA, Ritz WJ, Andersen NJ, Bopp LH, Michelsen PB, et al. Effects of echinocandins on cytokine/chemokine production by human monocytes activated by infection with Candida glabrata or by lipopolysaccharide. Diagn Microbiol Infect Dis 2012; 72:226 - 33; http://dx.doi.org/10.1016/j.diagmicrobio.2011.11.004; PMID: 22209510
  • Baltch AL, Bopp LH, Smith RP, Ritz WJ, Michelsen PB. Anticandidal effects of voriconazole and caspofungin, singly and in combination, against Candida glabrata, extracellularly and intracellularly in granulocyte-macrophage colony stimulating factor (GM-CSF)-activated human monocytes. J Antimicrob Chemother 2008; 62:1285 - 90; http://dx.doi.org/10.1093/jac/dkn361; PMID: 18772160
  • Bopp LH, Baltch AL, Ritz WJ, Michelsen PB, Smith RP. Antifungal effect of voriconazole on intracellular Candida glabrata, Candida krusei and Candida parapsilosis in human monocyte-derived macrophages. J Med Microbiol 2006; 55:865 - 70; http://dx.doi.org/10.1099/jmm.0.46393-0; PMID: 16772413
  • Baltch AL, Bopp LH, Smith RP, Ritz WJ, Carlyn CJ, Michelsen PB. Effects of voriconazole, granulocyte-macrophage colony-stimulating factor, and interferon gamma on intracellular fluconazole-resistant Candida glabrata and Candida krusei in human monocyte-derived macrophages. Diagn Microbiol Infect Dis 2005; 52:299 - 304; http://dx.doi.org/10.1016/j.diagmicrobio.2005.02.017; PMID: 15893901
  • Pfaller MA, Espinel-Ingroff A, Canton E, Castanheira M, Cuenca-Estrella M, Diekema DJ, et al. Wild-Type MIC Distributions and Epidemiological Cutoff Values for Amphotericin B, Flucytosine, and Itraconazole and Candida spp. as Determined by CLSI Broth Microdilution. J Clin Microbiol 2012; 50:2040 - 6; http://dx.doi.org/10.1128/JCM.00248-12; PMID: 22461672
  • Pfaller MA. Antifungal drug resistance: mechanisms, epidemiology, and consequences for treatment. Am J Med 2012; 125:Suppl S3 - 13; http://dx.doi.org/10.1016/j.amjmed.2011.11.001; PMID: 22196207
  • Chen SC, Marriott D, Playford EG, Nguyen Q, Ellis D, Meyer W, et al, Australian Candidaemia Study. Candidaemia with uncommon Candida species: predisposing factors, outcome, antifungal susceptibility, and implications for management. Clin Microbiol Infect 2009; 15:662 - 9; http://dx.doi.org/10.1111/j.1469-0691.2009.02821.x; PMID: 19614718
  • Atkinson BJ, Lewis RE, Kontoyiannis DP. Candida lusitaniae fungemia in cancer patients: risk factors for amphotericin B failure and outcome. Med Mycol 2008; 46:541 - 6; http://dx.doi.org/10.1080/13693780801968571; PMID: 19180749
  • Chau AS, Gurnani M, Hawkinson R, Laverdiere M, Cacciapuoti A, McNicholas PM. Inactivation of sterol Delta5,6-desaturase attenuates virulence in Candida albicans. Antimicrob Agents Chemother 2005; 49:3646 - 51; http://dx.doi.org/10.1128/AAC.49.9.3646-3651.2005; PMID: 16127034
  • Vale-Silva LA, Coste AT, Ischer F, Parker JE, Kelly SL, Pinto E, et al. Azole resistance by loss of function of the sterol Δ⁵,⁶-desaturase gene (ERG3) in Candida albicans does not necessarily decrease virulence. Antimicrob Agents Chemother 2012; 56:1960 - 8; http://dx.doi.org/10.1128/AAC.05720-11; PMID: 22252807
  • Perlin DS. Antifungal drug resistance: do molecular methods provide a way forward?. Curr Opin Infect Dis 2009; 22:568 - 73; http://dx.doi.org/10.1097/QCO.0b013e3283321ce5; PMID: 19741524
  • MacCallum DM, Coste A, Ischer F, Jacobsen MD, Odds FC, Sanglard D. Genetic dissection of azole resistance mechanisms in Candida albicans and their validation in a mouse model of disseminated infection. Antimicrob Agents Chemother 2010; 54:1476 - 83; http://dx.doi.org/10.1128/AAC.01645-09; PMID: 20086148
  • Bouchara JP, Zouhair R, Le Boudouil S, Renier G, Filmon R, Chabasse D, et al. In-vivo selection of an azole-resistant petite mutant of Candida glabrata. J Med Microbiol 2000; 49:977 - 84; PMID: 11073151
  • Sanglard D, Ischer F, Bille J. Role of ATP-binding-cassette transporter genes in high-frequency acquisition of resistance to azole antifungals in Candida glabrata. Antimicrob Agents Chemother 2001; 45:1174 - 83; http://dx.doi.org/10.1128/AAC.45.4.1174-1183.2001; PMID: 11257032
  • Silva S, Henriques M, Martins A, Oliveira R, Williams D, Azeredo J. Biofilms of non-Candida albicans Candida species: quantification, structure and matrix composition. Med Mycol 2009; 47:681 - 9; http://dx.doi.org/10.3109/13693780802549594; PMID: 19888800
  • Nett JE, Crawford K, Marchillo K, Andes DR. Role of Fks1p and matrix glucan in Candida albicans biofilm resistance to an echinocandin, pyrimidine, and polyene. Antimicrob Agents Chemother 2010; 54:3505 - 8; http://dx.doi.org/10.1128/AAC.00227-10; PMID: 20516280
  • Nett J, Lincoln L, Marchillo K, Massey R, Holoyda K, Hoff B, et al. Putative role of beta-1,3 glucans in Candida albicans biofilm resistance. Antimicrob Agents Chemother 2007; 51:510 - 20; http://dx.doi.org/10.1128/AAC.01056-06; PMID: 17130296
  • Ramage G, Bachmann S, Patterson TF, Wickes BL, López-Ribot JL. Investigation of multidrug efflux pumps in relation to fluconazole resistance in Candida albicans biofilms. J Antimicrob Chemother 2002; 49:973 - 80; http://dx.doi.org/10.1093/jac/dkf049; PMID: 12039889
  • Nobile CJ, Fox EP, Nett JE, Sorrells TR, Mitrovich QM, Hernday AD, et al. A recently evolved transcriptional network controls biofilm development in Candida albicans. Cell 2012; 148:126 - 38; http://dx.doi.org/10.1016/j.cell.2011.10.048; PMID: 22265407
  • Robbins N, Uppuluri P, Nett J, Rajendran R, Ramage G, Lopez-Ribot JL, et al. Hsp90 governs dispersion and drug resistance of fungal biofilms. PLoS Pathog 2011; 7:e1002257; http://dx.doi.org/10.1371/journal.ppat.1002257; PMID: 21931556
  • Graybill JR, Montalbo E, Kirkpatrick WR, Luther MF, Revankar SG, Patterson TF. Fluconazole versus Candida albicans: a complex relationship. Antimicrob Agents Chemother 1998; 42:2938 - 42; PMID: 9797229
  • Schulz B, Weber K, Schmidt A, Borg-von Zepelin M, Ruhnke M. Difference in virulence between fluconazole-susceptible and fluconazole-resistant Candida albicans in a mouse model. Mycoses 2011; 54:e522 - 30; http://dx.doi.org/10.1111/j.1439-0507.2010.01970.x; PMID: 21605180
  • Ferrari S, Sanguinetti M, De Bernardis F, Torelli R, Posteraro B, Vandeputte P, et al. Loss of mitochondrial functions associated with azole resistance in Candida glabrata results in enhanced virulence in mice. Antimicrob Agents Chemother 2011; 55:1852 - 60; http://dx.doi.org/10.1128/AAC.01271-10; PMID: 21321146
  • Ferrari S, Ischer F, Calabrese D, Posteraro B, Sanguinetti M, Fadda G, et al. Gain of function mutations in CgPDR1 of Candida glabrata not only mediate antifungal resistance but also enhance virulence. PLoS Pathog 2009; 5:e1000268; http://dx.doi.org/10.1371/journal.ppat.1000268; PMID: 19148266
  • Liu TT, Lee RE, Barker KS, Lee RE, Wei L, Homayouni R, et al. Genome-wide expression profiling of the response to azole, polyene, echinocandin, and pyrimidine antifungal agents in Candida albicans. Antimicrob Agents Chemother 2005; 49:2226 - 36; http://dx.doi.org/10.1128/AAC.49.6.2226-2236.2005; PMID: 15917516
  • Sanguinetti M, Posteraro B, La Sorda M, Torelli R, Fiori B, Santangelo R, et al. Role of AFR1, an ABC transporter-encoding gene, in the in vivo response to fluconazole and virulence of Cryptococcus neoformans. Infect Immun 2006; 74:1352 - 9; http://dx.doi.org/10.1128/IAI.74.2.1352-1359.2006; PMID: 16428784
  • Takahashi S, Kudoh A, Okawa Y, Shibata N. Significant differences in the cell-wall mannans from three Candida glabrata strains correlate with antifungal drug sensitivity. FEBS J 2012; 279:1844 - 56; http://dx.doi.org/10.1111/j.1742-4658.2012.08564.x; PMID: 22404982
  • Netea MG, Ferwerda G, van der Graaf CA, Van der Meer JW, Kullberg BJ. Recognition of fungal pathogens by toll-like receptors. Curr Pharm Des 2006; 12:4195 - 201; http://dx.doi.org/10.2174/138161206778743538; PMID: 17100622
  • Denning DW. Echinocandin antifungal drugs. Lancet 2003; 362:1142 - 51; http://dx.doi.org/10.1016/S0140-6736(03)14472-8; PMID: 14550704
  • Wheeler RT, Fink GR. A drug-sensitive genetic network masks fungi from the immune system. PLoS Pathog 2006; 2:e35; http://dx.doi.org/10.1371/journal.ppat.0020035; PMID: 16652171
  • Wheeler RT, Kombe D, Agarwala SD, Fink GR. Dynamic, morphotype-specific Candida albicans beta-glucan exposure during infection and drug treatment. PLoS Pathog 2008; 4:e1000227; http://dx.doi.org/10.1371/journal.ppat.1000227; PMID: 19057660
  • Ben-Ami R, Garcia-Effron G, Lewis RE, Gamarra S, Leventakos K, Perlin DS, et al. Fitness and virulence costs of Candida albicans FKS1 hot spot mutations associated with echinocandin resistance. J Infect Dis 2011; 204:626 - 35; http://dx.doi.org/10.1093/infdis/jir351; PMID: 21791665
  • Ben-Ami R, Kontoyiannis DP. Resistance to echinocandins comes at a cost: the impact of FKS1 hotspot mutations on Candida albicans fitness and virulence. Virulence 2012; 3:95 - 7; http://dx.doi.org/10.4161/viru.3.1.18886; PMID: 22286697
  • Perlin DS. Current perspectives on echinocandin class drugs. Future Microbiol 2011; 6:441 - 57; http://dx.doi.org/10.2217/fmb.11.19; PMID: 21526945
  • Pfaller MA, Diekema DJ, Andes D, Arendrup MC, Brown SD, Lockhart SR, et al, CLSI Subcommittee for Antifungal Testing. Clinical breakpoints for the echinocandins and Candida revisited: integration of molecular, clinical, and microbiological data to arrive at species-specific interpretive criteria. Drug Resist Updat 2011; 14:164 - 76; http://dx.doi.org/10.1016/j.drup.2011.01.004; PMID: 21353623
  • Pfaller MA, Diekema DJ, Andes D, Arendrup MC, Brown SD, Lockhart SR, et al, CLSI Subcommittee for Antifungal Testing. Clinical breakpoints for the echinocandins and Candida revisited: integration of molecular, clinical, and microbiological data to arrive at species-specific interpretive criteria. Drug Resist Updat 2011; 14:164 - 76; http://dx.doi.org/10.1016/j.drup.2011.01.004; PMID: 21353623
  • Wiederhold NP. Paradoxical echinocandin activity: a limited in vitro phenomenon?. Med Mycol 2009; 47:Suppl 1 S369 - 75; http://dx.doi.org/10.1080/13693780802428542; PMID: 19255904
  • Walker LA, Gow NA, Munro CA. Fungal echinocandin resistance. Fungal Genet Biol 2010; 47:117 - 26; http://dx.doi.org/10.1016/j.fgb.2009.09.003; PMID: 19770064
  • Walker LA, Munro CA, de Bruijn I, Lenardon MD, McKinnon A, Gow NA. Stimulation of chitin synthesis rescues Candida albicans from echinocandins. PLoS Pathog 2008; 4:e1000040; http://dx.doi.org/10.1371/journal.ppat.1000040; PMID: 18389063
  • Stevens DA, Ichinomiya M, Koshi Y, Horiuchi H. Escape of Candida from caspofungin inhibition at concentrations above the MIC (paradoxical effect) accomplished by increased cell wall chitin; evidence for beta-1,6-glucan synthesis inhibition by caspofungin. Antimicrob Agents Chemother 2006; 50:3160 - 1; http://dx.doi.org/10.1128/AAC.00563-06; PMID: 16940118
  • Bizerra FC, Melo AS, Katchburian E, Freymüller E, Straus AH, Takahashi HK, et al. Changes in cell wall synthesis and ultrastructure during paradoxical growth effect of caspofungin on four different Candida species. Antimicrob Agents Chemother 2011; 55:302 - 10; http://dx.doi.org/10.1128/AAC.00633-10; PMID: 21060107
  • Wiederhold NP, Kontoyiannis DP, Prince RA, Lewis RE. Attenuation of the activity of caspofungin at high concentrations against candida albicans: possible role of cell wall integrity and calcineurin pathways. Antimicrob Agents Chemother 2005; 49:5146 - 8; http://dx.doi.org/10.1128/AAC.49.12.5146-5148.2005; PMID: 16304189
  • Shields RK, Nguyen MH, Du C, Press E, Cheng S, Clancy CJ. Paradoxical effect of caspofungin against Candida bloodstream isolates is mediated by multiple pathways but eliminated in human serum. Antimicrob Agents Chemother 2011; 55:2641 - 7; http://dx.doi.org/10.1128/AAC.00999-10; PMID: 21422223
  • Chamilos G, Lewis RE, Albert N, Kontoyiannis DP. Paradoxical effect of Echinocandins across Candida species in vitro: evidence for echinocandin-specific and candida species-related differences. Antimicrob Agents Chemother 2007; 51:2257 - 9; http://dx.doi.org/10.1128/AAC.00095-07; PMID: 17438060
  • Stevens DA, White TC, Perlin DS, Selitrennikoff CP. Studies of the paradoxical effect of caspofungin at high drug concentrations. Diagn Microbiol Infect Dis 2005; 51:173 - 8; http://dx.doi.org/10.1016/j.diagmicrobio.2004.10.006; PMID: 15766602
  • Stevens DA. Frequency of paradoxical effect with caspofungin in Candida albicans. Eur J Clin Microbiol Infect Dis 2009; 28:717; http://dx.doi.org/10.1007/s10096-008-0688-y; PMID: 19130103
  • Bayegan S, Majoros L, Kardos G, Kemény-Beke A, Miszti C, Kovacs R, et al. In vivo studies with a Candida tropicalis isolate exhibiting paradoxical growth in vitro in the presence of high concentration of caspofungin. J Microbiol 2010; 48:170 - 3; http://dx.doi.org/10.1007/s12275-010-9221-y; PMID: 20437148
  • Kurtz MB, Abruzzo G, Flattery A, Bartizal K, Marrinan JA, Li W, et al. Characterization of echinocandin-resistant mutants of Candida albicans: genetic, biochemical, and virulence studies. Infect Immun 1996; 64:3244 - 51; PMID: 8757860
  • Garcia-Effron G, Kontoyiannis DP, Lewis RE, Perlin DS. Caspofungin-resistant Candida tropicalis strains causing breakthrough fungemia in patients at high risk for hematologic malignancies. Antimicrob Agents Chemother 2008; 52:4181 - 3; http://dx.doi.org/10.1128/AAC.00802-08; PMID: 18794386
  • Lee KK, Maccallum DM, Jacobsen MD, Walker LA, Odds FC, Gow NA, et al. Elevated cell wall chitin in Candida albicans confers echinocandin resistance in vivo. Antimicrob Agents Chemother 2012; 56:208 - 17; http://dx.doi.org/10.1128/AAC.00683-11; PMID: 21986821
  • Kartsonis N, Killar J, Mixson L, Hoe CM, Sable C, Bartizal K, et al. Caspofungin susceptibility testing of isolates from patients with esophageal candidiasis or invasive candidiasis: relationship of MIC to treatment outcome. Antimicrob Agents Chemother 2005; 49:3616 - 23; http://dx.doi.org/10.1128/AAC.49.9.3616-3623.2005; PMID: 16127030
  • Wiederhold NP, Najvar LK, Bocanegra RA, Kirkpatrick WR, Patterson TF. Caspofungin dose escalation for invasive candidiasis due to resistant Candida albicans. Antimicrob Agents Chemother 2011; 55:3254 - 60; http://dx.doi.org/10.1128/AAC.01750-10; PMID: 21502632
  • Angiolella L, Micocci MM, D’Alessio S, Girolamo A, Maras B, Cassone A. Identification of major glucan-associated cell wall proteins of Candida albicans and their role in fluconazole resistance. Antimicrob Agents Chemother 2002; 46:1688 - 94; http://dx.doi.org/10.1128/AAC.46.6.1688-1694.2002; PMID: 12019077
  • Anderson JB. Evolution of antifungal-drug resistance: mechanisms and pathogen fitness. Nat Rev Microbiol 2005; 3:547 - 56; http://dx.doi.org/10.1038/nrmicro1179; PMID: 15953931