4,829
Views
51
CrossRef citations to date
0
Altmetric
Review

Human pathogenic bacteria, fungi, and viruses in Drosophila

Disease modeling, lessons, and shortcomings

, &
Pages 253-269 | Received 03 Jul 2013, Accepted 13 Dec 2013, Published online: 07 Jan 2014

References

  • Qin J, Li R, Raes J, Arumugam M, Burgdorf KS, Manichanh C, Nielsen T, Pons N, Levenez F, Yamada T, et al, MetaHIT Consortium. A human gut microbial gene catalogue established by metagenomic sequencing. Nature 2010; 464:59 - 65; http://dx.doi.org/10.1038/nature08821; PMID: 20203603
  • Apidianakis Y, Rahme LG. Drosophila melanogaster as a model for human intestinal infection and pathology. Dis Model Mech 2011; 4:21 - 30; http://dx.doi.org/10.1242/dmm.003970; PMID: 21183483
  • Bosco-Drayon V, Poidevin M, Boneca IG, Narbonne-Reveau K, Royet J, Charroux B. Peptidoglycan sensing by the receptor PGRP-LE in the Drosophila gut induces immune responses to infectious bacteria and tolerance to microbiota. Cell Host Microbe 2012; 12:153 - 65; http://dx.doi.org/10.1016/j.chom.2012.06.002; PMID: 22901536
  • Canny GO, McCormick BA. Bacteria in the intestine, helpful residents or enemies from within?. Infect Immun 2008; 76:3360 - 73; http://dx.doi.org/10.1128/IAI.00187-08; PMID: 18474643
  • Gupta GR. Tackling pneumonia and diarrhoea: the deadliest diseases for the world’s poorest children. Lancet 2012; 379:2123 - 4; http://dx.doi.org/10.1016/S0140-6736(12)60907-6; PMID: 22682449
  • Mariappan V, Vellasamy KM, Hashim OH, Vadivelu J. Profiling of Burkholderia cepacia secretome at mid-logarithmic and early-stationary phases of growth. PLoS One 2011; 6:e26518; http://dx.doi.org/10.1371/journal.pone.0026518; PMID: 22046299
  • Schneider DS, Ayres JS, Brandt SM, Costa A, Dionne MS, Gordon MD, Mabery EM, Moule MG, Pham LN, Shirasu-Hiza MM. Drosophila eiger mutants are sensitive to extracellular pathogens. PLoS Pathog 2007; 3:e41; http://dx.doi.org/10.1371/journal.ppat.0030041; PMID: 17381241
  • Ayres JS, Schneider DS. A signaling protease required for melanization in Drosophila affects resistance and tolerance of infections. PLoS Biol 2008; 6:2764 - 73; http://dx.doi.org/10.1371/journal.pbio.0060305; PMID: 19071960
  • Pilátová M, Dionne MS. Burkholderia thailandensis is virulent in Drosophila melanogaster. PLoS One 2012; 7:e49745; http://dx.doi.org/10.1371/journal.pone.0049745; PMID: 23209596
  • Kocazeybek B. Chronic Chlamydophila pneumoniae infection in lung cancer, a risk factor: a case-control study. J Med Microbiol 2003; 52:721 - 6; http://dx.doi.org/10.1099/jmm.0.04845-0; PMID: 12867569
  • Cocchiaro JL, Valdivia RH. New insights into Chlamydia intracellular survival mechanisms. Cell Microbiol 2009; 11:1571 - 8; http://dx.doi.org/10.1111/j.1462-5822.2009.01364.x; PMID: 19673891
  • Derré I, Pypaert M, Dautry-Varsat A, Agaisse H. RNAi screen in Drosophila cells reveals the involvement of the Tom complex in Chlamydia infection. PLoS Pathog 2007; 3:1446 - 58; http://dx.doi.org/10.1371/journal.ppat.0030155; PMID: 17967059
  • Vanha-Aho LM, Kleino A, Kaustio M, Ulvila J, Wilke B, Hultmark D, Valanne S, Rämet M. Functional characterization of the infection-inducible peptide Edin in Drosophila melanogaster. PLoS One 2012; 7:e37153; http://dx.doi.org/10.1371/journal.pone.0037153; PMID: 22606343
  • Buchon N, Broderick NA, Poidevin M, Pradervand S, Lemaitre B. Drosophila intestinal response to bacterial infection: activation of host defense and stem cell proliferation. Cell Host Microbe 2009; 5:200 - 11; http://dx.doi.org/10.1016/j.chom.2009.01.003; PMID: 19218090
  • Paredes JC, Welchman DP, Poidevin M, Lemaitre B. Negative regulation by amidase PGRPs shapes the Drosophila antibacterial response and protects the fly from innocuous infection. Immunity 2011; 35:770 - 9; http://dx.doi.org/10.1016/j.immuni.2011.09.018; PMID: 22118526
  • Vodovar N, Acosta C, Lemaitre B, Boccard F. Drosophila: a polyvalent model to decipher host-pathogen interactions. Trends Microbiol 2004; 12:235 - 42; http://dx.doi.org/10.1016/j.tim.2004.03.007; PMID: 15120143
  • Ahlund MK, Rydén P, Sjöstedt A, Stöven S. Directed screen of Francisella novicida virulence determinants using Drosophila melanogaster. Infect Immun 2010; 78:3118 - 28; http://dx.doi.org/10.1128/IAI.00146-10; PMID: 20479082
  • Asare R, Akimana C, Jones S, Abu Kwaik Y. Molecular bases of proliferation of Francisella tularensis in arthropod vectors. Environ Microbiol 2010; 12:2587 - 612; http://dx.doi.org/10.1111/j.1462-2920.2010.02230.x; PMID: 20482589
  • Akimana C, Al-Khodor S, Abu Kwaik Y. Host factors required for modulation of phagosome biogenesis and proliferation of Francisella tularensis within the cytosol. PLoS One 2010; 5:e11025; http://dx.doi.org/10.1371/journal.pone.0011025; PMID: 20552012
  • Moule MG, Monack DM, Schneider DS. Reciprocal analysis of Francisella novicida infections of a Drosophila melanogaster model reveal host-pathogen conflicts mediated by reactive oxygen and imd-regulated innate immune response. PLoS Pathog 2010; 6:e1001065; http://dx.doi.org/10.1371/journal.ppat.1001065; PMID: 20865166
  • Vonkavaara M, Pavel ST, Hölzl K, Nordfelth R, Sjöstedt A, Stöven S. Francisella is sensitive to insect antimicrobial peptides. J Innate Immun 2013; 5:50 - 9; http://dx.doi.org/10.1159/000342468; PMID: 23037919
  • Wandler AM, Guillemin K. Transgenic expression of the Helicobacter pylori virulence factor CagA promotes apoptosis or tumorigenesis through JNK activation in Drosophila. PLoS Pathog 2012; 8:e1002939; http://dx.doi.org/10.1371/journal.ppat.1002939; PMID: 23093933
  • Botham CM, Wandler AM, Guillemin K. A transgenic Drosophila model demonstrates that the Helicobacter pylori CagA protein functions as a eukaryotic Gab adaptor. PLoS Pathog 2008; 4:e1000064; http://dx.doi.org/10.1371/journal.ppat.1000064; PMID: 18483552
  • Muyskens JB, Guillemin K. Helicobacter pylori CagA disrupts epithelial patterning by activating myosin light chain. PLoS One 2011; 6:e17856; http://dx.doi.org/10.1371/journal.pone.0017856; PMID: 21445303
  • Kubori T, Shinzawa N, Kanuka H, Nagai H. Legionella metaeffector exploits host proteasome to temporally regulate cognate effector. PLoS Pathog 2010; 6:e1001216; http://dx.doi.org/10.1371/journal.ppat.1001216; PMID: 21151961
  • Oh CT, Moon C, Jeong MS, Kwon SH, Jang J. Drosophila melanogaster model for Mycobacterium abscessus infection. Microbes Infect 2013; 15:788 - 95; http://dx.doi.org/10.1016/j.micinf.2013.06.011; PMID: 23831804
  • Vuković D, Parezanović V, Savić B, Dakić I, Laban-Nestorović S, Ilić S, Ćirković I, Stepanović S. Mycobacterium fortuitum endocarditis associated with cardiac surgery, Serbia. Emerg Infect Dis 2013; 19:517 - 9; http://dx.doi.org/10.3201/eid1903.120763; PMID: 23750363
  • Philips JA, Rubin EJ, Perrimon N. Drosophila RNAi screen reveals CD36 family member required for mycobacterial infection. Science 2005; 309:1251 - 3; http://dx.doi.org/10.1126/science.1116006; PMID: 16020694
  • Broutin V, Bañuls AL, Aubry A, Keck N, Choisy M, Bernardet JF, Michel C, Raymond JC, Libert C, Barnaud A, et al. Genetic diversity and population structure of Mycobacterium marinum: new insights into host and environmental specificities. J Clin Microbiol 2012; 50:3627 - 34; http://dx.doi.org/10.1128/JCM.01274-12; PMID: 22952269
  • Dionne MS, Ghori N, Schneider DS. Drosophila melanogaster is a genetically tractable model host for Mycobacterium marinum. Infect Immun 2003; 71:3540 - 50; http://dx.doi.org/10.1128/IAI.71.6.3540-3550.2003; PMID: 12761139
  • Kim JJ, Lee HM, Shin DM, Kim W, Yuk JM, Jin HS, Lee SH, Cha GH, Kim JM, Lee ZW, et al. Host cell autophagy activated by antibiotics is required for their effective antimycobacterial drug action. Cell Host Microbe 2012; 11:457 - 68; http://dx.doi.org/10.1016/j.chom.2012.03.008; PMID: 22607799
  • Manzanillo PS, Ayres JS, Watson RO, Collins AC, Souza G, Rae CS, Schneider DS, Nakamura K, Shiloh MU, Cox JS. The ubiquitin ligase parkin mediates resistance to intracellular pathogens. Nature 2013; 501:512 - 6; http://dx.doi.org/10.1038/nature12566; PMID: 24005326
  • Koo IC, Ohol YM, Wu P, Morisaki JH, Cox JS, Brown EJ. Role for lysosomal enzyme beta-hexosaminidase in the control of mycobacteria infection. Proc Natl Acad Sci U S A 2008; 105:710 - 5; http://dx.doi.org/10.1073/pnas.0708110105; PMID: 18180457
  • Verma P, Tapadia MG. Immune response and anti-microbial peptides expression in Malpighian tubules of Drosophila melanogaster is under developmental regulation. PLoS One 2012; 7:e40714; http://dx.doi.org/10.1371/annotation/4b02305d-dcb8-40db-8f1f-1f7f0da51544; PMID: 22808242
  • Philips JA, Porto MC, Wang H, Rubin EJ, Perrimon N. ESCRT factors restrict mycobacterial growth. Proc Natl Acad Sci U S A 2008; 105:3070 - 5; http://dx.doi.org/10.1073/pnas.0707206105; PMID: 18287038
  • Aymeric JL, Givaudan A, Duvic B. Imd pathway is involved in the interaction of Drosophila melanogaster with the entomopathogenic bacteria, Xenorhabdus nematophila and Photorhabdus luminescens. Mol Immunol 2010; 47:2342 - 8; http://dx.doi.org/10.1016/j.molimm.2010.05.012; PMID: 20627393
  • Galac MR, Lazzaro BP. Comparative pathology of bacteria in the genus Providencia to a natural host, Drosophila melanogaster. Microbes Infect 2011; 13:673 - 83; http://dx.doi.org/10.1016/j.micinf.2011.02.005; PMID: 21354324
  • Apidianakis Y, Mindrinos MN, Xiao W, Lau GW, Baldini RL, Davis RW, Rahme LG. Profiling early infection responses: Pseudomonas aeruginosa eludes host defenses by suppressing antimicrobial peptide gene expression. Proc Natl Acad Sci U S A 2005; 102:2573 - 8; http://dx.doi.org/10.1073/pnas.0409588102; PMID: 15695583
  • Apidianakis Y, Pitsouli C, Perrimon N, Rahme L. Synergy between bacterial infection and genetic predisposition in intestinal dysplasia. Proc Natl Acad Sci U S A 2009; 106:20883 - 8; http://dx.doi.org/10.1073/pnas.0911797106; PMID: 19934041
  • Mulcahy H, Sibley CD, Surette MG, Lewenza S. Drosophila melanogaster as an animal model for the study of Pseudomonas aeruginosa biofilm infections in vivo. PLoS Pathog 2011; 7:e1002299; http://dx.doi.org/10.1371/journal.ppat.1002299; PMID: 21998591
  • Buchon N, Broderick NA, Chakrabarti S, Lemaitre B. Invasive and indigenous microbiota impact intestinal stem cell activity through multiple pathways in Drosophila. Genes Dev 2009; b 23:2333 - 44; http://dx.doi.org/10.1101/gad.1827009; PMID: 19797770
  • Vodovar N, Vinals M, Liehl P, Basset A, Degrouard J, Spellman P, Boccard F, Lemaitre B. Drosophila host defense after oral infection by an entomopathogenic Pseudomonas species. Proc Natl Acad Sci U S A 2005; 102:11414 - 9; http://dx.doi.org/10.1073/pnas.0502240102; PMID: 16061818
  • Lucas RL, Lee CA. Unravelling the mysteries of virulence gene regulation in Salmonella typhimurium. Mol Microbiol 2000; 36:1024 - 33; http://dx.doi.org/10.1046/j.1365-2958.2000.01961.x; PMID: 10844688
  • Jones RM, Wu H, Wentworth C, Luo L, Collier-Hyams L, Neish AS. Salmonella AvrA coordinates suppression of host immune and apoptotic defenses via JNK pathway blockade. Cell Host Microbe 2008; 3:233 - 44; http://dx.doi.org/10.1016/j.chom.2008.02.016; PMID: 18407067
  • Mabery EM, Schneider DS. The Drosophila TNF ortholog eiger is required in the fat body for a robust immune response. J Innate Immun 2010; 2:371 - 8; http://dx.doi.org/10.1159/000315050; PMID: 20505310
  • Shinzawa N, Nelson B, Aonuma H, Okado K, Fukumoto S, Miura M, Kanuka H. p38 MAPK-dependent phagocytic encapsulation confers infection tolerance in Drosophila. Cell Host Microbe 2009; 6:244 - 52; http://dx.doi.org/10.1016/j.chom.2009.07.010; PMID: 19748466
  • Polilli E, Parruti G, Fazii P, D’Antonio D, Palmieri D, D’Incecco C, Mangifesta A, Garofalo G, Del Duca L, D’Amario C, et al. Rapidly controlled outbreak of Serratia marcescens infection/colonisations in a neonatal intensive care unit, Pescara General Hospital, Pescara, Italy, April 2011. Euro Surveill 2011; 16:19892; PMID: 21699768
  • Nehme NT, Liégeois S, Kele B, Giammarinaro P, Pradel E, Hoffmann JA, Ewbank JJ, Ferrandon D. A model of bacterial intestinal infections in Drosophila melanogaster. PLoS Pathog 2007; 3:e173; http://dx.doi.org/10.1371/journal.ppat.0030173; PMID: 18039029
  • Cronin SJ, Nehme NT, Limmer S, Liegeois S, Pospisilik JA, Schramek D, Leibbrandt A, Simoes RdeM, Gruber S, Puc U, et al. Genome-wide RNAi screen identifies genes involved in intestinal pathogenic bacterial infection. Science 2009; 325:340 - 3; http://dx.doi.org/10.1126/science.1173164; PMID: 19520911
  • Wong XM, Younger S, Peters CJ, Jan YN, Jan LY. Subdued, a TMEM16 family Ca2+-activated Cl- channel in Drosophila melanogaster with an unexpected role in host defense. Elife 2013; 2:e00862; http://dx.doi.org/10.7554/eLife.00862; PMID: 24192034
  • Herren JK, Lemaitre B. Spiroplasma and host immunity: activation of humoral immune responses increases endosymbiont load and susceptibility to certain Gram-negative bacterial pathogens in Drosophila melanogaster. Cell Microbiol 2011; 13:1385 - 96; http://dx.doi.org/10.1111/j.1462-5822.2011.01627.x; PMID: 21740495
  • Blow NS, Salomon RN, Garrity K, Reveillaud I, Kopin A, Jackson FR, Watnick PI. Vibrio cholerae infection of Drosophila melanogaster mimics the human disease cholera. PLoS Pathog 2005; 1:e8; http://dx.doi.org/10.1371/journal.ppat.0010008; PMID: 16201020
  • Wang Z, Hang S, Purdy AE, Watnick PI. Mutations in the IMD pathway and mustard counter Vibrio cholerae suppression of intestinal stem cell division in Drosophila. MBio 2013; 4:e00337 - 13; http://dx.doi.org/10.1128/mBio.00337-13; PMID: 23781070
  • Guichard A, Cruz-Moreno B, Aguilar B, van Sorge NM, Kuang J, Kurkciyan AA, Wang Z, Hang S, Pineton de Chambrun GP, McCole DF, et al. Cholera toxin disrupts barrier function by inhibiting exocyst-mediated trafficking of host proteins to intestinal cell junctions. Cell Host Microbe 2013; 14:294 - 305; http://dx.doi.org/10.1016/j.chom.2013.08.001; PMID: 24034615
  • Dlu P, Goriacheva II, Andrianov BV, Reznik NL, Lazebnyĭ OE, Kulikov AM. The endosymbiotic bacterium Wolbachia enhances the nonspecific resistance to insect pathogens and alters behavior of Drosophila melanogaster. Genetika 2007; 43:1277 - 80; PMID: 17990528
  • Teixeira L, Ferreira A, Ashburner M. The bacterial symbiont Wolbachia induces resistance to RNA viral infections in Drosophila melanogaster. PLoS Biol 2008; 6:e2; http://dx.doi.org/10.1371/journal.pbio.1000002; PMID: 19222304
  • Hedges LM, Yamada R, O’Neill SL, Johnson KN. The small interfering RNA pathway is not essential for Wolbachia-mediated antiviral protection in Drosophila melanogaster. Appl Environ Microbiol 2012; 78:6773 - 6; http://dx.doi.org/10.1128/AEM.01650-12; PMID: 22798369
  • Wong ZS, Hedges LM, Brownlie JC, Johnson KN. Wolbachia-mediated antibacterial protection and immune gene regulation in Drosophila. PLoS One 2011; 6:e25430; http://dx.doi.org/10.1371/journal.pone.0025430; PMID: 21980455
  • Rottschaefer SM, Lazzaro BP. No effect of Wolbachia on resistance to intracellular infection by pathogenic bacteria in Drosophila melanogaster. PLoS One 2012; 7:e40500; http://dx.doi.org/10.1371/journal.pone.0040500; PMID: 22808174
  • Koo JT, Alleyne TM, Schiano CA, Jafari N, Lathem WW. Global discovery of small RNAs in Yersinia pseudotuberculosis identifies Yersinia-specific small, noncoding RNAs required for virulence. Proc Natl Acad Sci U S A 2011; 108:E709 - 17; http://dx.doi.org/10.1073/pnas.1101655108; PMID: 21876162
  • An D, Apidianakis Y, Boechat AL, Baldini RL, Goumnerov BC, Rahme LG. The pathogenic properties of a novel and conserved gene product, KerV, in proteobacteria. PLoS One 2009; 4:e7167; http://dx.doi.org/10.1371/journal.pone.0007167; PMID: 19779606
  • Guichard A, McGillivray SM, Cruz-Moreno B, van Sorge NM, Nizet V, Bier E. Anthrax toxins cooperatively inhibit endocytic recycling by the Rab11/Sec15 exocyst. Nature 2010; 467:854 - 8; http://dx.doi.org/10.1038/nature09446; PMID: 20944747
  • Kotiranta A, Lounatmaa K, Haapasalo M. Epidemiology and pathogenesis of Bacillus cereus infections. Microbes Infect 2000; 2:189 - 98; http://dx.doi.org/10.1016/S1286-4579(00)00269-0; PMID: 10742691
  • Ma J, Benson AK, Kachman SD, Hu Z, Harshman LG. Drosophila melanogaster Selection for Survival of Bacillus cereus Infection: Life History Trait Indirect Responses. Int J Evol Biol 2012; 2012:935970; http://dx.doi.org/10.1155/2012/935970; PMID: 23094195
  • Gill M, Ellar D. Transgenic Drosophila reveals a functional in vivo receptor for the Bacillus thuringiensis toxin Cry1Ac1. Insect Mol Biol 2002; 11:619 - 25; http://dx.doi.org/10.1046/j.1365-2583.2002.00373.x; PMID: 12421420
  • Cox CR, Gilmore MS. Native microbial colonization of Drosophila melanogaster and its use as a model of Enterococcus faecalis pathogenesis. Infect Immun 2007; 75:1565 - 76; http://dx.doi.org/10.1128/IAI.01496-06; PMID: 17220307
  • Teixeira N, Varahan S, Gorman MJ, Palmer KL, Zaidman-Remy A, Yokohata R, Nakayama J, Hancock LE, Jacinto A, Gilmore MS, et al. Drosophila host model reveals new enterococcus faecalis quorum-sensing associated virulence factors. PLoS One 2013; 8:e64740; http://dx.doi.org/10.1371/journal.pone.0064740; PMID: 23734216
  • Karczewski J, Troost FJ, Konings I, Dekker J, Kleerebezem M, Brummer RJ, Wells JM. Regulation of human epithelial tight junction proteins by Lactobacillus plantarum in vivo and protective effects on the epithelial barrier. Am J Physiol Gastrointest Liver Physiol 2010; 298:G851 - 9; http://dx.doi.org/10.1152/ajpgi.00327.2009; PMID: 20224007
  • Storelli G, Defaye A, Erkosar B, Hols P, Royet J, Leulier F. Lactobacillus plantarum promotes Drosophila systemic growth by modulating hormonal signals through TOR-dependent nutrient sensing. Cell Metab 2011; 14:403 - 14; http://dx.doi.org/10.1016/j.cmet.2011.07.012; PMID: 21907145
  • Liu D. Identification, subtyping and virulence determination of Listeria monocytogenes, an important foodborne pathogen. J Med Microbiol 2006; 55:645 - 59; http://dx.doi.org/10.1099/jmm.0.46495-0; PMID: 16687581
  • Yano T, Mita S, Ohmori H, Oshima Y, Fujimoto Y, Ueda R, Takada H, Goldman WE, Fukase K, Silverman N, et al. Autophagic control of listeria through intracellular innate immune recognition in drosophila. Nat Immunol 2008; 9:908 - 16; http://dx.doi.org/10.1038/ni.1634; PMID: 18604211
  • Mansfield BE, Dionne MS, Schneider DS, Freitag NE. Exploration of host-pathogen interactions using Listeria monocytogenes and Drosophila melanogaster. Cell Microbiol 2003; 5:901 - 11; http://dx.doi.org/10.1046/j.1462-5822.2003.00329.x; PMID: 14641175
  • Ma ES, Wong CL, Lai KT, Chan EC, Yam WC, Chan AC. Kocuria kristinae infection associated with acute cholecystitis. BMC Infect Dis 2005; 5:60; http://dx.doi.org/10.1186/1471-2334-5-60; PMID: 16029488
  • Nehme NT, Quintin J, Cho JH, Lee J, Lafarge MC, Kocks C, Ferrandon D. Relative roles of the cellular and humoral responses in the Drosophila host defense against three gram-positive bacterial infections. PLoS One 2011; 6:e14743; http://dx.doi.org/10.1371/journal.pone.0014743; PMID: 21390224
  • Cataldo MA, Taglietti F, Petrosillo N. Methicillin-resistant Staphylococcus aureus: a community health threat. Postgrad Med 2010; 122:16 - 23; http://dx.doi.org/10.3810/pgm.2010.11.2218; PMID: 21084777
  • Tabuchi Y, Shiratsuchi A, Kurokawa K, Gong JH, Sekimizu K, Lee BL, Nakanishi Y. Inhibitory role for D-alanylation of wall teichoic acid in activation of insect Toll pathway by peptidoglycan of Staphylococcus aureus. J Immunol 2010; 185:2424 - 31; http://dx.doi.org/10.4049/jimmunol.1000625; PMID: 20639481
  • Kurokawa K, Gong JH, Ryu KH, Zheng L, Chae JH, Kim MS, Lee BL. Biochemical characterization of evasion from peptidoglycan recognition by Staphylococcus aureus D-alanylated wall teichoic acid in insect innate immunity. Dev Comp Immunol 2011; 35:835 - 9; http://dx.doi.org/10.1016/j.dci.2011.03.001; PMID: 21453720
  • Atilano ML, Yates J, Glittenberg M, Filipe SR, Ligoxygakis P. Wall teichoic acids of Staphylococcus aureus limit recognition by the drosophila peptidoglycan recognition protein-SA to promote pathogenicity. PLoS Pathog 2011; 7:e1002421; http://dx.doi.org/10.1371/journal.ppat.1002421; PMID: 22144903
  • Ayyaz A, Giammarinaro P, Liégeois S, Lestradet M, Ferrandon D. A negative role for MyD88 in the resistance to starvation as revealed in an intestinal infection of Drosophila melanogaster with the Gram-positive bacterium Staphylococcus xylosus. Immunobiology 2013; 218:635 - 44; http://dx.doi.org/10.1016/j.imbio.2012.07.027; PMID: 23083631
  • Zbinden A, Köhler N, Bloemberg GV. recA-based PCR assay for accurate differentiation of Streptococcus pneumoniae from other viridans streptococci. J Clin Microbiol 2011; 49:523 - 7; http://dx.doi.org/10.1128/JCM.01450-10; PMID: 21147955
  • Pham LN, Dionne MS, Shirasu-Hiza M, Schneider DS. A specific primed immune response in Drosophila is dependent on phagocytes. PLoS Pathog 2007; 3:e26; http://dx.doi.org/10.1371/journal.ppat.0030026; PMID: 17352533
  • Shirasu-Hiza MM, Dionne MS, Pham LN, Ayres JS, Schneider DS. Interactions between circadian rhythm and immunity in Drosophila melanogaster. Curr Biol 2007; 17:R353 - 5; http://dx.doi.org/10.1016/j.cub.2007.03.049; PMID: 17502084
  • Ben-Ami R, Lamaris GA, Lewis RE, Kontoyiannis DP. Interstrain variability in the virulence of Aspergillus fumigatus and Aspergillus terreus in a Toll-deficient Drosophila fly model of invasive aspergillosis. Med Mycol 2010; 48:310 - 7; http://dx.doi.org/10.3109/13693780903148346; PMID: 19642052
  • Lionakis MS, Kontoyiannis DP. Fruit flies as a minihost model for studying drug activity and virulence in Aspergillus. Med Mycol 2005; 43:Suppl 1 S111 - 4; http://dx.doi.org/10.1080/13693780400020030; PMID: 16110801
  • Matskevich AA, Quintin J, Ferrandon D. The Drosophila PRR GNBP3 assembles effector complexes involved in antifungal defenses independently of its Toll-pathway activation function. Eur J Immunol 2010;; 40:1244 - 54; http://dx.doi.org/10.1002/eji.200940164; PMID: 20201042
  • Le Bourg E, Massou I, Gobert V. Cold stress increases resistance to fungal infection throughout life in Drosophila melanogaster. Biogerontology 2009; 10:613 - 25; http://dx.doi.org/10.1007/s10522-008-9206-y; PMID: 19067222
  • Khan MS, Ahmad I, Aqil F, Owais M, Shahid M, Musarrat J. Virulence and pathogenicity of fungal pathogens with special reference to Candida albicans. In: Ahmad I, Owais M, Shahid M, Aqil F, editors. Combating fungal infections: problems and remedy. Berlin, Heidelberg, Germany: Springer-Verlag; 2010. p. 21-45
  • Quintin J, Asmar J, Matskevich AA, Lafarge MC, Ferrandon D. The Drosophila Toll pathway controls but does not clear Candida glabrata infections. J Immunol 2013; 190:2818 - 27; http://dx.doi.org/10.4049/jimmunol.1201861; PMID: 23401590
  • Kocks C, Cho JH, Nehme N, Ulvila J, Pearson AM, Meister M, Strom C, Conto SL, Hetru C, Stuart LM, et al. Eater, a transmembrane protein mediating phagocytosis of bacterial pathogens in Drosophila. Cell 2005; 123:335 - 46; http://dx.doi.org/10.1016/j.cell.2005.08.034; PMID: 16239149
  • Qin QM, Luo J, Lin X, Pei J, Li L, Ficht TA, de Figueiredo P. Functional analysis of host factors that mediate the intracellular lifestyle of Cryptococcus neoformans. PLoS Pathog 2011; 7:e1002078; http://dx.doi.org/10.1371/journal.ppat.1002078; PMID: 21698225
  • Apidianakis Y, Rahme LG, Heitman J, Ausubel FM, Calderwood SB, Mylonakis E. Challenge of Drosophila melanogaster with Cryptococcus neoformans and role of the innate immune response. Eukaryot Cell 2004; 3:413 - 9; http://dx.doi.org/10.1128/EC.3.2.413-419.2004; PMID: 15075271
  • Ha EM, Oh CT, Bae YS, Lee WJ. A direct role for dual oxidase in Drosophila gut immunity. Science 2005; 310:847 - 50; http://dx.doi.org/10.1126/science.1117311; PMID: 16272120
  • Pongas GN, Ben-Ami R, Lewis RE, Walsh TJ, Kontoyiannis DP. Culture medium composition affects the lethality of Cunninghamella bertholletiae in a fly model of mucormycosis. Antimicrob Agents Chemother 2009; 53:4569; http://dx.doi.org/10.1128/AAC.00994-09; PMID: 19635953
  • Chamilos G, Lewis RE, Hu J, Xiao L, Zal T, Gilliet M, Halder G, Kontoyiannis DP. Drosophila melanogaster as a model host to dissect the immunopathogenesis of zygomycosis. Proc Natl Acad Sci U S A 2008; 105:9367 - 72; http://dx.doi.org/10.1073/pnas.0709578105; PMID: 18583479
  • Lamaris GA, Chamilos G, Lewis RE, Kontoyiannis DP. Virulence studies of Scedosporium and Fusarium species in Drosophila melanogaster. J Infect Dis 2007; 196:1860 - 4; http://dx.doi.org/10.1086/523765; PMID: 18190268
  • Pal S, St Leger RJ, Wu LP. Fungal peptide Destruxin A plays a specific role in suppressing the innate immune response in Drosophila melanogaster. J Biol Chem 2007; 282:8969 - 77; http://dx.doi.org/10.1074/jbc.M605927200; PMID: 17227774
  • Gottar M, Gobert V, Matskevich AA, Reichhart JM, Wang C, Butt TM, Belvin M, Hoffmann JA, Ferrandon D. Dual detection of fungal infections in Drosophila via recognition of glucans and sensing of virulence factors. Cell 2006; 127:1425 - 37; http://dx.doi.org/10.1016/j.cell.2006.10.046; PMID: 17190605
  • Evans SE, Leventakos K, Ben-Ami R, You D, Thakkar SG, Lewis RE, Kontoyiannis DP. Toll-deficient Drosophila are resistant to infection by Pneumocystis spp.: additional evidence of specificity to mammalian hosts. Virulence 2010; 1:523 - 5; http://dx.doi.org/10.4161/viru.1.6.13903; PMID: 21178507
  • Lewis RE, Ben-Ami R, Best L, Albert N, Walsh TJ, Kontoyiannis DP. Tacrolimus enhances the potency of posaconazole against Rhizopus oryzae in vitro and in an experimental model of mucormycosis. J Infect Dis 2013; 207:834 - 41; http://dx.doi.org/10.1093/infdis/jis767; PMID: 23242544
  • Garrey JL, Lee YY, Au HH, Bushell M, Jan E. Host and viral translational mechanisms during cricket paralysis virus infection. J Virol 2010; 84:1124 - 38; http://dx.doi.org/10.1128/JVI.02006-09; PMID: 19889774
  • Mukherjee S, Hanley KA. RNA interference modulates replication of dengue virus in Drosophila melanogaster cells. BMC Microbiol 2010; 10:127; http://dx.doi.org/10.1186/1471-2180-10-127; PMID: 20420715
  • Sessions OM, Barrows NJ, Souza-Neto JA, Robinson TJ, Hershey CL, Rodgers MA, Ramirez JL, Dimopoulos G, Yang PL, Pearson JL, et al. Discovery of insect and human dengue virus host factors. Nature 2009; 458:1047 - 50; http://dx.doi.org/10.1038/nature07967; PMID: 19396146
  • Cherry S, Kunte A, Wang H, Coyne C, Rawson RB, Perrimon N. COPI activity coupled with fatty acid biosynthesis is required for viral replication. PLoS Pathog 2006; 2:e102; http://dx.doi.org/10.1371/journal.ppat.0020102; PMID: 17040126
  • Tsai CW, McGraw EA, Ammar ED, Dietzgen RG, Hogenhout SA. Drosophila melanogaster mounts a unique immune response to the Rhabdovirus sigma virus. Appl Environ Microbiol 2008; 74:3251 - 6; http://dx.doi.org/10.1128/AEM.02248-07; PMID: 18378641
  • Adamson AL, Wright N, LaJeunesse DR. Modeling early Epstein-Barr virus infection in Drosophila melanogaster: the BZLF1 protein. Genetics 2005; 171:1125 - 35; http://dx.doi.org/10.1534/genetics.105.042572; PMID: 16079238
  • Adamson A, LaJeunesse D. A study of Epstein-Barr virus BRLF1 activity in a Drosophila model system. ScientificWorldJournal 2012; 2012:347597; http://dx.doi.org/10.1100/2012/347597; PMID: 22629134
  • Lossius A, Johansen JN, Torkildsen Ø, Vartdal F, Holmøy T. Epstein-Barr virus in systemic lupus erythematosus, rheumatoid arthritis and multiple sclerosis—association and causation. Viruses 2012; 4:3701 - 30; http://dx.doi.org/10.3390/v4123701; PMID: 23342374
  • Settles EW, Friesen PD. Flock house virus induces apoptosis by depletion of Drosophila inhibitor-of-apoptosis protein DIAP1. J Virol 2008; 82:1378 - 88; http://dx.doi.org/10.1128/JVI.01941-07; PMID: 17989181
  • Jovel J, Schneemann A. Molecular characterization of Drosophila cells persistently infected with Flock House virus. Virology 2011; 419:43 - 53; http://dx.doi.org/10.1016/j.virol.2011.08.002; PMID: 21872290
  • Jorge SA, Santos AS, Spina A, Pereira CA. Expression of the hepatitis B virus surface antigen in Drosophila S2 cells. Cytotechnology 2008; 57:51 - 9; http://dx.doi.org/10.1007/s10616-008-9154-z; PMID: 19003172
  • Steinberg R, Shemer-Avni Y, Adler N, Neuman-Silberberg S. Human cytomegalovirus immediate-early-gene expression disrupts embryogenesis in transgenic Drosophila. Transgenic Res 2008; 17:105 - 19; http://dx.doi.org/10.1007/s11248-007-9136-5; PMID: 17912601
  • Leulier F, Marchal C, Miletich I, Limbourg-Bouchon B, Benarous R, Lemaitre B. Directed expression of the HIV-1 accessory protein Vpu in Drosophila fat-body cells inhibits Toll-dependent immune responses. EMBO Rep 2003; 4:976 - 81; http://dx.doi.org/10.1038/sj.embor.embor936; PMID: 12973300
  • Marchal C, Vinatier G, Sanial M, Plessis A, Pret AM, Limbourg-Bouchon B, Théodore L, Netter S. The HIV-1 Vpu protein induces apoptosis in Drosophila via activation of JNK signaling. PLoS One 2012; 7:e34310; http://dx.doi.org/10.1371/journal.pone.0034310; PMID: 22479597
  • Hao L, Sakurai A, Watanabe T, Sorensen E, Nidom CA, Newton MA, Ahlquist P, Kawaoka Y. Drosophila RNAi screen identifies host genes important for influenza virus replication. Nature 2008; 454:890 - 3; http://dx.doi.org/10.1038/nature07151; PMID: 18615016
  • Lam VK, Tokusumi T, Cerabona D, Schulz RA. Specific cell ablation in Drosophila using the toxic viral protein M2(H37A). Fly (Austin) 2010; 4:338 - 43; http://dx.doi.org/10.4161/fly.4.4.13114; PMID: 20798602
  • Adamson AL, Chohan K, Swenson J, LaJeunesse D. A Drosophila model for genetic analysis of influenza viral/host interactions. Genetics 2011; 189:495 - 506; http://dx.doi.org/10.1534/genetics.111.132290; PMID: 21775472
  • Habayeb MS, Cantera R, Casanova G, Ekström JO, Albright S, Hultmark D. The Drosophila Nora virus is an enteric virus, transmitted via feces. J Invertebr Pathol 2009; 101:29 - 33; http://dx.doi.org/10.1016/j.jip.2009.02.003; PMID: 19236875
  • Habayeb MS, Ekström JO, Hultmark D. Nora virus persistent infections are not affected by the RNAi machinery. PLoS One 2009; 4:e5731; http://dx.doi.org/10.1371/journal.pone.0005731; PMID: 19478998
  • Cordes EJ, Licking-Murray KD, Carlson KA. Differential gene expression related to Nora virus infection of Drosophila melanogaster. Virus Res 2013; 175:95 - 100; http://dx.doi.org/10.1016/j.virusres.2013.03.021; PMID: 23603562
  • Wong SL, Chen Y, Chan CM, Chan CS, Chan PK, Chui YL, Fung KP, Waye MM, Tsui SK, Chan HY. In vivo functional characterization of the SARS-Coronavirus 3a protein in Drosophila. Biochem Biophys Res Commun 2005; 337:720 - 9; http://dx.doi.org/10.1016/j.bbrc.2005.09.098; PMID: 16212942
  • Chan CM, Ma CW, Chan WY, Chan HY. The SARS-Coronavirus Membrane protein induces apoptosis through modulating the Akt survival pathway. Arch Biochem Biophys 2007; 459:197 - 207; http://dx.doi.org/10.1016/j.abb.2007.01.012; PMID: 17306213
  • Chan E, Tsui S, Chan CM, Chan CS, Chen YW, Law P, Wong A. Molecular and genetic characterisation of the SARS coronavirus auxiliary protein X1 in Drosophila. Hong Kong Med J 2008; 14:Suppl 4 14 - 6; PMID: 18708668
  • Kotadia S, Kao LR, Comerford SA, Jones RT, Hammer RE, Megraw TL. PP2A-dependent disruption of centrosome replication and cytoskeleton organization in Drosophila by SV40 small tumor antigen. Oncogene 2008; 27:6334 - 46; http://dx.doi.org/10.1038/onc.2008.254; PMID: 18663356
  • Rose PP, Hanna SL, Spiridigliozzi A, Wannissorn N, Beiting DP, Ross SR, Hardy RW, Bambina SA, Heise MT, Cherry S. Natural resistance-associated macrophage protein is a cellular receptor for sindbis virus in both insect and mammalian hosts. Cell Host Microbe 2011; 10:97 - 104; http://dx.doi.org/10.1016/j.chom.2011.06.009; PMID: 21843867
  • Xu J, Hopkins K, Sabin L, Yasunaga A, Subramanian H, Lamborn I, Gordesky-Gold B, Cherry S. ERK signaling couples nutrient status to antiviral defense in the insect gut. Proc Natl Acad Sci U S A 2013; 110:15025 - 30; http://dx.doi.org/10.1073/pnas.1303193110; PMID: 23980175
  • Liu Q, Huang W, Nie J, Zhu R, Gao D, Song A, Meng S, Xu X, Wang Y. A novel high-throughput vaccinia virus neutralization assay and preexisting immunity in populations from different geographic regions in China. PLoS One 2012; 7:e33392; http://dx.doi.org/10.1371/journal.pone.0033392; PMID: 22438922
  • Moser TS, Sabin LR, Cherry S. RNAi screening for host factors involved in Vaccinia virus infection using Drosophila cells. J Vis Exp 2010; 42:2137; PMID: 20834214
  • Moussavi M, Tearle H, Fazli L, Bell JC, Jia W, Rennie PS. Targeting and killing of metastatic cells in the transgenic adenocarcinoma of mouse prostate model with vesicular stomatitis virus. Mol Ther 2013; 21:842 - 8; http://dx.doi.org/10.1038/mt.2012.285; PMID: 23337981
  • Nakamoto M, Moy RH, Xu J, Bambina S, Yasunaga A, Shelly SS, Gold B, Cherry S. Virus recognition by Toll-7 activates antiviral autophagy in Drosophila. Immunity 2012; 36:658 - 67; http://dx.doi.org/10.1016/j.immuni.2012.03.003; PMID: 22464169
  • Delgado MA, Elmaoued RA, Davis AS, Kyei G, Deretic V. Toll-like receptors control autophagy. EMBO J 2008; 27:1110 - 21; http://dx.doi.org/10.1038/emboj.2008.31; PMID: 18337753
  • Schnettler E, Sterken MG, Leung JY, Metz SW, Geertsema C, Goldbach RW, Vlak JM, Kohl A, Khromykh AA, Pijlman GP. Noncoding flavivirus RNA displays RNA interference suppressor activity in insect and Mammalian cells. J Virol 2012; 86:13486 - 500; http://dx.doi.org/10.1128/JVI.01104-12; PMID: 23035235
  • Munoz-Erazo L, Natoli R, Provis JM, Madigan MC, King NJ. Microarray analysis of gene expression in West Nile virus-infected human retinal pigment epithelium. Mol Vis 2012; 18:730 - 43; PMID: 22509103
  • Chotkowski HL, Ciota AT, Jia Y, Puig-Basagoiti F, Kramer LD, Shi PY, Glaser RL. West Nile virus infection of Drosophila melanogaster induces a protective RNAi response. Virology 2008; 377:197 - 206; http://dx.doi.org/10.1016/j.virol.2008.04.021; PMID: 18501400
  • Tzelepis I, Kapsetaki SE, Panayidou S, Apidianakis Y. Drosophila melanogaster: a first step and a stepping-stone to anti-infectives. Curr Opin Pharmacol 2013; 13:763 - 8; http://dx.doi.org/10.1016/j.coph.2013.08.003; PMID: 23992884
  • Lemaitre B, Hoffmann J. The host defense of Drosophila melanogaster. Annu Rev Immunol 2007; 25:697 - 743; http://dx.doi.org/10.1146/annurev.immunol.25.022106.141615; PMID: 17201680
  • Ferrandon D. The complementary facets of epithelial host defenses in the genetic model organism Drosophila melanogaster: from resistance to resilience. Curr Opin Immunol 2013; 25:59 - 70; http://dx.doi.org/10.1016/j.coi.2012.11.008; PMID: 23228366
  • Apidianakis Y, Mindrinos MN, Xiao W, Tegos GP, Papisov MI, Hamblin MR, Davis RW, Tompkins RG, Rahme LG. Involvement of skeletal muscle gene regulatory network in susceptibility to wound infection following trauma. PLoS One 2007; 2:e1356; http://dx.doi.org/10.1371/journal.pone.0001356; PMID: 18159239
  • Hamilos G, Samonis G, Kontoyiannis DP. Recent advances in the use of drosophila melanogaster as a model to study immunopathogenesis of medically important filamentous fungi. Int J Microbiol 2012; 2012:583792; http://dx.doi.org/10.1155/2012/583792; PMID: 22518146
  • Wang JH, Valanne S, Rämet M. Drosophila as a model for antiviral immunity. World J Biol Chem 2010; 1:151 - 9; http://dx.doi.org/10.4331/wjbc.v1.i5.151; PMID: 21541000
  • Schneider DS, Ayres JS. Two ways to survive infection: what resistance and tolerance can teach us about treating infectious diseases. Nat Rev Immunol 2008; 8:889 - 95; http://dx.doi.org/10.1038/nri2432; PMID: 18927577
  • Davis MM, Engström Y. Immune response in the barrier epithelia: lessons from the fruit fly Drosophila melanogaster. J Innate Immun 2012; 4:273 - 83; http://dx.doi.org/10.1159/000332947; PMID: 22237424
  • Kounatidis I, Ligoxygakis P. Drosophila as a model system to unravel the layers of innate immunity to infection. Open Biol 2012; 2:120075; http://dx.doi.org/10.1098/rsob.120075; PMID: 22724070
  • Alarco AM, Marcil A, Chen J, Suter B, Thomas D, Whiteway M. Immune-deficient Drosophila melanogaster: a model for the innate immune response to human fungal pathogens. J Immunol 2004; 172:5622 - 8; PMID: 15100306
  • Glittenberg MT, Kounatidis I, Christensen D, Kostov M, Kimber S, Roberts I, Ligoxygakis P. Pathogen and host factors are needed to provoke a systemic host response to gastrointestinal infection of Drosophila larvae by Candida albicans. Dis Model Mech 2011; 4:515 - 25; http://dx.doi.org/10.1242/dmm.006627; PMID: 21540243
  • Apidianakis Y, Rahme LG. Drosophila melanogaster as a model host for studying Pseudomonas aeruginosa infection. Nat Protoc 2009; 4:1285 - 94; http://dx.doi.org/10.1038/nprot.2009.124; PMID: 19680242
  • Fauvarque MO, Bergeret E, Chabert J, Dacheux D, Satre M, Attree I. Role and activation of type III secretion system genes in Pseudomonas aeruginosa-induced Drosophila killing. Microb Pathog 2002; 32:287 - 95; http://dx.doi.org/10.1006/mpat.2002.0504; PMID: 12137756
  • Panayidou S, Apidianakis Y. Regenerative inflammation: Lessons from drosophila intestinal epithelium in health and disease. Pathogens 2013; 2:209 - 31; http://dx.doi.org/10.3390/pathogens2020209
  • Hughes TT, Allen AL, Bardin JE, Christian MN, Daimon K, Dozier KD, Hansen CL, Holcomb LM, Ahlander J. Drosophila as a genetic model for studying pathogenic human viruses. Virology 2012; 423:1 - 5
  • Castonguay-Vanier J, Vial L, Tremblay J, Déziel E. Drosophila melanogaster as a model host for the Burkholderia cepacia complex. PLoS One 2010; 5:e11467; http://dx.doi.org/10.1371/journal.pone.0011467; PMID: 20635002
  • Akimana C, Kwaik YA. Francisella-arthropod vector interaction and its role in patho-adaptation to infect mammals. Front Microbiol 2011; 2:34; http://dx.doi.org/10.3389/fmicb.2011.00034; PMID: 21687425
  • Vonkavaara M, Telepnev MV, Rydén P, Sjöstedt A, Stöven S. Drosophila melanogaster as a model for elucidating the pathogenicity of Francisella tularensis. Cell Microbiol 2008; 10:1327 - 38; http://dx.doi.org/10.1111/j.1462-5822.2008.01129.x; PMID: 18248629
  • Reid DW, Muyskens JB, Neal JT, Gaddini GW, Cho LY, Wandler AM, Botham CM, Guillemin K. Identification of genetic modifiers of CagA-induced epithelial disruption in Drosophila. Front Cell Infect Microbiol 2012; 2:24; http://dx.doi.org/10.3389/fcimb.2012.00024; PMID: 22919616
  • Dorer MS, Kirton D, Bader JS, Isberg RR. RNA interference analysis of Legionella in Drosophila cells: exploitation of early secretory apparatus dynamics. PLoS Pathog 2006; 2:e34; http://dx.doi.org/10.1371/journal.ppat.0020034; PMID: 16652170
  • O’Connor TJ, Boyd D, Dorer MS, Isberg RR. Aggravating genetic interactions allow a solution to redundancy in a bacterial pathogen. Science 2012; 338:1440 - 4; http://dx.doi.org/10.1126/science.1229556; PMID: 23239729
  • Dionne MS, Pham LN, Shirasu-Hiza M, Schneider DS. Akt and FOXO dysregulation contribute to infection-induced wasting in Drosophila. Curr Biol 2006; 16:1977 - 85; http://dx.doi.org/10.1016/j.cub.2006.08.052; PMID: 17055976
  • Lau GW, Goumnerov BC, Walendziewicz CL, Hewitson J, Xiao W, Mahajan-Miklos S, Tompkins RG, Perkins LA, Rahme LG. The Drosophila melanogaster toll pathway participates in resistance to infection by the gram-negative human pathogen Pseudomonas aeruginosa. Infect Immun 2003; 71:4059 - 66; http://dx.doi.org/10.1128/IAI.71.7.4059-4066.2003; PMID: 12819096
  • Limmer S, Haller S, Drenkard E, Lee J, Yu S, Kocks C, Ausubel FM, Ferrandon D. Pseudomonas aeruginosa RhlR is required to neutralize the cellular immune response in a Drosophila melanogaster oral infection model. Proc Natl Acad Sci U S A 2011; 108:17378 - 83; http://dx.doi.org/10.1073/pnas.1114907108; PMID: 21987808
  • Stoltz DA, Ozer EA, Taft PJ, Barry M, Liu L, Kiss PJ, Moninger TO, Parsek MR, Zabner J. Drosophila are protected from Pseudomonas aeruginosa lethality by transgenic expression of paraoxonase-1. J Clin Invest 2008; 118:3123 - 31; http://dx.doi.org/10.1172/JCI35147; PMID: 18704198
  • Sibley CD, Duan K, Fischer C, Parkins MD, Storey DG, Rabin HR, Surette MG. Discerning the complexity of community interactions using a Drosophila model of polymicrobial infections. PLoS Pathog 2008; 4:e1000184; http://dx.doi.org/10.1371/journal.ppat.1000184; PMID: 18949036
  • Korgaonkar A, Trivedi U, Rumbaugh KP, Whiteley M. Community surveillance enhances Pseudomonas aeruginosa virulence during polymicrobial infection. Proc Natl Acad Sci U S A 2013; 110:1059 - 64; http://dx.doi.org/10.1073/pnas.1214550110; PMID: 23277552
  • Bangi E, Pitsouli C, Rahme LG, Cagan R, Apidianakis Y. Immune response to bacteria induces dissemination of Ras-activated Drosophila hindgut cells. EMBO Rep 2012; 13:569 - 76; http://dx.doi.org/10.1038/embor.2012.44; PMID: 22498775
  • Christofi T, Apidianakis Y. Ras-oncogenic Drosophila hindgut but not midgut cells use an inflammation-like program to disseminate to distant sites. Gut Microbes 2013; 4:54 - 9; http://dx.doi.org/10.4161/gmic.22429; PMID: 23060054
  • Apidianakis Y, Que YA, Xu W, Tegos GP, Zimniak P, Hamblin MR, Tompkins RG, Xiao W, Rahme LG. Down-regulation of glutatione S-transferase α 4 (hGSTA4) in the muscle of thermally injured patients is indicative of susceptibility to bacterial infection. FASEB J 2012; 26:730 - 7; http://dx.doi.org/10.1096/fj.11-192484; PMID: 22038048
  • Corby-Harris V, Habel KE, Ali FG, Promislow DE. Alternative measures of response to Pseudomonas aeruginosa infection in Drosophila melanogaster. J Evol Biol 2007; 20:526 - 33; http://dx.doi.org/10.1111/j.1420-9101.2006.01267.x; PMID: 17305818
  • Ye YH, Chenoweth SF, McGraw EA. Effective but costly, evolved mechanisms of defense against a virulent opportunistic pathogen in Drosophila melanogaster. PLoS Pathog 2009; 5:e1000385; http://dx.doi.org/10.1371/journal.ppat.1000385; PMID: 19381251
  • Liu X, Lu R, Xia Y, Wu S, Sun J. Eukaryotic signaling pathways targeted by Salmonella effector protein AvrA in intestinal infection in vivo. BMC Microbiol 2010; 10:326; http://dx.doi.org/10.1186/1471-2180-10-326; PMID: 21182782
  • Brandt SM, Dionne MS, Khush RS, Pham LN, Vigdal TJ, Schneider DS. Secreted bacterial effectors and host-produced Eiger/TNF drive death in aSalmonella-infected fruit fly. PLoS Biol 2004; 2:e418; http://dx.doi.org/10.1371/journal.pbio.0020418; PMID: 15562316
  • Ayres JS, Schneider DS. The role of anorexia in resistance and tolerance to infections in Drosophila. PLoS Biol 2009; 7:e1000150; http://dx.doi.org/10.1371/journal.pbio.1000150; PMID: 19597539
  • Purdy AE, Watnick PI. Spatially selective colonization of the arthropod intestine through activation of Vibrio cholerae biofilm formation. Proc Natl Acad Sci U S A 2011; 108:19737 - 42; http://dx.doi.org/10.1073/pnas.1111530108; PMID: 22106284
  • Berkey CD, Blow N, Watnick PI. Genetic analysis of Drosophila melanogaster susceptibility to intestinal Vibrio cholerae infection. Cell Microbiol 2009; 11:461 - 74; http://dx.doi.org/10.1111/j.1462-5822.2008.01267.x; PMID: 19046341
  • Cocklin S, Jost M, Robertson NM, Weeks SD, Weber HW, Young E, Seal S, Zhang C, Mosser E, Loll PJ, et al. Real-time monitoring of the membrane-binding and insertion properties of the cholesterol-dependent cytolysin anthrolysin O from Bacillus anthracis. J Mol Recognit 2006; 19:354 - 62; http://dx.doi.org/10.1002/jmr.784; PMID: 16775845
  • Bosco-Drayon V, Poidevin M, Boneca IG, Narbonne-Reveau K, Royet J, Charroux B. Peptidoglycan sensing by the receptor PGRP-LE in the Drosophila gut induces immune responses to infectious bacteria and tolerance to microbiota. Cell Host Microbe 2012; 12:153 - 65; http://dx.doi.org/10.1016/j.chom.2012.06.002; PMID: 22901536
  • Blum JE, Fischer CN, Miles J, Handelsman J. Frequent replenishment sustains the beneficial microbiome of Drosophila melanogaster. MBio 2013; 4:e00860 - 13; http://dx.doi.org/10.1128/mBio.00860-13; PMID: 24194543
  • Pezzulo AA, Hornick EE, Rector MV, Estin M, Reisetter AC, Taft PJ, Butcher SC, Carter AB, Manak JR, Stoltz DA, et al. Expression of human paraoxonase 1 decreases superoxide levels and alters bacterial colonization in the gut of Drosophila melanogaster. PLoS One 2012; 7:e43777; http://dx.doi.org/10.1371/journal.pone.0043777; PMID: 22952763
  • Jones RM, Luo L, Ardita CS, Richardson AN, Kwon YM, Mercante JW, Alam A, Gates CL, Wu H, Swanson PA, et al. Symbiotic lactobacilli stimulate gut epithelial proliferation via Nox-mediated generation of reactive oxygen species. EMBO J 2013; 32:3017 - 28; http://dx.doi.org/10.1038/emboj.2013.224; PMID: 24141879
  • Agaisse H, Burrack LS, Philips JA, Rubin EJ, Perrimon N, Higgins DE. Genome-wide RNAi screen for host factors required for intracellular bacterial infection. Science 2005; 309:1248 - 51; http://dx.doi.org/10.1126/science.1116008; PMID: 16020693
  • Chambers MC, Song KH, Schneider DS. Listeria monocytogenes infection causes metabolic shifts in Drosophila melanogaster. PLoS One 2012; 7:e50679; http://dx.doi.org/10.1371/journal.pone.0050679; PMID: 23272066
  • Needham AJ, Kibart M, Crossley H, Ingham PW, Foster SJ. Drosophila melanogaster as a model host for Staphylococcus aureus infection. Microbiology 2004; 150:2347 - 55; http://dx.doi.org/10.1099/mic.0.27116-0; PMID: 15256576
  • Wu K, Conly J, Surette M, Sibley C, Elsayed S, Zhang K. Assessment of virulence diversity of methicillin-resistant Staphylococcus aureus strains with a Drosophila melanogaster infection model. BMC Microbiol 2012; 12:274; http://dx.doi.org/10.1186/1471-2180-12-274; PMID: 23176146
  • Ben-Ami R, Watson CC, Lewis RE, Albert ND, Arias CA, Raad II, Kontoyiannis DP. Drosophila melanogaster as a model to explore the effects of methicillin-resistant Staphylococcus aureus strain type on virulence and response to linezolid treatment. Microb Pathog 2013; 55:16 - 20; http://dx.doi.org/10.1016/j.micpath.2012.11.012; PMID: 23232438
  • Leone P, Bischoff V, Kellenberger C, Hetru C, Royet J, Roussel A. Crystal structure of Drosophila PGRP-SD suggests binding to DAP-type but not lysine-type peptidoglycan. Mol Immunol 2008; 45:2521 - 30; http://dx.doi.org/10.1016/j.molimm.2008.01.015; PMID: 18304640
  • Christofi T, Apidianakis Y. Drosophila immune priming against Pseudomonas aeruginosa is short-lasting and depends on cellular and humoral immunity. F1000Res 2013; 2:76; PMID: 24358857
  • Chambers MC, Lightfield KL, Schneider DS. How the fly balances its ability to combat different pathogens. PLoS Pathog 2012; 8:e1002970; http://dx.doi.org/10.1371/journal.ppat.1002970; PMID: 23271964
  • Ben-Ami R, Lewis RE, Kontoyiannis DP. Enemy of the (immunosuppressed) state: an update on the pathogenesis of Aspergillus fumigatus infection. Br J Haematol 2010; 150:406 - 17; PMID: 20618330
  • Lemaitre B, Nicolas E, Michaut L, Reichhart JM, Hoffmann JA. The dorsoventral regulatory gene cassette spätzle/Toll/cactus controls the potent antifungal response in Drosophila adults. Cell 1996; 86:973 - 83; http://dx.doi.org/10.1016/S0092-8674(00)80172-5; PMID: 8808632
  • Berthier E, Lim FY, Deng Q, Guo CJ, Kontoyiannis DP, Wang CC, Rindy J, Beebe DJ, Huttenlocher A, Keller NP. Low-volume toolbox for the discovery of immunosuppressive fungal secondary metabolites. PLoS Pathog 2013; 9:e1003289; http://dx.doi.org/10.1371/journal.ppat.1003289; PMID: 23592999
  • Moudgal V, Sobel J. Antifungals to treat Candida albicans. Expert Opin Pharmacother 2010; 11:2037 - 48; http://dx.doi.org/10.1517/14656566.2010.493875; PMID: 20536294
  • Fidel PL Jr., Vazquez JA, Sobel JD. Candida glabrata: review of epidemiology, pathogenesis, and clinical disease with comparison to C. albicans. Clin Microbiol Rev 1999; 12:80 - 96; PMID: 9880475
  • Mueller S, Gausson V, Vodovar N, Deddouche S, Troxler L, Perot J, Pfeffer S, Hoffmann JA, Saleh MC, Imler JL. RNAi-mediated immunity provides strong protection against the negative-strand RNA vesicular stomatitis virus in Drosophila. Proc Natl Acad Sci U S A 2010; 107:19390 - 5; http://dx.doi.org/10.1073/pnas.1014378107; PMID: 20978209
  • Shelly S, Lukinova N, Bambina S, Berman A, Cherry S. Autophagy is an essential component of Drosophila immunity against vesicular stomatitis virus. Immunity 2009; 30:588 - 98; http://dx.doi.org/10.1016/j.immuni.2009.02.009; PMID: 19362021
  • Razzell W, Wood W, Martin P. Swatting flies: modelling wound healing and inflammation in Drosophila. Dis Model Mech 2011; 4:569 - 74; http://dx.doi.org/10.1242/dmm.006825; PMID: 21810906
  • Jensen RL, Pedersen KS, Loeschcke V, Ingmer H, Leisner JJ. Limitations in the use of Drosophila melanogaster as a model host for gram-positive bacterial infection. Lett Appl Microbiol 2007; 44:218 - 23; http://dx.doi.org/10.1111/j.1472-765X.2006.02040.x; PMID: 17257264