1,022
Views
9
CrossRef citations to date
0
Altmetric
Article addendum

A novel contractility pathway operating in Salmonella invasion

, &
Pages 81-86 | Published online: 01 Jan 2012

References

  • McGhie EJ, Brawn LC, Hume PJ, Humphreys D, Koronakis V. Salmonella takes control: effector-driven manipulation of the host. Curr Opin Microbiol 2009; 12:117 - 24; http://dx.doi.org/10.1016/j.mib.2008.12.001; PMID: 19157959
  • Patel JC, Galan JE. Manipulation of the host actin cytoskeleton by Salmonella–all in the name of entry. Curr Opin Microbiol 2005; 8:10 - 5; http://dx.doi.org/10.1016/j.mib.2004.09.001; PMID: 15694851
  • Cossart P, Sansonetti PJ. Bacterial invasion: the paradigms of enteroinvasive pathogens. Science 2004; 304:242 - 8; http://dx.doi.org/10.1126/science.1090124; PMID: 15073367
  • Machesky LM, Insall RH. Scar1 and the related Wiskott-Aldrich syndrome protein, WASP, regulate the actin cytoskeleton through the Arp2/3 complex. Curr Biol 1998; 8:1347 - 56; http://dx.doi.org/10.1016/S0960-9822(98)00015-3; PMID: 9889097
  • Nicholson-Dykstra SM, Higgs HN. Arp2 depletion inhibits sheet-like protrusions but not linear protrusions of fibroblasts and lymphocytes. Cell Motil Cytoskeleton 2008; 65:904 - 22; http://dx.doi.org/10.1002/cm.20312; PMID: 18720401
  • Steffen A, Faix J, Resch GP, Linkner J, Wehland J, Small JV, et al. Filopodia formation in the absence of functional WAVE- and Arp2/3-complexes. Mol Biol Cell 2006; 17:2581 - 91; http://dx.doi.org/10.1091/mbc.E05-11-1088; PMID: 16597702
  • Steffen A, Rottner K, Ehinger J, Innocenti M, Scita G, Wehland J, et al. Sra-1 and Nap1 link Rac to actin assembly driving lamellipodia formation. EMBO J 2004; 23:749 - 59; http://dx.doi.org/10.1038/sj.emboj.7600084; PMID: 14765121
  • Hänisch J, Ehinger J, Ladwein M, Rohde M, Derivery E, Bosse T, et al. Molecular dissection of Salmonella-induced membrane ruffling versus invasion. Cell Microbiol 2010; 12:84 - 98; http://dx.doi.org/10.1111/j.1462-5822.2009.01380.x; PMID: 19732055
  • Wasylnka JA, Bakowski MA, Szeto J, Ohlson MB, Trimble WS, Miller SI, et al. Role for myosin II in regulating positioning of Salmonella-containing vacuoles and intracellular replication. Infect Immun 2008; 76:2722 - 35; http://dx.doi.org/10.1128/IAI.00152-08; PMID: 18411289
  • Hänisch J, Kölm R, Wozniczka M, Bumann D, Rottner K, Stradal TE. Activation of a RhoA/Myosin II-Dependent but Arp2/3 Complex-Independent Pathway Facilitates Salmonella Invasion. Cell Host Microbe 2011; 9:273 - 85; http://dx.doi.org/10.1016/j.chom.2011.03.009; PMID: 21501827
  • Wagner C, Hensel M. Adhesive mechanisms of Salmonella enterica. Adv Exp Med Biol 2011; 715:17 - 34; http://dx.doi.org/10.1007/978-94-007-0940-9_2; PMID: 21557055
  • Lara-Tejero M, Galan JE. Salmonella enterica serovar typhimurium pathogenicity island 1-encoded type III secretion system translocases mediate intimate attachment to nonphagocytic cells. Infect Immun 2009; 77:2635 - 42; http://dx.doi.org/10.1128/IAI.00077-09; PMID: 19364837
  • Norris FA, Wilson MP, Wallis TS, Galyov EE, Majerus PW. SopB, a protein required for virulence of Salmonella dublin, is an inositol phosphate phosphatase. Proc Natl Acad Sci USA 1998; 95:14057 - 9; http://dx.doi.org/10.1073/pnas.95.24.14057; PMID: 9826652
  • Patel JC, Galan JE. Differential activation and function of Rho GTPases during Salmonella-host cell interactions. J Cell Biol 2006; 175:453 - 63; http://dx.doi.org/10.1083/jcb.200605144; PMID: 17074883
  • Rottner K, Stradal TE. Actin dynamics and turnover in cell motility. Curr Opin Cell Biol 2011; 23:569 - 78; http://dx.doi.org/10.1016/j.ceb.2011.07.003; PMID: 21807492
  • Wilkinson S, Paterson HF, Marshall CJ. Cdc42-MRCK and Rho-ROCK signalling cooperate in myosin phosphorylation and cell invasion. Nat Cell Biol 2005; 7:255 - 61; http://dx.doi.org/10.1038/ncb1230; PMID: 15723050
  • Leung T, Chen XQ, Tan I, Manser E, Lim L. Myotonic dystrophy kinase-related Cdc42-binding kinase acts as a Cdc42 effector in promoting cytoskeletal reorganization. Mol Cell Biol 1998; 18:130 - 40; PMID: 9418861
  • Friebel A, Ilchmann H, Aepfelbacher M, Ehrbar K, Machleidt W, Hardt WD. SopE and SopE2 from Salmonella typhimurium activate different sets of RhoGTPases of the host cell. J Biol Chem 2001; 276:34035 - 40; http://dx.doi.org/10.1074/jbc.M100609200; PMID: 11440999
  • Rodríguez-Escudero I, Ferrer NL, Rotger R, Cid VJ, Molina M. Interaction of the Salmonella Typhimurium effector protein SopB with host cell Cdc42 is involved in intracellular replication. Mol Microbiol 2011; 80:1220 - 40; http://dx.doi.org/10.1111/j.1365-2958.2011.07639.x; PMID: 21435037
  • Czuchra A, Wu X, Meyer H, van Hengel J, Schroeder T, Geffers R, et al. Cdc42 is not essential for filopodium formation, directed migration, cell polarization, and mitosis in fibroblastoid cells. Mol Biol Cell 2005; 16:4473 - 84; http://dx.doi.org/10.1091/mbc.E05-01-0061; PMID: 16014609
  • Hayward RD, Koronakis V. Direct modulation of the host cell cytoskeleton by Salmonella actin-binding proteins. Trends Cell Biol 2002; 12:15 - 20; http://dx.doi.org/10.1016/S0962-8924(01)02183-3; PMID: 11854005
  • Pellegrin S, Mellor H. Actin stress fibres. J Cell Sci 2007; 120:3491 - 9; http://dx.doi.org/10.1242/jcs.018473; PMID: 17928305
  • Peng J, Wallar BJ, Flanders A, Swiatek PJ, Alberts AS. Disruption of the Diaphanous-related formin Drf1 gene encoding mDia1 reveals a role for Drf3 as an effector for Cdc42. Curr Biol 2003; 13:534 - 45; http://dx.doi.org/10.1016/S0960-9822(03)00170-2; PMID: 12676083
  • Schönichen A, Geyer M. Fifteen formins for an actin filament: a molecular view on the regulation of human formins. Biochim Biophys Acta 2010; 1803:152 - 63; http://dx.doi.org/10.1016/j.bbamcr.2010.01.014; PMID: 20102729
  • Carlier MF, Husson C, Renault L, Didry D. Control of actin assembly by the WH2 domains and their multifunctional tandem repeats in Spire and Cordon-Bleu. Int Rev Cell Mol Biol 2011; 290:55 - 85; http://dx.doi.org/10.1016/B978-0-12-386037-8.00005-3; PMID: 21875562
  • Chereau D, Boczkowska M, Skwarek-Maruszewska A, Fujiwara I, Hayes DB, Rebowski G, et al. Leiomodin is an actin filament nucleator in muscle cells. Science 2008; 320:239 - 43; http://dx.doi.org/10.1126/science.1155313; PMID: 18403713
  • Rizvi SA, Neidt EM, Cui J, Feiger Z, Skau CT, Gardel ML, et al. Identification and characterization of a small molecule inhibitor of formin-mediated actin assembly. Chem Biol 2009; 16:1158 - 68; http://dx.doi.org/10.1016/j.chembiol.2009.10.006; PMID: 19942139
  • Zhou D, Chen LM, Hernandez L, Shears SB, Galan JE. A Salmonella inositol polyphosphatase acts in conjunction with other bacterial effectors to promote host cell actin cytoskeleton rearrangements and bacterial internalization. Mol Microbiol 2001; 39:248 - 60; http://dx.doi.org/10.1046/j.1365-2958.2001.02230.x; PMID: 11136447
  • Criss AK, Ahlgren DM, Jou TS, McCormick BA, Casanova JE. The GTPase Rac1 selectively regulates Salmonella invasion at the apical plasma membrane of polarized epithelial cells. J Cell Sci 2001; 114:1331 - 41; PMID: 11256999
  • Parsot C. Shigella type III secretion effectors: how, where, when, for what purposes?. Curr Opin Microbiol 2009; 12:110 - 6; http://dx.doi.org/10.1016/j.mib.2008.12.002; PMID: 19157960
  • Sansonetti P. Host-pathogen interactions: the seduction of molecular cross talk. Gut 2002; 50:Suppl 3 III2 - 8; http://dx.doi.org/10.1136/gut.50.suppl_3.iii2; PMID: 11953325
  • Niebuhr K, Jouihri N, Allaoui A, Gounon P, Sansonetti PJ, Parsot C. IpgD, a protein secreted by the type III secretion machinery of Shigella flexneri, is chaperoned by IpgE and implicated in entry focus formation. Mol Microbiol 2000; 38:8 - 19; http://dx.doi.org/10.1046/j.1365-2958.2000.02041.x; PMID: 11029686
  • Bulgin R, Raymond B, Garnett JA, Frankel G, Crepin VF, Berger CN, et al. Bacterial guanine nucleotide exchange factors SopE-like and WxxxE effectors. Infect Immun 2010; 78:1417 - 25; http://dx.doi.org/10.1128/IAI.01250-09; PMID: 20123714
  • Huang Z, Sutton SE, Wallenfang AJ, Orchard RC, Wu X, Feng Y, et al. Structural insights into host GTPase isoform selection by a family of bacterial GEF mimics. Nat Struct Mol Biol 2009; 16:853 - 60; http://dx.doi.org/10.1038/nsmb.1647; PMID: 19620963
  • Klink BU, Barden S, Heidler TV, Borchers C, Ladwein M, Stradal TE, et al. Structure of Shigella IpgB2 in complex with human RhoA: implications for the mechanism of bacterial guanine nucleotide exchange factor mimicry. J Biol Chem 2010; 285:17197 - 208; http://dx.doi.org/10.1074/jbc.M110.107953; PMID: 20363740
  • Alto NM, Shao F, Lazar CS, Brost RL, Chua G, Mattoo S, et al. Identification of a bacterial type III effector family with G protein mimicry functions. Cell 2006; 124:133 - 45; http://dx.doi.org/10.1016/j.cell.2005.10.031; PMID: 16413487
  • Hachani A, Biskri L, Rossi G, Marty A, Menard R, Sansonetti P, et al. IpgB1 and IpgB2, two homologous effectors secreted via the Mxi-Spa type III secretion apparatus, cooperate to mediate polarized cell invasion and inflammatory potential of Shigella flexenri. Microbes Infect 2008; 10:260 - 8; http://dx.doi.org/10.1016/j.micinf.2007.11.011; PMID: 18316224
  • Slanina H, Konig A, Hebling S, Hauck CR, Frosch M, Schubert-Unkmeir A. Entry of Neisseria meningitidis into mammalian cells requires the Src family protein tyrosine kinases. Infect Immun 2010; 78:1905 - 14; http://dx.doi.org/10.1128/IAI.01267-09; PMID: 20176789
  • Matsuzawa T, Kuwae A, Yoshida S, Sasakawa C, Abe A. Enteropathogenic Escherichia coli activates the RhoA signaling pathway via the stimulation of GEF-H1. EMBO J 2004; 23:3570 - 82; http://dx.doi.org/10.1038/sj.emboj.7600359; PMID: 15318166
  • Campellone KG. Cytoskeleton-modulating effectors of enteropathogenic and enterohaemorrhagic Escherichia coli: Tir, EspFU and actin pedestal assembly. FEBS J 2010; 277:2390 - 402; http://dx.doi.org/10.1111/j.1742-4658.2010.07653.x; PMID: 20477869
  • Rottner K, Hänisch J, Campellone KG. WASH, WHAMM and JMY: regulation of Arp2/3 complex and beyond. Trends Cell Biol 2010; 20:650 - 61; http://dx.doi.org/10.1016/j.tcb.2010.08.014; PMID: 20888769
  • Rosselin M, Virlogeux-Payant I, Roy C, Bottreau E, Sizaret PY, Mijouin L, et al. Rck of Salmonella enterica, subspecies enterica serovar enteritidis, mediates zipper-like internalization. Cell Res 2010; 20:647 - 64; http://dx.doi.org/10.1038/cr.2010.45; PMID: 20368731
  • Rosselin M, Abed N, Virlogeux-Payant I, Bottreau E, Sizaret PY, Velge P, et al. Heterogeneity of type III secretion system (T3SS)-1-independent entry mechanisms used by Salmonella Enteritidis to invade different cell types. Microbiology 2011; 157:839 - 47; http://dx.doi.org/10.1099/mic.0.044941-0; PMID: 21109565