10,646
Views
251
CrossRef citations to date
0
Altmetric
Review Articles

Physics of heat generation using magnetic nanoparticles for hyperthermia

&
Pages 715-729 | Received 10 May 2013, Accepted 17 Aug 2013, Published online: 16 Oct 2013

Keep up to date with the latest research on this topic with citation updates for this article.

Read on this site (21)

Mehak, Rajkumar P Thummer & Lalit M. Pandey. (2023) Surface modified iron-oxide based engineered nanomaterials for hyperthermia therapy of cancer cells. Biotechnology and Genetic Engineering Reviews 0:0, pages 1-47.
Read now
Sri Kamal Kandala, Anirudh Sharma, Sahar Mirpour, Eleni Liapi, Robert Ivkov & Anilchandra Attaluri. (2021) Validation of a coupled electromagnetic and thermal model for estimating temperatures during magnetic nanoparticle hyperthermia. International Journal of Hyperthermia 38:1, pages 611-622.
Read now
Anilchandra Attaluri, Sri Kamal Kandala, Haoming Zhou, Michele Wabler, Theodore L. DeWeese & Robert Ivkov. (2020) Magnetic nanoparticle hyperthermia for treating locally advanced unresectable and borderline resectable pancreatic cancers: the role of tumor size and eddy-current heating. International Journal of Hyperthermia 37:3, pages 108-119.
Read now
Chun-Ting Yang, Preethi Korangath, Jackie Stewart, Chen Hu, Wei Fu, Cordula Grüttner, Sarah E. Beck, Feng-Huei Lin & Robert Ivkov. (2020) Systemically delivered antibody-labeled magnetic iron oxide nanoparticles are less toxic than plain nanoparticles when activated by alternating magnetic fields. International Journal of Hyperthermia 37:3, pages 59-75.
Read now
Georgios P. Skandalakis, Daniel R. Rivera, Caroline D. Rizea, Alexandros Bouras, Joe Gerald Jesu Raj, Dominique Bozec & Constantinos G. Hadjipanayis. (2020) Hyperthermia treatment advances for brain tumors. International Journal of Hyperthermia 37:2, pages 3-19.
Read now
Sundeep Singh & Roderick Melnik. (2020) Thermal ablation of biological tissues in disease treatment: A review of computational models and future directions. Electromagnetic Biology and Medicine 39:2, pages 49-88.
Read now
H. Petra Kok, Erik N. K. Cressman, Wim Ceelen, Christopher L. Brace, Robert Ivkov, Holger Grüll, Gail ter Haar, Peter Wust & Johannes Crezee. (2020) Heating technology for malignant tumors: a review. International Journal of Hyperthermia 37:1, pages 711-741.
Read now
Anilchandra Attaluri, John Jackowski, Anirudh Sharma, Sri Kamal Kandala, Valentin Nemkov, Chris Yakey, Theodore L. DeWeese, Ananda Kumar, Robert C. Goldstein & Robert Ivkov. (2020) Design and construction of a Maxwell-type induction coil for magnetic nanoparticle hyperthermia. International Journal of Hyperthermia 37:1, pages 1-14.
Read now
Arlene L. Oei, Preethi Korangath, Kathleen Mulka, Mikko Helenius, Jonathan B. Coulter, Jacqueline Stewart, Esteban Velarde, Johannes Crezee, Brian Simons, Lukas J. A. Stalpers, H. Petra Kok, Kathleen Gabrielson, Nicolaas A. P. Franken & Robert Ivkov. (2019) Enhancing the abscopal effect of radiation and immune checkpoint inhibitor therapies with magnetic nanoparticle hyperthermia in a model of metastatic breast cancer. International Journal of Hyperthermia 36:sup1, pages 47-63.
Read now
Olivia L. Lanier, Olena I. Korotych, Adam G. Monsalve, Dayita Wable, Shehaab Savliwala, Noa W. F. Grooms, Christopher Nacea, Omani R. Tuitt & Jon Dobson. (2019) Evaluation of magnetic nanoparticles for magnetic fluid hyperthermia. International Journal of Hyperthermia 36:1, pages 686-700.
Read now
Sri Kamal Kandala, Eleni Liapi, Louis L. Whitcomb, Anilchandra Attaluri & Robert Ivkov. (2019) Temperature-controlled power modulation compensates for heterogeneous nanoparticle distributions: a computational optimization analysis for magnetic hyperthermia. International Journal of Hyperthermia 36:1, pages 115-129.
Read now
Ali Dabbagh, Ziba Hedayatnasab, Hamed Karimian, Masoud Sarraf, Chai Hong Yeong, Hamid Reza Madaah Hosseini, Noor Hayaty Abu Kasim, Tin Wui Wong & Noorsaadah Abdul Rahman. (2019) Polyethylene glycol-coated porous magnetic nanoparticles for targeted delivery of chemotherapeutics under magnetic hyperthermia condition. International Journal of Hyperthermia 36:1, pages 104-114.
Read now
Keon Mahmoudi, Alexandros Bouras, Dominique Bozec, Robert Ivkov & Constantinos Hadjipanayis. (2018) Magnetic hyperthermia therapy for the treatment of glioblastoma: a review of the therapy’s history, efficacy and application in humans. International Journal of Hyperthermia 34:8, pages 1316-1328.
Read now
Taylor Ibelli, Sarah Templeton & Nicole Levi-Polyachenko. (2018) Progress on utilizing hyperthermia for mitigating bacterial infections. International Journal of Hyperthermia 34:2, pages 144-156.
Read now
H. P. Kok, A. N. T. J. Kotte & J. Crezee. (2017) Planning, optimisation and evaluation of hyperthermia treatments. International Journal of Hyperthermia 33:6, pages 593-607.
Read now
Daniel J. Denmark, Robert H. Hyde, Charlotte Gladney, Manh-Huong Phan, Kirpal S. Bisht, Hariharan Srikanth, Pritish Mukherjee & Sarath Witanachchi. (2017) Photopolymerization-based synthesis of iron oxide nanoparticle embedded PNIPAM nanogels for biomedical applications. Drug Delivery 24:1, pages 1317-1324.
Read now
Anilchandra Attaluri, Madhav Seshadri, Sahar Mirpour, Michele Wabler, Thomas Marinho, Muhammad Furqan, Haoming Zhou, Silvia De Paoli, Cordula Gruettner, Wesley Gilson, Theodore DeWeese, Monica Garcia, Robert Ivkov & Eleni Liapi. (2016) Image-guided thermal therapy with a dual-contrast magnetic nanoparticle formulation: A feasibility study. International Journal of Hyperthermia 32:5, pages 543-557.
Read now
Ki Soo Kim & Soo Yeol Lee. (2015) Nanoparticle-mediated radiofrequency capacitive hyperthermia: A phantom study with magnetic resonance thermometry. International Journal of Hyperthermia 31:8, pages 831-839.
Read now
Anilchandra Attaluri, Sri Kamal Kandala, Michele Wabler, Haoming Zhou, Christine Cornejo, Michael Armour, Mohammad Hedayati, Yonggang Zhang, Theodore L. DeWeese, Cila Herman & Robert Ivkov. (2015) Magnetic nanoparticle hyperthermia enhances radiation therapy: A study in mouse models of human prostate cancer. International Journal of Hyperthermia 31:4, pages 359-374.
Read now
Michele Wabler, Wenlian Zhu, Mohammad Hedayati, Anilchandra Attaluri, Haoming Zhou, Jana Mihalic, Alison Geyh, Theodore L. DeWeese, Robert Ivkov & Dmitri Artemov. (2014) Magnetic resonance imaging contrast of iron oxide nanoparticles developed for hyperthermia is dominated by iron content. International Journal of Hyperthermia 30:3, pages 192-200.
Read now

Articles from other publishers (230)

Mozhgan Parsaei & Kamran Akhbari. (2023) Magnetic UiO-66-NH 2 Core–Shell Nanohybrid as a Promising Carrier for Quercetin Targeted Delivery toward Human Breast Cancer Cells . ACS Omega 8:44, pages 41321-41338.
Crossref
Oluwatobi Oluwafemi & Sandile Phinda Songca. 2023. Combination Therapies Involving Photodynamic Therapy. Combination Therapies Involving Photodynamic Therapy 70 87 .
Oluwatobi Oluwafemi & Sandile Phinda Songca. 2023. Combination Therapies Involving Photodynamic Therapy. Combination Therapies Involving Photodynamic Therapy 1 25 .
Zhila Shaterabadi, Gholamreza Nabiyouni, Zakye Mirali Asadi, Guillermo R. Iglesias & Meysam Soleymani. (2023) Enhanced magnetic hyperthermia efficiency in poly vinyl alcohol-coated zinc-substituted cobalt ferrite nanoparticles: Correlated effects of zinc content and applied magnetic field strength. Ceramics International 49:21, pages 33934-33943.
Crossref
Mariana Sell, Ana Rita Lopes, Maria Escudeiro, Bruno Esteves, Ana R. Monteiro, Tito Trindade & Luísa Cruz-Lopes. (2023) Application of Nanoparticles in Cancer Treatment: A Concise Review. Nanomaterials 13:21, pages 2887.
Crossref
Patrick Ilg & Martin Kröger. (2023) Field- and concentration-dependent relaxation of magnetic nanoparticles and optimality conditions for magnetic fluid hyperthermia. Scientific Reports 13:1.
Crossref
Nandita Deb, Rimi Rashid, H. Das, Ishtiaque M. Syed & S. Manjura Hoque. (2023) Enhanced specific loss power of hematite–chitosan nanohybrid synthesized by hydrothermal method. Royal Society Open Science 10:10.
Crossref
Abdelrahman I. Rezk, Young-Hwa Kim, Sungkun Chun, Chan Hee Park & Cheol Sang Kim. (2023) Thermo-responsive-polymeric-gates of poly(N-isopropylacrylamide)/N-(hydroxymethyl)acrylamide coated magnetic nanoparticles as a synergistic approach to cancer therapy: Drug release and kinetics models of chemothermal magnetic nanoparticles. Materials & Design 234, pages 112350.
Crossref
I.N. Ferreira, M.M. Isikawa, L.H.S. Nunes, M.C. Micheletto & E.J. Guidelli. (2023) Magnetic nanoparticles covered with polycyclic aromatic hydrocarbons as singlet oxygen carriers for combining photodynamic therapy and magnetic hyperthermia. Journal of Photochemistry and Photobiology A: Chemistry 444, pages 114902.
Crossref
K. T. V. Oanh, H. T. L. Phong, D. N. Van, T. T. M. Trang, P. H. Thu, X. N. Truong, X. N. Ca, C. D. Linh, H. P. Nam & H. D. Manh. (2023) Magnetic, biocompatible CoFe2O4/Fe3O4 core/shell nanoparticles: designing and improved hyperthermia properties. Journal of Nanoparticle Research 25:10.
Crossref
Faruq Mohammad, Ibrahim Birma Bwatanglang, Hamad A. Al-Lohedan, Jilani P. Shaik, Maryam Moosavi, Wasmia Mohammed Dahan, Hissah Hamad Al-Tilasi, Daifallah M. Aldhayan, Murthy Chavali & Ahmed A. Soleiman. (2023) Magnetically controlled drug delivery and hyperthermia effects of core-shell Cu@Mn3O4 nanoparticles towards cancer cells in vitro. International Journal of Biological Macromolecules 249, pages 126071.
Crossref
Zhao Sha, Xinying Cheng, Yang Zhou, Andrew N. Rider, Andrew D.M. Charles, Wenkai Chang, Shuhua Peng, May Lim, Victoria Timchenko & Chun H. Wang. (2023) Simultaneous improvement of heating efficiency and mechanical strength of a self-healing thermoplastic polymer by hybridizing magnetic particles with conductive fibres. Composites Part A: Applied Science and Manufacturing 172, pages 107597.
Crossref
Yan Mi, Chi Ma, Wei Zheng, Zhengmin Li & Mengnan Zhang. (2023) Magnetic losses in single-domain magnetic particles. The European Physical Journal Special Topics 232:8, pages 1353-1368.
Crossref
S.K. Shaw, A. Sharma, J. Kailashiya, Santosh K. Gupta, Sher Singh Meena, D. Dash, P. Maiti & N.K. Prasad. (2023) Mesoporous Fe3O4 nanoparticle: A prospective nano heat generator for thermo-therapeutic cancer treatment modality. Journal of Magnetism and Magnetic Materials 578, pages 170817.
Crossref
Taisei Wakabayashi, Masahiro Kaneko, Tomoki Nakai, Masanobu Horie, Hiroyuki Fujimoto, Masazumi Takahashi, Shota Tanoue & Akira Ito. (2022) Nanowarming of vitrified pancreatic islets as a cryopreservation technology for transplantation. Bioengineering & Translational Medicine 8:4.
Crossref
Seonik LeeMengchi JiaoZihan ZhangYan Yu. (2023) Nanoparticles for Interrogation of Cell Signaling. Annual Review of Analytical Chemistry 16:1, pages 333-351.
Crossref
Yujie Zhu, Quguang Li, Chunjie Wang, Yu Hao, Nailin Yang, Minjiang Chen, Jiansong Ji, Liangzhu Feng & Zhuang Liu. (2023) Rational Design of Biomaterials to Potentiate Cancer Thermal Therapy. Chemical Reviews 123:11, pages 7326-7378.
Crossref
Parsa Montazersaheb, Elahe Pishgahzadeh, Vahid Bayrami Jahani, Raheleh Farahzadi & Soheila Montazersaheb. (2023) Magnetic nanoparticle-based hyperthermia: A prospect in cancer stem cell tracking and therapy. Life Sciences 323, pages 121714.
Crossref
Tuan-Anh Le, Yaser Hadadian & Jungwon Yoon. (2023) A prediction model for magnetic particle imaging–based magnetic hyperthermia applied to a brain tumor model. Computer Methods and Programs in Biomedicine 235, pages 107546.
Crossref
Ami Nishikawa, Yutaro Suzuki, Masahiro Kaneko & Akira Ito. (2022) Combination of magnetic hyperthermia and immunomodulators to drive complete tumor regression of poorly immunogenic melanoma. Cancer Immunology, Immunotherapy 72:6, pages 1493-1504.
Crossref
Anna M. Nowicka, Monika Ruzycka-Ayoush, Artur Kasprzak, Agata Kowalczyk, Magdalena Bamburowicz-Klimkowska, Malgorzata Sikorska, Kamil Sobczak, Mikolaj Donten, Anna Ruszczynska, Julita Nowakowska & Ireneusz P. Grudzinski. (2023) Application of biocompatible and ultrastable superparamagnetic iron( iii ) oxide nanoparticles doped with magnesium for efficient magnetic fluid hyperthermia in lung cancer cells . Journal of Materials Chemistry B 11:18, pages 4028-4041.
Crossref
Mohammad Varzandeh, Leila Sabouri, Vahid Mansouri, Maliheh Gharibshahian, Nima Beheshtizadeh, Michael R. Hamblin & Nima Rezaei. (2023) Application of nano‐radiosensitizers in combination cancer therapy. Bioengineering & Translational Medicine 8:3.
Crossref
Eirini Myrovali, Kyrillos Papadopoulos, Georgia Charalampous, Paraskevi Kesapidou, George Vourlias, Thomas Kehagias, Makis Angelakeris & Ulf Wiedwald. (2023) Toward the Separation of Different Heating Mechanisms in Magnetic Particle Hyperthermia. ACS Omega 8:14, pages 12955-12967.
Crossref
Daniel Rivera, Alexander J. Schupper, Alexandros Bouras, Maria Anastasiadou, Lawrence Kleinberg, Dara L. Kraitchman, Anilchandra Attaluri, Robert Ivkov & Constantinos G. Hadjipanayis. (2023) Neurosurgical Applications of Magnetic Hyperthermia Therapy. Neurosurgery Clinics of North America 34:2, pages 269-283.
Crossref
Zahra Mohammadi, Alireza Montazerabadi, Rasoul Irajirad, Neda Attaran, Hormoz Abedi, Seyed Ali Mousavi Shaegh & Ameneh Sazgarnia. (2023) Optimization of cobalt ferrite magnetic nanoparticle as a theranostic agent: MRI and hyperthermia. Magnetic Resonance Materials in Physics, Biology and Medicine.
Crossref
Hayden Carlton, Shelby L. Foster, Mourad Benamara, Lauren F. Greenlee & David Huitink. (2023) Magnetic Nanoparticle Thermometry via Controlled Diffusion. Particle & Particle Systems Characterization 40:3.
Crossref
Elisabetta Sieni, Simonetta Geninatti Crich, Maria Rosaria Ruggiero, Lucia Del Bianco, Federico Spizzo, Roberta Bertani, Mirto Mozzon, Marco Barozzi, Michele Forzan & Paolo Sgarbossa. (2023) Experimental Comparison of Methods to Evaluate Heat Generated by Magnetic Nanofluids Exposed to Alternating Magnetic Fields. Fluids 8:3, pages 83.
Crossref
Anirudh Sharma, Avesh Avinash Jangam, Julian Low Yung Shen, Aiman Ahmad, Nageshwar Arepally, Hayden Carlton, Robert Ivkov & Anilchandra Attaluri. (2023) Design of a temperature-feedback controlled automated magnetic hyperthermia therapy device. Frontiers in Thermal Engineering 3.
Crossref
Ajeet Singh Yadav, Du Tuan Tran, Adrian J. T. Teo, Yuchen Dai, Fariba Malekpour Galogahi, Chin Hong Ooi & Nam-Trung Nguyen. (2023) Core–Shell Particles: From Fabrication Methods to Diverse Manipulation Techniques. Micromachines 14:3, pages 497.
Crossref
Abhishek Indoliya & Raju Poddar. (2022) Hyperthermic Treatment by Superparamagnetic Iron Oxide Nanoparticles for Targeted Tumor Therapy: An In-Vivo Approach Guided by Swept-Source Optical Coherence Tomography. Journal of Medical and Biological Engineering 43:1, pages 32-41.
Crossref
Hayden Carlton & Robert Ivkov. (2023) A new method to measure magnetic nanoparticle heating efficiency in non-adiabatic systems using transient pulse analysis. Journal of Applied Physics 133:4.
Crossref
Sergiu Ruta, David Serantes, Ondrej Hovorka, Lucia Gutierrez & Roy Chantrell. 2023. Magnetic Sensors and Actuators in Medicine. Magnetic Sensors and Actuators in Medicine 185 226 .
Ulrich M. Engelmann, Ali Mohammad Pourshahidi, Ahmed Shalaby & Hans-Joachim Krause. (2022) Probing particle size dependency of frequency mixing magnetic detection with dynamic relaxation simulation. Journal of Magnetism and Magnetic Materials 563, pages 169965.
Crossref
J. Shebha Anandhi, G. Antilen Jacob, D. Sastikumar & R. Justin Joseyphus. (2022) Thermal characteristics of highly magnetic core/shell nanoparticles for hyperthermia: Theoretical and experimental analysis. Journal of Thermal Analysis and Calorimetry 147:24, pages 14133-14142.
Crossref
Hemalatha Kothandaraman, Alamelumangai Kaliyamoorthy, Arulmozhi Rajaram, Chandunika R. Kalaiselvan, Niroj Kumar Sahu, Parthipan Govindasamy & Muralidharan Rajaram. (2022) Functionalization and Haemolytic analysis of pure superparamagnetic magnetite nanoparticle for hyperthermia application. Journal of Biological Physics 48:4, pages 383-397.
Crossref
Brian Youden, Runqing Jiang, Andrew J. Carrier, Mark R. Servos & Xu Zhang. (2022) A Nanomedicine Structure–Activity Framework for Research, Development, and Regulation of Future Cancer Therapies. ACS Nano 16:11, pages 17497-17551.
Crossref
Alexandra Gruzdenko & Ingo Dierking. (2022) Liquid crystal-based actuators. Frontiers in Soft Matter 2.
Crossref
Alexandre M. M. Dias, Alan Courteau, Pierre-Simon Bellaye, Evelyne Kohli, Alexandra Oudot, Pierre-Emmanuel Doulain, Camille Petitot, Paul-Michael Walker, Richard Decréau & Bertrand Collin. (2022) Superparamagnetic Iron Oxide Nanoparticles for Immunotherapy of Cancers through Macrophages and Magnetic Hyperthermia. Pharmaceutics 14:11, pages 2388.
Crossref
Roberto Montes-Robles, Hazael Montanaro, Myles Capstick, Javier Ibáñez-Civera, Rafael Masot-Peris, Eduardo García-Breijo, Nicolás Laguarda-Miró & Ramón Martínez-Máñez. (2022) Tailored cancer therapy by magnetic nanoparticle hyperthermia: A virtual scenario simulation method. Computer Methods and Programs in Biomedicine 226, pages 107185.
Crossref
Min Jun Ko, Hyunsik Hong, Hyunjun Choi, Heemin Kang & Dong‐Hyun Kim. (2022) Multifunctional Magnetic Nanoparticles for Dynamic Imaging and Therapy. Advanced NanoBiomed Research 2:11.
Crossref
Beatrice Muzzi, Elisabetta Lottini, Nader Yaacoub, Davide Peddis, Giovanni Bertoni, César de Julián Fernández, Claudio Sangregorio & Alberto López-Ortega. (2022) Hardening of Cobalt Ferrite Nanoparticles by Local Crystal Strain Release: Implications for Rare Earth Free Magnets. ACS Applied Nano Materials 5:10, pages 14871-14881.
Crossref
Sota Hamada, Kota Aoki, Keita Kodama, Kentaro Nashimoto & Yuko Ichiyanagi. (2022) AC magnetic susceptibility and heat dissipation of Zn-doped Mg-ferrite nanoparticles. Journal of Magnetism and Magnetic Materials 559, pages 169536.
Crossref
Reza Rahpeima & Chao-An Lin. (2022) Numerical study of magnetic hyperthermia ablation of breast tumor on an anatomically realistic breast phantom. PLOS ONE 17:9, pages e0274801.
Crossref
Xiaoning Li & Zhenxiang Cheng. (2022) Boosting electrocatalytic water splitting by magnetic fields. Chem Catalysis 2:9, pages 2140-2149.
Crossref
Anirudh Sharma, Erik Cressman, Anilchandra Attaluri, Dara L. Kraitchman & Robert Ivkov. (2022) Current Challenges in Image-Guided Magnetic Hyperthermia Therapy for Liver Cancer. Nanomaterials 12:16, pages 2768.
Crossref
N. S. Zakharov, A. N. Popova, Yu. A. Zakharov, V. M. Pugachev & D. M. Russakov. (2022) Transmission Electron Microscopy: Study of the Bimetallic Nanoparticle Features. Russian Journal of Physical Chemistry B 16:4, pages 780-786.
Crossref
Sayan Ganguly & Shlomo Margel. (2022) 3D printed magnetic polymer composite hydrogels for hyperthermia and magnetic field driven structural manipulation. Progress in Polymer Science 131, pages 101574.
Crossref
Vridhi Sachdeva, Aditi Monga, Radhika Vashisht, Dilpreet Singh, Anupinder Singh & Neena Bedi. (2022) Iron Oxide Nanoparticles: The precise strategy for targeted delivery of genes, oligonucleotides and peptides in cancer therapy. Journal of Drug Delivery Science and Technology 74, pages 103585.
Crossref
Zhila Shaterabadi, Gholamreza Nabiyouni, Gerardo F Goya & Meysam Soleymani. (2022) The effect of the magnetically dead layer on the magnetization and the magnetic anisotropy of the dextran-coated magnetite nanoparticles. Applied Physics A 128:8.
Crossref
Florestan Vergnaud, Xavier Kesse, Aurélie Jacobs, Francis Perton, Sylvie Begin-Colin, Damien Mertz, Stéphane Descamps, Charlotte Vichery & Jean-Marie Nedelec. (2022) Magnetic bioactive glass nano-heterostructures: a deeper insight into magnetic hyperthermia properties in the scope of bone cancer treatment. Biomaterials Science 10:14, pages 3993-4007.
Crossref
Carlotta Pucci, Andrea Degl'Innocenti, Melike Belenli Gümüş & Gianni Ciofani. (2022) Superparamagnetic iron oxide nanoparticles for magnetic hyperthermia: recent advancements, molecular effects, and future directions in the omics era. Biomaterials Science 10:9, pages 2103-2121.
Crossref
Sean Healy, Andris F. Bakuzis, Patrick W. Goodwill, Anilchandra Attaluri, Jeff W. M. Bulte & Robert Ivkov. (2022) Clinical magnetic hyperthermia requires integrated magnetic particle imaging. WIREs Nanomedicine and Nanobiotechnology 14:3.
Crossref
Musa Mutlu Can, Chasan Bairam, Seda Aksoy, Dürdane Serap Kuruca, Satoru Kaneko, Zerrin Aktaş & Mustafa Oral Öncül. (2022) Effect of Ti Atoms on Néel Relaxation Mechanism at Magnetic Heating Performance of Iron Oxide Nanoparticles. Coatings 12:4, pages 481.
Crossref
Xudong Zuo, Haitang Xu, Jiandong Zhang, Yongxing Sui, Tao Fang & Dongmei Zhang. (2022) Carbothermal treated ferrite nanoparticles with improved magnetic heating efficiency and T1-MRI performance. Journal of Magnetism and Magnetic Materials 548, pages 168999.
Crossref
Bo‐Wei Chen, Shadie Hatamie, Hsin‐Cheng Chiu, Zung‐Hang Wei, Shang‐Hsiu Hu & Da‐Jeng Yao. (2022) Shape‐Mediated Magnetocrystalline Anisotropy and Relaxation Controls by Cobalt Ferrite Core–Shell Heterostructures for Magnetothermal Penetration Delivery. Advanced Materials Interfaces 9:12.
Crossref
Cameron L. Roman, Natalia da Silva Moura, Scott Wicker, Kerry M. Dooley & James A. Dorman. (2022) Induction Heating of Magnetically Susceptible Nanoparticles for Enhanced Hydrogenation of Oleic Acid. ACS Applied Nano Materials 5:3, pages 3676-3685.
Crossref
Elyahb Allie Kwizera, Samantha Stewart, Md Musavvir Mahmud & Xiaoming He. (2022) Magnetic Nanoparticle-Mediated Heating for Biomedical Applications. Journal of Heat Transfer 144:3.
Crossref
Y.-S. Borghei, S. Hosseinkhani & M.R. Ganjali. (2022) Engineering in modern medicine using ‘magnetic nanoparticles’ in understanding physicochemical interactions at the nano–bio interfaces. Materials Today Chemistry 23, pages 100733.
Crossref
Gerasimos Pefanis, Nikolaos Maniotis, Aikaterini-Rafailia Tsiapla, Antonios Makridis, Theodoros Samaras & Mavroeidis Angelakeris. (2022) Numerical Simulation of Temperature Variations during the Application of Safety Protocols in Magnetic Particle Hyperthermia. Nanomaterials 12:3, pages 554.
Crossref
Yu. A. Koksharov, S. P. Gubin, I. V. Taranov, G. B. Khomutov & Yu. V. Gulyaev. (2022) Magnetic Nanoparticles in Medicine: Progress, Problems, and Advances. Journal of Communications Technology and Electronics 67:2, pages 101-116.
Crossref
Venkatesha Narayanaswamy, Imaddin A. Al-Omari, Aleksandr S. Kamzin, Bashar Issa & Ihab M. Obaidat. (2022) Tailoring Interfacial Exchange Anisotropy in Hard–Soft Core-Shell Ferrite Nanoparticles for Magnetic Hyperthermia Applications. Nanomaterials 12:2, pages 262.
Crossref
Thinh Q. Bui, Adam J. Biacchi, Cindi L. Dennis, Weston L. Tew, Angela R. Hight Walker & Solomon I. Woods. (2022) Advanced characterization of magnetization dynamics in iron oxide magnetic nanoparticle tracers. Applied Physics Letters 120:1.
Crossref
Hussein. S.Mahmood, Tahseen. H. Mubarak, Sabah M. Ali Ridha & Jasim. Al-Zanganawee. Effect of zinc substitution in magnetite structure on heat efficiency for hyperthermia: Investigation in superparamagnetic properties. Effect of zinc substitution in magnetite structure on heat efficiency for hyperthermia: Investigation in superparamagnetic properties.
Faruk Yakasai, Mohd Zaidi Jaafar, Sulalit Bandyopadhyay, Augustine Agi & Mohd Akhmal Sidek. (2022) Application of iron oxide nanoparticles in oil recovery – A critical review of the properties, formulation, recent advances and prospects. Journal of Petroleum Science and Engineering 208, pages 109438.
Crossref
Arunima Rajan, R. K. Chandunika, Femy Raju, Rashmi Joshi, Niroj Kumar Sahu & Raghumani Singh Ningthoujam. 2022. Handbook on Synthesis Strategies for Advanced Materials. Handbook on Synthesis Strategies for Advanced Materials 659 714 .
Xiang Yu, Shan Gao, Di'an Wu, Zhengrui Li, Yan Mi, Tianyu Yang, Fan Sun, Lichen Wang, Ruoshui Liu, Shuli He, Qinggang Ge, Yang Lv, Andy (Yuanguang) Xu & Hao Zeng. (2021) Bone Tumor Suppression in Rabbits by Hyperthermia below the Clinical Safety Limit Using Aligned Magnetic Bone Cement. Small 18:3.
Crossref
Costas Papadopoulos, Argiris Kolokithas‐Ntoukas, Roberto Moreno, David Fuentes, George Loudos, Vassilios C. Loukopoulos & George C. Kagadis. (2021) Using kinetic Monte Carlo simulations to design efficient magnetic nanoparticles for clinical hyperthermia. Medical Physics 49:1, pages 547-567.
Crossref
Natalia da Silva Moura, Khashayar R. Bajgiran, Adam T. Melvin, Kerry M. Dooley & James A. Dorman. (2021) Direct Probing of Fe 3 O 4 Nanoparticle Surface Temperatures during Magnetic Heating: Implications for Induction Catalysis . ACS Applied Nano Materials 4:12, pages 13778-13787.
Crossref
Natalia E. Kazantseva, Ilona S. Smolkova, Vladimir Babayan, Jarmila Vilčáková, Petr Smolka & Petr Saha. (2021) Magnetic Nanomaterials for Arterial Embolization and Hyperthermia of Parenchymal Organs Tumors: A Review. Nanomaterials 11:12, pages 3402.
Crossref
Brody A Frost, Hayden Carlton, Ricardo Martinez, Erica Lovett, David Huitink & E Johan Foster. (2021) Controlled shape memory effects of magnetic polymer nanocomposites by induction heating. Green Materials 9:4, pages 167-181.
Crossref
Camilah D. Powell, Amanda W. Lounsbury, Zachary S. Fishman, Christian L. Coonrod, Miranda J. Gallagher, Dino Villagran, Julie B. Zimmerman, Lisa D. Pfefferle & Michael S. Wong. (2021) Nano-structural effects on Hematite (α-Fe2O3) nanoparticle radiofrequency heating. Nano Convergence 8:1.
Crossref
Zichun Yan, Sara FitzGerald, Thomas M. Crawford & O. Thompson Mefford. (2021) Oxidation of wüstite rich iron oxide nanoparticles via post-synthesis annealing. Journal of Magnetism and Magnetic Materials 539, pages 168405.
Crossref
V. Janani, S. Induja, D. Jaison, E. Meher Abhinav, M. Mothilal & C. Gopalakrishnan. (2021) Tailoring the hyperthermia potential of magnetite nanoparticles via gadolinium ION substitution. Ceramics International 47:22, pages 31399-31406.
Crossref
David Serantes & Daniel Baldomir. (2021) Nanoparticle Size Threshold for Magnetic Agglomeration and Associated Hyperthermia Performance. Nanomaterials 11:11, pages 2786.
Crossref
Zhi Wei Tay, Prashant Chandrasekharan, Benjamin D. Fellows, Irati Rodrigo Arrizabalaga, Elaine Yu, Malini Olivo & Steven M. Conolly. (2021) Magnetic Particle Imaging: An Emerging Modality with Prospects in Diagnosis, Targeting and Therapy of Cancer. Cancers 13:21, pages 5285.
Crossref
Helena Gavilán, Sahitya Kumar Avugadda, Tamara Fernández-Cabada, Nisarg Soni, Marco Cassani, Binh T. Mai, Roy Chantrell & Teresa Pellegrino. (2021) Magnetic nanoparticles and clusters for magnetic hyperthermia: optimizing their heat performance and developing combinatorial therapies to tackle cancer. Chemical Society Reviews 50:20, pages 11614-11667.
Crossref
R. D. Ralandinliu Kahmei, Papori Seal & J. P. Borah. (2021) Tunable heat generation in nickel-substituted zinc ferrite nanoparticles for magnetic hyperthermia. Nanoscale Advances 3:18, pages 5339-5347.
Crossref
Kaiyi Jiang, Qingbo Zhang, Daniel Torres Hinojosa, Linlin Zhang, Zhen Xiao, Yu Yin, Sheng Tong, Vicki L. Colvin & Gang Bao. (2021) Controlled oxidation and surface modification increase heating capacity of magnetic iron oxide nanoparticles. Applied Physics Reviews 8:3.
Crossref
Ruby Gupta & Deepika Sharma. (2021) (Carboxymethyl-stevioside)-coated magnetic dots for enhanced magnetic hyperthermia and improved glioblastoma treatment. Colloids and Surfaces B: Biointerfaces 205, pages 111870.
Crossref
S.K. Shaw, J. Kailashiya, A. Gangwar, S.K. Alla, Santosh K. Gupta, C.L. Prajapat, Sher Singh Meena, D. Dash, P. Maiti & N.K. Prasad. (2021) γ-Fe2O3 nanoflowers as efficient magnetic hyperthermia and photothermal agent. Applied Surface Science 560, pages 150025.
Crossref
Richa Chaudhary, Varun Chaudhary, Yoshiyuki Suda, Raju V. Ramanujan & Terry W. J. Steele. (2021) Optimizing the Magnetocuring of Epoxy Resins via Electromagnetic Additives. Advanced Materials Interfaces 8:17.
Crossref
Sihomara Patricia García‐Zepeda & Jaime Santoyo‐Salazar. 2021. Magnetic Nanoparticles in Human Health and Medicine. Magnetic Nanoparticles in Human Health and Medicine 164 180 .
Riccardo Ferrero, Gabriele Barrera, Federica Celegato, Marta Vicentini, Hüseyin Sözeri, Nuray Yıldız, Ceren Atila Dinçer, Marco Coïsson, Alessandra Manzin & Paola Tiberto. (2021) Experimental and Modelling Analysis of the Hyperthermia Properties of Iron Oxide Nanocubes. Nanomaterials 11:9, pages 2179.
Crossref
Juan Esteban Montoya Cardona, Dounia Louaguef, Eric Gaffet, Nureddin Ashammakhi & Halima Alem. (2021) Review of core/shell nanostructures presenting good hyperthermia properties for cancer therapy. Materials Chemistry Frontiers 5:17, pages 6429-6443.
Crossref
Ghazaleh Salmanian, S.A. Hassanzadeh-Tabrizi & Narjes Koupaei. (2021) Magnetic chitosan nanocomposites for simultaneous hyperthermia and drug delivery applications: A review. International Journal of Biological Macromolecules 184, pages 618-635.
Crossref
Akira Ito. (2021) Magnetically triggered transgene expression system using magnetic nanoparticles交流磁場照射による磁性ナノ粒子の発熱を引き金とした遺伝子発現システムの開発. Drug Delivery System 36:3, pages 175-184.
Crossref
Roozbeh Abedini-Nassab, Mahrad Pouryosef Miandoab & Merivan Şaşmaz. (2021) Microfluidic Synthesis, Control, and Sensing of Magnetic Nanoparticles: A Review. Micromachines 12:7, pages 768.
Crossref
Barbara Farkaš & Nora H. de Leeuw. (2021) A Perspective on Modelling Metallic Magnetic Nanoparticles in Biomedicine: From Monometals to Nanoalloys and Ligand-Protected Particles. Materials 14:13, pages 3611.
Crossref
Carolyn Shasha & Kannan M. Krishnan. (2020) Nonequilibrium Dynamics of Magnetic Nanoparticles with Applications in Biomedicine. Advanced Materials 33:23, pages 1904131.
Crossref
Razyeh Behbahani, Martin L Plumer & Ivan Saika-Voivod. (2021) Multiscale modelling of magnetostatic effects on magnetic nanoparticles with application to hyperthermia. Journal of Physics: Condensed Matter 33:21, pages 215801.
Crossref
Mariano Ortega-Muñoz, Simona Plesselova, Angel V. Delgado, Francisco Santoyo-Gonzalez, Rafael Salto-Gonzalez, Maria Dolores Giron-Gonzalez, Guillermo R. Iglesias & Francisco Javier López-Jaramillo. (2021) Poly(ethylene-imine)-Functionalized Magnetite Nanoparticles Derivatized with Folic Acid: Heating and Targeting Properties. Polymers 13:10, pages 1599.
Crossref
Mohammad Reza Zamani Kouhpanji, Zohreh Nemati, Mohammad Mohsen Mahmoodi, Joseph Um, Jaime Modiano, Rhonda Franklin & Bethanie Stadler. (2021) Selective Detection of Cancer Cells Using Magnetic Nanowires. ACS Applied Materials & Interfaces 13:18, pages 21060-21066.
Crossref
Mariam Abdulaziz M. Tarkistani, Varsha Komalla & Veysel Kayser. (2021) Recent Advances in the Use of Iron–Gold Hybrid Nanoparticles for Biomedical Applications. Nanomaterials 11:5, pages 1227.
Crossref
Olivia L. Lanier, Camilo Velez, David P. Arnold & Jon Dobson. (2021) Model of Magnetic Particle Capture Under Physiological Flow Rates for Cytokine Removal During Cardiopulmonary Bypass. IEEE Transactions on Biomedical Engineering 68:4, pages 1198-1207.
Crossref
Aidin Lak, Sabrina Disch & Philipp Bender. (2021) Embracing Defects and Disorder in Magnetic Nanoparticles. Advanced Science 8:7.
Crossref
Zhannat Ashikbayeva, Arman Aitkulov, Alexey Wolf, Alexander Dostovalov, Aida Amantayeva, Aliya Kurbanova, Vassilis J. Inglezakis & Daniele Tosi. (2021) Investigation of Thermal Effects of Radiofrequency Ablation Mediated with Iron Oxide Nanoparticles Dispersed in Agarose and Chitosan Solvents. Applied Sciences 11:5, pages 2437.
Crossref
Benedikt Mues, Benedict Bauer, Anjali A. Roeth, Jeanette Ortega, Eva Miriam Buhl, Patricia Radon, Frank Wiekhorst, Thomas Gries, Thomas Schmitz-Rode & Ioana Slabu. (2021) Nanomagnetic Actuation of Hybrid Stents for Hyperthermia Treatment of Hollow Organ Tumors. Nanomaterials 11:3, pages 618.
Crossref
Manish Anand. (2021) Thermal and dipolar interaction effect on the relaxation in a linear chain of magnetic nanoparticles. Journal of Magnetism and Magnetic Materials 522, pages 167538.
Crossref
Natalia S. Moura, Khashayar R. Bajgiran, Cameron L. Roman, Luke Daemen, Yongqiang Cheng, Jimmy Lawrence, Adam T. Melvin, Kerry M. Dooley & James A. Dorman. (2020) Catalytic Enhancement of Inductively Heated Fe 3 O 4 Nanoparticles by Removal of Surface Ligands . ChemSusChem 14:4, pages 1122-1130.
Crossref
Irene Rubia-Rodríguez, Antonio Santana-Otero, Simo Spassov, Etelka Tombácz, Christer Johansson, Patricia De La Presa, Francisco J. Teran, María del Puerto Morales, Sabino Veintemillas-Verdaguer, Nguyen T. K. Thanh, Maximilian O. Besenhard, Claire Wilhelm, Florence Gazeau, Quentin Harmer, Eric Mayes, Bella B. Manshian, Stefaan J. Soenen, Yuanyu Gu, Ángel Millán, Eleni K. Efthimiadou, Jeff Gaudet, Patrick Goodwill, James Mansfield, Uwe Steinhoff, James Wells, Frank Wiekhorst & Daniel Ortega. (2021) Whither Magnetic Hyperthermia? A Tentative Roadmap. Materials 14:4, pages 706.
Crossref
María Fuentes-Baile, Elizabeth Pérez-Valenciano, Pilar García-Morales, Camino de Juan Romero, Daniel Bello-Gil, Víctor M. Barberá, Álvaro Rodríguez-Lescure, Jesús M. Sanz, Cristina Alenda & Miguel Saceda. (2021) CLytA-DAAO Chimeric Enzyme Bound to Magnetic Nanoparticles. A New Therapeutical Approach for Cancer Patients?. International Journal of Molecular Sciences 22:3, pages 1477.
Crossref
Benedikt Mues, Benedict Bauer, Jeanette Ortega, Eva M. Buhl, Henrik Teller, Thomas Gries, Thomas Schmitz-Rode & Ioana Slabu. (2021) Assessing hyperthermia performance of hybrid textile filaments: The impact of different heating agents. Journal of Magnetism and Magnetic Materials 519, pages 167486.
Crossref
Alberto Pardo, Manuel Gómez-Florit, Silvia Barbosa, Pablo Taboada, Rui M. A. Domingues & Manuela E. Gomes. (2021) Magnetic Nanocomposite Hydrogels for Tissue Engineering: Design Concepts and Remote Actuation Strategies to Control Cell Fate. ACS Nano 15:1, pages 175-209.
Crossref
N S Zakharov, A N Popova, Yu A Zakharov, V M Pugachev & D M Russakov. (2021) Transmission electron microscopy for evaluating the structural parameters of nanoparticles. Journal of Physics: Conference Series 1749:1, pages 012011.
Crossref
C. Scarfiello, M. Bellusci, L. Pilloni, D. Pietrogiacomi, A. La Barbera & F. Varsano. (2021) Supported catalysts for induction-heated steam reforming of methane. International Journal of Hydrogen Energy 46:1, pages 134-145.
Crossref
Paolo Sgarbossa, Maria Rosaria Ruggiero, Simonetta Geninatti Crich, Michele Forzan, Roberta Bertani, Mirto Mozzon & Elisabetta Sieni. 2021. 8th European Medical and Biological Engineering Conference. 8th European Medical and Biological Engineering Conference 198 207 .
Tarun Vemulkar & Russell P. Cowburn. 2021. New Trends in Nanoparticle Magnetism. New Trends in Nanoparticle Magnetism 353 379 .
A. R. Aarathy, M. S. Gopika & S. Savitha Pillai. (2020) Recent Insights into the Potential of Magnetic Metal Nanostructures as Magnetic Hyperthermia Agents. Sensor Letters 18:12, pages 861-880.
Crossref
Suman Halder, S. I. Liba, A. Nahar, S. S. Sikder & S. Manjura Hoque. (2020) To study the surface modified cobalt zinc ferrite nanoparticles for application to magnetic hyperthermia. AIP Advances 10:12.
Crossref
Zhila Shaterabadi, Gholamreza Nabiyouni & Meysam Soleymani. (2020) Correlation between effects of the particle size and magnetic field strength on the magnetic hyperthermia efficiency of dextran-coated magnetite nanoparticles. Materials Science and Engineering: C 117, pages 111274.
Crossref
Khairul Islam, Manjurul Haque, Arup Kumar, Amitra Hoq, Fahmeed Hyder & Sheikh Manjura Hoque. (2020) Manganese Ferrite Nanoparticles (MnFe2O4): Size Dependence for Hyperthermia and Negative/Positive Contrast Enhancement in MRI. Nanomaterials 10:11, pages 2297.
Crossref
Supriya R. Patade, Deepali D. Andhare, Sandeep B. Somvanshi, Swapnil A. Jadhav, Mangesh V. Khedkar & K.M. Jadhav. (2020) Self-heating evaluation of superparamagnetic MnFe2O4 nanoparticles for magnetic fluid hyperthermia application towards cancer treatment. Ceramics International 46:16, pages 25576-25583.
Crossref
Arunima Rajan & Niroj Kumar Sahu. (2020) Review on magnetic nanoparticle-mediated hyperthermia for cancer therapy. Journal of Nanoparticle Research 22:11.
Crossref
Hossein Etemadi & Paul G. Plieger. (2020) Magnetic Fluid Hyperthermia Based on Magnetic Nanoparticles: Physical Characteristics, Historical Perspective, Clinical Trials, Technological Challenges, and Recent Advances. Advanced Therapeutics 3:11.
Crossref
Aiman Mukhtar, Kaiming Wu, Xiaoming Cao & liyuan Gu. (2020) Magnetic nanowires in biomedical applications. Nanotechnology 31:43, pages 433001.
Crossref
J. Shebha Anandhi, G. Antilen Jacob & R. Justin Joseyphus. (2020) Factors affecting the heating efficiency of Mn-doped Fe3O4 nanoparticles. Journal of Magnetism and Magnetic Materials 512, pages 166992.
Crossref
Arunima Rajan S & Niroj Kumar Sahu. (2020) Inductive calorimetric assessment of iron oxide nano-octahedrons for magnetic fluid hyperthermia. Colloids and Surfaces A: Physicochemical and Engineering Aspects 603, pages 125210.
Crossref
V. Manikandan, Iulian Petrila, S. Kavita, R. S. Mane, Juliano C. Denardin, Stefan Lundgaard, Saulius Juodkazis, S. Vigneselvan & J. Chandrasekaran. (2020) Effect of Vd-doping on dielectric, magnetic and gas sensing properties of nickel ferrite nanoparticles. Journal of Materials Science: Materials in Electronics 31:19, pages 16728-16736.
Crossref
Abdulkader Baki, Norbert Löwa, Amani Remmo, Frank Wiekhorst & Regina Bleul. (2020) Micromixer Synthesis Platform for a Tuneable Production of Magnetic Single-Core Iron Oxide Nanoparticles. Nanomaterials 10:9, pages 1845.
Crossref
Akira Ito, Kantaro Yoshioka, Shinya Masumoto, Keiichiro Sato, Yuki Hatae, Tomoki Nakai, Takashi Yamazaki, Masazumi Takahashi, Shota Tanoue & Masanobu Horie. (2020) Magnetic heating of nanoparticles as a scalable cryopreservation technology for human induced pluripotent stem cells. Scientific Reports 10:1.
Crossref
Yaping Lin, Ke Zhang, Ruihong Zhang, Zhending She, Rongwei Tan, Yubo Fan & Xiaoming Li. (2020) Magnetic nanoparticles applied in targeted therapy and magnetic resonance imaging: crucial preparation parameters, indispensable pre-treatments, updated research advancements and future perspectives. Journal of Materials Chemistry B 8:28, pages 5973-5991.
Crossref
Annelies Coene & Jonathan Leliaert. (2020) Simultaneous Coercivity and Size Determination of Magnetic Nanoparticles. Sensors 20:14, pages 3882.
Crossref
Izaz Raouf, Salman Khalid, Asif Khan, Jaehun Lee, Heung Soo Kim & Min-Ho Kim. (2020) A review on numerical modeling for magnetic nanoparticle hyperthermia: Progress and challenges. Journal of Thermal Biology 91, pages 102644.
Crossref
Niloy R. Datta, H. Petra Kok, Hans Crezee, Udo S. Gaipl & Stephan Bodis. (2020) Integrating Loco-Regional Hyperthermia Into the Current Oncology Practice: SWOT and TOWS Analyses. Frontiers in Oncology 10.
Crossref
Alison Burklund, James D. Petryk, P. Jack Hoopes & John X. J. Zhang. (2020) Microfluidic enrichment of bacteria coupled to contact-free lysis on a magnetic polymer surface for downstream molecular detection. Biomicrofluidics 14:3.
Crossref
Samuel Cheeseman, Andrew J. Christofferson, Rashad Kariuki, Daniel Cozzolino, Torben Daeneke, Russell J. Crawford, Vi Khanh Truong, James Chapman & Aaron Elbourne. (2020) Antimicrobial Metal Nanomaterials: From Passive to Stimuli‐Activated Applications. Advanced Science 7:10.
Crossref
Luminita Labusca, Dumitru-Daniel Herea, Camelia-Mihaela Danceanu, Anca Emanuela Minuti, Cristina Stavila, Marian Grigoras, Daniel Gherca, George Stoian, Gabriel Ababei, Horia Chiriac & Nicoleta Lupu. (2020) The effect of magnetic field exposure on differentiation of magnetite nanoparticle-loaded adipose-derived stem cells. Materials Science and Engineering: C 109, pages 110652.
Crossref
Gary Hannon, Anna Bogdanska, Yuri Volkov & Adriele Prina-Mello. (2020) Comparing the Effects of Intracellular and Extracellular Magnetic Hyperthermia on the Viability of BxPC-3 Cells. Nanomaterials 10:3, pages 593.
Crossref
Alberto Pardo, Susana Yáñez, Yolanda Piñeiro, Ramón Iglesias-Rey, Abeer Al-Modlej, Silvia Barbosa, José Rivas & Pablo Taboada. (2020) Cubic Anisotropic Co- and Zn-Substituted Ferrite Nanoparticles as Multimodal Magnetic Agents. ACS Applied Materials & Interfaces 12:8, pages 9017-9031.
Crossref
Malka N. Halgamuge & Tao Song. (2020) OPTIMIZING HEATING EFFICIENCY OF HYPERTHERMIA: SPECIFIC LOSS POWER OF MAGNETIC SPHERE COMPOSED OF SUPERPARAMAGNETIC NANOPARTICLES. Progress In Electromagnetics Research B 87, pages 1-17.
Crossref
K. C. Ugochukwu, M. M. Sadiq, E. S. Biegel, L. Meagher, M. R. Hill, K. G. Sandeman, A. Haydon & K. Suzuki. (2020) Effect of direct-current magnetic field on the specific absorption rate of metamagnetic CoMnSi: A potential approach to switchable hyperthermia therapy. AIP Advances 10:1.
Crossref
Frederik Soetaert, Preethi Korangath, David Serantes, Steven Fiering & Robert Ivkov. (2020) Cancer therapy with iron oxide nanoparticles: Agents of thermal and immune therapies. Advanced Drug Delivery Reviews 163-164, pages 65-83.
Crossref
Filippo Giustozzi. 2020. Eco-Efficient Pavement Construction Materials. Eco-Efficient Pavement Construction Materials 315 336 .
Sana Rahim, Faiza Jan Iftikhar & Muhammad Imran Malik. 2020. Metal Nanoparticles for Drug Delivery and Diagnostic Applications. Metal Nanoparticles for Drug Delivery and Diagnostic Applications 301 328 .
Jose E. Perez & Jürgen Kosel. 2020. Magnetic Nano- and Microwires. Magnetic Nano- and Microwires 697 713 .
Hayden Carlton, Kathryn Krycka, Markus Bleuel & David Huitink. (2019) In Situ Dimensional Characterization of Magnetic Nanoparticle Clusters during Induction Heating. Particle & Particle Systems Characterization 37:1, pages 1900358.
Crossref
Ihab M. Obaidat, Venkatesha Narayanaswamy, Sulaiman Alaabed, Sangaraju Sambasivam & Chandu V. V. Muralee Gopi. (2019) Principles of Magnetic Hyperthermia: A Focus on Using Multifunctional Hybrid Magnetic Nanoparticles. Magnetochemistry 5:4, pages 67.
Crossref
Yaser Hadadian, Ana Paula Ramos & Theo Z. Pavan. (2019) Role of zinc substitution in magnetic hyperthermia properties of magnetite nanoparticles: interplay between intrinsic properties and dipolar interactions. Scientific Reports 9:1.
Crossref
S.K. Sharma, Navadeep Shrivastava, Francesco Rossi, Le Duc Tung & Nguyen Thi Kim Thanh. (2019) Nanoparticles-based magnetic and photo induced hyperthermia for cancer treatment. Nano Today 29, pages 100795.
Crossref
Sarah E. Sandler, Benjamin Fellows & O. Thompson Mefford. (2019) Best Practices for Characterization of Magnetic Nanoparticles for Biomedical Applications. Analytical Chemistry 91:22, pages 14159-14169.
Crossref
G Cotin, C Blanco-Andujar, D-V Nguyen, C Affolter, S Boutry, A Boos, P Ronot, B Uring-Lambert, P Choquet, P E Zorn, D Mertz, S Laurent, R N Muller, F Meyer, D Felder Flesch & S Begin-Colin. (2019) Dendron based antifouling, MRI and magnetic hyperthermia properties of different shaped iron oxide nanoparticles. Nanotechnology 30:37, pages 374002.
Crossref
Akira Ito, Ryoji Teranishi, Kazuki Kamei, Masaki Yamaguchi, Akihiko Ono, Shinya Masumoto, Yuto Sonoda, Masanobu Horie, Yoshinori Kawabe & Masamichi Kamihira. (2019) Magnetically triggered transgene expression in mammalian cells by localized cellular heating of magnetic nanoparticles. Journal of Bioscience and Bioengineering 128:3, pages 355-364.
Crossref
Daniel Shore, Adrian Ghemes, Oana Dragos-Pinzaru, Zhe Gao, Qi Shao, Anirudh Sharma, Joseph Um, Ibro Tabakovic, John C. Bischof & Bethanie J. H. Stadler. (2019) Nanowarming using Au-tipped Co 35 Fe 65 ferromagnetic nanowires . Nanoscale 11:31, pages 14607-14615.
Crossref
Daniel J. Denmark, Xiomar Bustos-Perez, Anand Swain, Manh-Huong Phan, Subhra Mohapatra & Shyam S. Mohapatra. (2019) Readiness of Magnetic Nanobiosensors for Point-of-Care Commercialization. Journal of Electronic Materials 48:8, pages 4749-4761.
Crossref
S. Del Sol-Fernández, Y. Portilla-Tundidor, L. Gutiérrez, O. F. Odio, E. Reguera, D. F. Barber & M. P. Morales. (2019) Flower-like Mn-Doped Magnetic Nanoparticles Functionalized with α v β 3 -Integrin-Ligand to Efficiently Induce Intracellular Heat after Alternating Magnetic Field Exposition, Triggering Glioma Cell Death . ACS Applied Materials & Interfaces 11:30, pages 26648-26663.
Crossref
Zoe Boekelheide, Jackson T. Miller, Cordula Grüttner & Cindi L. Dennis. (2019) The effects of intraparticle structure and interparticle interactions on the magnetic hysteresis loop of magnetic nanoparticles. Journal of Applied Physics 126:4.
Crossref
Baskar Srinivasan, Elayaraja Kolanthai, Nivethaa Eluppai Asthagiri Kumaraswamy, Ramana Ramya Jayapalan, Durga Sankar Vavilapalli, Luiz Henrique Catalani, Goutam Singh Ningombam, Nehru Singh Khundrakpam, Nongmaithem Rajmuhon Singh & Subbaraya Narayana Kalkura. (2019) Thermally Modified Iron-Inserted Calcium Phosphate for Magnetic Hyperthermia in an Acceptable Alternating Magnetic Field. The Journal of Physical Chemistry B 123:26, pages 5506-5513.
Crossref
Subin Kim, Myeong ju Moon, Suchithra Poilil Surendran & Yong Yeon Jeong. (2019) Biomedical Applications of Hyaluronic Acid-Based Nanomaterials in Hyperthermic Cancer Therapy. Pharmaceutics 11:7, pages 306.
Crossref
Yaser Hadadian, Mehran Azimbagirad, Elcio A. Navas & Theo Z. Pavan. (2019) A versatile induction heating system for magnetic hyperthermia studies under different experimental conditions. Review of Scientific Instruments 90:7.
Crossref
Teobaldo E. Torres, Enio LimaJr.Jr., M. Pilar Calatayud, Beatriz Sanz, Alfonso Ibarra, Rodrigo Fernández-Pacheco, Alvaro Mayoral, Clara Marquina, M. Ricardo Ibarra & Gerardo F. Goya. (2019) The relevance of Brownian relaxation as power absorption mechanism in Magnetic Hyperthermia. Scientific Reports 9:1.
Crossref
Chiara Martinelli, Carlotta Pucci & Gianni Ciofani. (2019) Nanostructured carriers as innovative tools for cancer diagnosis and therapy. APL Bioengineering 3:1.
Crossref
Eric G. Fuller, Hao Sun, Rohan D. Dhavalikar, Mythreyi Unni, Georg M. Scheutz, Brent S. Sumerlin & Carlos Rinaldi. (2019) Externally Triggered Heat and Drug Release from Magnetically Controlled Nanocarriers. ACS Applied Polymer Materials 1:2, pages 211-220.
Crossref
M. Raju, Ratish R. Nair, Snehasish Debnath & Pabitra B. Chatterjee. (2018) Affinity Directed Surface Functionalization of Two Different Metal Nanoparticles by a Natural Ionophore: Probing and Removal of Hg 2+ and Al 3+ Ions from Aqueous Solutions . Inorganic Chemistry 58:2, pages 1674-1683.
Crossref
R D Ralandinliu Kahmei & J P Borah. (2019) Clustering of MnFe 2 O 4 nanoparticles and the effect of field intensity in the generation of heat for hyperthermia application . Nanotechnology 30:3, pages 035706.
Crossref
Hai Doan Do, Brice Martin Couillaud, Bich-Thuy Doan, Yohann Corvis & Nathalie Mignet. (2019) Advances on non-invasive physically triggered nucleic acid delivery from nanocarriers. Advanced Drug Delivery Reviews 138, pages 3-17.
Crossref
Irina Negut & Valentina Grumezescu. 2019. Biomedical Applications of Nanoparticles. Biomedical Applications of Nanoparticles 63 90 .
Geeta Nijhawan, Siddharth Sagar Nijhawan & Minu Sethi. 2019. Noble Metal-Metal Oxide Hybrid Nanoparticles. Noble Metal-Metal Oxide Hybrid Nanoparticles 241 263 .
David Serantes, Roy Chantrell, Helena Gavilán, María del Puerto Morales, Oksana Chubykalo-Fesenko, Daniel Baldomir & Akira Satoh. (2018) Anisotropic magnetic nanoparticles for biomedicine: bridging frequency separated AC-field controlled domains of actuation. Physical Chemistry Chemical Physics 20:48, pages 30445-30454.
Crossref
Paolo Di Barba, Maria Evelina Mognaschi, Fabrizio Dughiero, Michele Forzan & Elisabetta Sieni. (2018) Multi-Objective Optimization of a Solenoid for MFH: A Comparison of Methods. Multi-Objective Optimization of a Solenoid for MFH: A Comparison of Methods.
Lauren E. Woodard, Cindi L. Dennis, Julie A. Borchers, Anilchandra Attaluri, Esteban Velarde, Charlene Dawidczyk, Peter C. Searson, Martin G. Pomper & Robert Ivkov. (2018) Nanoparticle architecture preserves magnetic properties during coating to enable robust multi-modal functionality. Scientific Reports 8:1.
Crossref
Alexander LeBrun & Liang Zhu*. 2018. Theory and Applications of Heat Transfer in Humans. Theory and Applications of Heat Transfer in Humans 631 667 .
J.D. Alzate-Cardona, E. Restrepo-Parra & C.D. Acosta-Medina. (2018) Monte Carlo study of ternary alloy magnetic nanoparticle in presence of time dependent magnetic field. Materials Chemistry and Physics 213, pages 362-367.
Crossref
Shuli He, Hongwang Zhang, Yihao Liu, Fan Sun, Xiang Yu, Xueyan Li, Li Zhang, Lichen Wang, Keya Mao, Gangshi Wang, Yunjuan Lin, Zhenchuan Han, Renat Sabirianov & Hao Zeng. (2018) Maximizing Specific Loss Power for Magnetic Hyperthermia by Hard-Soft Mixed Ferrites. Small 14:29, pages 1800135.
Crossref
Domenico Cassano & Valerio Voliani. 2018. Behaviors and Persistence of Nanomaterials in Biomedical Applications. Behaviors and Persistence of Nanomaterials in Biomedical Applications 79 135 .
C L Dennis, A J Jackson, J A Borchers, C Gruettner & R Ivkov. (2018) Correlation between physical structure and magnetic anisotropy of a magnetic nanoparticle colloid. Nanotechnology 29:21, pages 215705.
Crossref
J. Robles, R. Das, M. Glassell, M. H. Phan & H. Srikanth. (2018) Exchange-coupled Fe3O4/CoFe2O4 nanoparticles for advanced magnetic hyperthermia. AIP Advances 8:5.
Crossref
Federico Patti, Kyrollos Mansour, Muthu Pannirselvam & Filippo Giustozzi. (2018) Mining materials to generate magnetically-triggered induction healing of bitumen on smart road pavements. Construction and Building Materials 171, pages 577-587.
Crossref
Vaishnavi Kulkarni, Dhananjay Bodas & Kishore Paknikar. (2018) Assessment of an Integrative Anticancer Treatment Using an in Vitro Perfusion-Enabled 3D Breast Tumor Model. ACS Biomaterials Science & Engineering 4:4, pages 1407-1417.
Crossref
Anirudh Sharma, Christine Cornejo, Jana Mihalic, Alison Geyh, David E. Bordelon, Preethi Korangath, Fritz Westphal, Cordula Gruettner & Robert Ivkov. (2018) Physical characterization and in vivo organ distribution of coated iron oxide nanoparticles. Scientific Reports 8:1.
Crossref
Zhila Shaterabadi, Gholamreza Nabiyouni & Meysam Soleymani. (2018) Physics responsible for heating efficiency and self-controlled temperature rise of magnetic nanoparticles in magnetic hyperthermia therapy. Progress in Biophysics and Molecular Biology 133, pages 9-19.
Crossref
Gabriel Lavorato, Enio LimaJr.Jr., Marcelo Vasquez Mansilla, Horacio Troiani, Roberto Zysler & Elin Winkler. (2018) Bifunctional CoFe 2 O 4 /ZnO Core/Shell Nanoparticles for Magnetic Fluid Hyperthermia with Controlled Optical Response . The Journal of Physical Chemistry C 122:5, pages 3047-3057.
Crossref
A. S. Kamzin, A. A. Valiullin, H. Khurshid, Z. Nemati, H. Srikanth & M. H. Phan. (2018) Mössbauer Studies of Core-Shell FeO/Fe3O4 Nanoparticles. Physics of the Solid State 60:2, pages 382-389.
Crossref
Majid Abdellahi, Aliakbar Najfinezhad, Saeed Saber-Samanadari, Amirsalar Khandan & Hamid Ghayour. (2018) Zn and Zr co-doped M-type strontium hexaferrite: Synthesis, characterization and hyperthermia application. Chinese Journal of Physics 56:1, pages 331-339.
Crossref
Livia P. Mendes, Eliana M. Lima & Vladimir P. Torchilin. 2018. Handbook of Nanomaterials for Cancer Theranostics. Handbook of Nanomaterials for Cancer Theranostics 245 277 .
Suriyanto, E. Y. K. Ng & S. D. Kumar. (2017) Physical mechanism and modeling of heat generation and transfer in magnetic fluid hyperthermia through Néelian and Brownian relaxation: a review. BioMedical Engineering OnLine 16:1.
Crossref
Mostafa Saeedi, Omid Vahidi, Vahabodin Goodarzi, Mohammad Reza Saeb, Leila Izadi & Masoud Mozafari. (2017) A new prospect in magnetic nanoparticle-based cancer therapy: Taking credit from mathematical tissue-mimicking phantom brain models. Nanomedicine: Nanotechnology, Biology and Medicine 13:8, pages 2405-2414.
Crossref
Fernando Arteaga-Cardona, Esmeralda Santillán-Urquiza, Umapada Pal, M.E. Méndoza-Álvarez, Cristina Torres-Duarte, Gary N. Cherr, Patricia de la Presa & Miguel Á. Méndez-Rojas. (2017) Unusual variation of blocking temperature in bi-magnetic nanoparticles. Journal of Magnetism and Magnetic Materials 441, pages 417-423.
Crossref
Mathias Kure, Marco Beleggia & Cathrine Frandsen. (2017) Magnetic dipolar ordering and hysteresis of geometrically defined nanoparticle clusters. Journal of Applied Physics 122:13.
Crossref
Frederik Soetaert, Sri Kamal Kandala, Andris Bakuzis & Robert Ivkov. (2017) Experimental estimation and analysis of variance of the measured loss power of magnetic nanoparticles. Scientific Reports 7:1.
Crossref

Displaying 200 of 251 citing articles. Use the download link below to view the full list of citing articles.

Download full citations list

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.