4,062
Views
4
CrossRef citations to date
0
Altmetric
Reviews

Alternative model organisms for toxicological fingerprinting of relevant parameters in food and nutrition

ORCID Icon, , & ORCID Icon

References

  • Alafiatayo, A. A., K.-S. Lai, A. Syahida, M. Mahmood, and N. A. Shaharuddin. 2019. Phytochemical Evaluation, Embryotoxicity, and Teratogenic Effects of Curcuma longa Extract on Zebrafish (Danio rerio). Evidence-Based Complementary and Alternative Medicine: eCAM 2019:3807207. doi: 10.1155/2019/3807207.
  • Alberga, D., D. Trisciuzzi, K. Mansouri, G. F. Mangiatordi, and O. Nicolotti. 2019. Prediction of Acute Oral Systemic Toxicity Using a Multifingerprint Similarity Approach. Toxicological Sciences 167 (2):484–95. eng. doi: 10.1093/toxsci/kfy255.
  • Aleström, P., L. D'Angelo, P. J. Midtlyng, D. F. Schorderet, S. Schulte-Merker, F. Sohm, and S. Warner. 2020. Zebrafish: Housing and husbandry recommendations. Lab Anim 54 (3):213–24. doi: 10.1177/0023677219869037.
  • Baenas, N., and A. E. Wagner. 2019. Drosophila melanogaster as an alternative model organism in nutrigenomics. Genes & Nutrition 14:14. doi: 10.1186/s12263-019-0641-y.
  • Bagchi, D., A. Swaroop, and S. J. Stohs. 2017. Food toxicology. Boca Raton, FL: CRC Press. ISBN: 1498708757.
  • Balan, P., J. Indrakumar, P. Murali, and P. S. Korrapati. 2020. Bi-faceted delivery of phytochemicals through chitosan nanoparticles impregnated nanofibers for cancer therapeutics. International Journal of Biological Macromolecules 142:201–11. doi: 10.1016/j.ijbiomac.2019.09.093.
  • Bambino, K., and J. Chu. 2017. Zebrafish in Toxicology and Environmental Health. Current Topics in Developmental Biology 124:331–67. doi: 10.1016/bs.ctdb.2016.10.007.
  • Barardo, D., D. Thornton, H. Thoppil, M. Walsh, S. Sharifi, S. Ferreira, A. Anžič, M. Fernandes, P. Monteiro, T. Grum, et al. 2017. The DrugAge database of aging-related drugs. Aging Cell 16 (3):594–7. doi: 10.1111/acel.12585.
  • Bartlett, D. H., and S. B. Silk. 2016. Office of laboratory animal welfare comments. Zebrafish 13 (6):563–4. doi: 10.1089/zeb.2016.1344.
  • Benfenati, E., Q. Chaudhry, G. Gini, and J. L. Dorne. 2019. Integrating in silico models and read-across methods for predicting toxicity of chemicals: A step-wise strategy. Environment International 131:105060. doi: 10.1016/j.envint.2019.105060.
  • Bettini, S., E. Boutet-Robinet, C. Cartier, C. Coméra, E. Gaultier, J. Dupuy, N. Naud, S. Taché, P. Grysan, S. Reguer, et al. 2017. Food-grade TiO2 impairs intestinal and systemic immune homeostasis, initiates preneoplastic lesions and promotes aberrant crypt development in the rat colon. Scientific Reports 7:40373. doi: 10.1038/srep40373.
  • Bhatia, S. N., and D. E. Ingber. 2014. Microfluidic organs-on-chips. Nat Biotechnol 32 (8):760–72. doi: 10.1038/nbt.2989.
  • Bian, X., P. Tu, L. Chi, B. Gao, H. Ru, and K. Lu. 2017. Saccharin induced liver inflammation in mice by altering the gut microbiota and its metabolic functions. Food and Chemical Toxicology: An International Journal Published for the British Industrial Biological Research Association 107 (Pt B):530–9. doi: 10.1016/j.fct.2017.04.045.
  • Blaauboer, B. J., A. R. Boobis, B. Bradford, A. Cockburn, A. Constable, M. Daneshian, G. Edwards, J. A. Garthoff, B. Jeffery, C. Krul, et al. 2016. Considering new methodologies in strategies for safety assessment of foods and food ingredients. Food and Chemical Toxicology: An International Journal Published for the British Industrial Biological Research Association 91:19–35. eng. doi: 10.1016/j.fct.2016.02.019.
  • Boer, A. D., and A. Bast. 2018. Demanding safe foods – Safety testing under the novel food regulation (2015/2283). Trends in Food Science & Technology 72:125–33. doi: 10.1016/j.tifs.2017.12.013.
  • Boyd, W. A., M. V. Smith, C. A. Co, J. R. Pirone, J. R. Rice, K. R. Shockley, and J. H. Freedman. 2016. Developmental effects of the ToxCast™ phase I and phase II chemicals in caenorhabditis elegans and corresponding responses in zebrafish, rats, and rabbits. Environmental Health Perspectives 124 (5):586–93. eng. doi: 10.1289/ehp.1409645.
  • Carty, D. R., Z. S. Miller, C. Thornton, Z. Pandelides, M. L. Kutchma, and K. L. Willett. 2019. Multigenerational consequences of early-life cannabinoid exposure in zebrafish. Toxicology and Applied Pharmacology 364:133–43. doi: 10.1016/j.taap.2018.12.021.
  • Cassar, S., I. Adatto, J. L. Freeman, J. T. Gamse, I. Iturria, C. Lawrence, A. Muriana, R. T. Peterson, S. van Cruchten, and L. I. Zon. 2020. Use of zebrafish in drug discovery toxicology. Chemical Research in Toxicology 33 (1):95–118. eng. doi: 10.1021/acs.chemrestox.9b00335.
  • Çelen, İ., J. H. Doh, and C. R. Sabanayagam. 2018. Effects of liquid cultivation on gene expression and phenotype of C. elegans. BMC Genomics 19 (1):562. doi: 10.1186/s12864-018-4948-7.
  • Chakraborty, S., T. Ponrasu, S. Chandel, M. Dixit, and V. Muthuvijayan. 2018. Reduced graphene oxide-loaded nanocomposite scaffolds for enhancing angiogenesis in tissue engineering applications. Royal Society Open Science 5 (5):172017. doi: 10.1098/rsos.172017.
  • Chan, I. L., O. J. Rando, and C. C. Conine. 2018. Effects of Larval Density on Gene Regulation in Caenorhabditis elegans During Routine L1 Synchronization. G3 (Bethesda, Md.) 8 (5):1787–93. doi: 10.1534/g3.118.200056.
  • Chan, L., N. Vasilevsky, A. Thessen, J. McMurry, and M. Haendel. 2021. The landscape of nutri-informatics: A review of current resources and challenges for integrative nutrition research. Database. 2021:1–20. doi: 10.1093/database/baab003.
  • Chen, G., Z. Jia, L. Wang, and T. Hu. 2020. Effect of acute exposure of saxitoxin on development of zebrafish embryos (Danio rerio). Environmental Research 185:109432. doi: 10.1016/j.envres.2020.109432.
  • Chen, Y., X. Liu, C. Jiang, L. Liu, J. M. Ordovas, C.-Q. Lai, and L. Shen. 2018. Curcumin supplementation increases survival and lifespan in Drosophila under heat stress conditions. BioFactors (Oxford, England) 44 (6):577–87. doi: 10.1002/biof.1454.
  • Chen, H. J., P. Miller, and M. L. Shuler. 2018. A pumpless body-on-a-chip model using a primary culture of human intestinal cells and a 3D culture of liver cells. Lab on a Chip 18 (14):2036–46. eng. doi: 10.1039/c8lc00111a.
  • Chousidis, I., T. Chatzimitakos, D. Leonardos, M. D. Filiou, C. D. Stalikas, and I. D. Leonardos. 2020. Cannabinol in the spotlight: Toxicometabolomic study and behavioral analysis of zebrafish embryos exposed to the unknown cannabinoid. Chemosphere 252:126417. doi: 10.1016/j.chemosphere.2020.126417.
  • Dar, M. H., and A. Sehgal. 2020. Evaluation of antiangiogenic and antigenotoxic potential of green and black tea extracts by chicken chorioallantoic membrane assay. Journal of Entomology and Zoology Studies 8 (2):424–430.
  • Directive 2010/63/EU. 2010. Directive 2010/63/EU of the European Parliament and of the Council of 22 September 2010 on the protection of animals used for scientific purposesText with EEA relevance.
  • Döring, F., and G. Rimbach. 2014. Nutri-informatics: A new kid on the block? Genes & Nutrition 9 (3):394. doi: 10.1007/s12263-014-0394-6.
  • Dorne, J. L. C. M., J. Richardson, A. Livaniou, E. Carnesecchi, L. Ceriani, R. Baldin, S. Kovarich, M. Pavan, E. Saouter, F. Biganzoli, et al. 2021. EFSA's OpenFoodTox: An open source toxicological database on chemicals in food and feed and its future developments. Environ Int 146:106293. doi: 10.1016/j.envint.2020.106293.
  • Dos Santos Nunes, R. G., P. S. Pereira, O. O. Elekofehinti, K. R. Fidelis, C. S. da Silva, M. Ibrahim, L. M. Barros, F. A. B. da Cunha, K. E. Lukong, I. d Menezes, et al. 2019. Possible involvement of transcriptional activation of nuclear factor erythroid 2-related factor 2 (Nrf2) in the protective effect of caffeic acid on paraquat-induced oxidative damage in Drosophila melanogaster. Pestic Biochem Physiol 157:161–8. doi: 10.1016/j.pestbp.2019.03.017.
  • Endo, Y., K. Muraki, Y. Fuse, and M. Kobayashi. 2020. Evaluation of Antioxidant Activity of Spice-Derived Phytochemicals Using Zebrafish. International Journal of Molecular Sciences. 21 (3):1109. doi: 10.3390/ijms21031109.
  • Engel, G. L., K. Taber, E. Vinton, and A. J. Crocker. 2019. Studying alcohol use disorder using Drosophila melanogaster in the era of 'Big Data'. Behavioral and Brain Functions : BBF 15 (1):7. doi: 10.1186/s12993-019-0159-x.
  • Farombi, E. O., A. O. Abolaji, T. H. Farombi, A. S. Oropo, O. A. Owoje, and M. T. Awunah. 2018. Garcinia kola seed biflavonoid fraction (Kolaviron), increases longevity and attenuates rotenone-induced toxicity in Drosophila melanogaster. Pesticide Biochemistry and Physiology. 145:39–45. doi: 10.1016/j.pestbp.2018.01.002.
  • Fois, C. A. M., T. Y. L. Le, A. Schindeler, S. Naficy, D. D. McClure, M. N. Read, P. Valtchev, A. Khademhosseini, and F. Dehghani. 2019. Models of the Gut for Analyzing the Impact of Food and Drugs. Advanced Healthcare Materials 8 (21):e1900968. doi: 10.1002/adhm.201900968.
  • Freyre-Fonseca, V., E. I. Medina-Reyes, D. I. Téllez-Medina, G. L. Paniagua-Contreras, E. Monroy-Pérez, F. Vaca-Paniagua, N. L. Delgado-Buenrostro, J. O. Flores-Flores, E. O. López-Villegas, G. F. Gutiérrez-López, et al. 2018. Influence of shape and dispersion media of titanium dioxide nanostructures on microvessel network and ossification. Colloids and Surfaces B, Biointerfaces 162:193–201. doi: 10.1016/j.colsurfb.2017.11.049.
  • Gáliková, M., and P. Klepsatel. 2018. Obesity and Aging in the Drosophila Model. International Journal of Molecular Sciences. 19 (7):1896. doi: 10.3390/ijms19071896.
  • Gao, S., W. Chen, Y. Zeng, H. Jing, N. Zhang, M. Flavel, M. Jois, J.-D. J. Han, B. Xian, and G. Li. 2018. Classification and prediction of toxicity of chemicals using an automated phenotypic profiling of Caenorhabditis elegans. BMC Pharmacology & Toxicology 19 (1):18. doi: 10.1186/s40360-018-0208-3.
  • García-Espiñeira, M. C., L. P. Tejeda-Benítez, and J. Olivero-Verbel. 2018. Toxic Effects of Bisphenol A, Propyl Paraben, and Triclosan on Caenorhabditis elegans. International Journal of Environmental Research and Public Health 15 (4):684. doi: 10.3390/ijerph15040684.
  • Gómez-Orte, E., E. Cornes, A. Zheleva, B. Sáenz-Narciso, T. M de, M. Iñiguez, R. López, J.-F. San-Juan, B. Ezcurra, B. Sacristán, et al. 2018. Effect of the diet type and temperature on the C. elegans transcriptome. Oncotarget 9 (11):9556–71. doi: 10.18632/oncotarget.23563.
  • Gosslau, A. 2016. Assessment of food toxicology. Food Science and Human Wellness 5 (3):103–15. doi: 10.1016/j.fshw.2016.05.003.
  • Guo, Z., N. J. Martucci, F. Moreno-Olivas, E. Tako, and G. J. Mahler. 2017. Titanium Dioxide Nanoparticle Ingestion Alters Nutrient Absorption in an In Vitro Model of the Small Intestine. NanoImpact 5:70–82. doi: 10.1016/j.impact.2017.01.002.
  • Harlow, P. H., S. J. Perry, A. J. Stevens, and A. J. Flemming. 2018. Comparative metabolism of xenobiotic chemicals by cytochrome P450s in the nematode Caenorhabditis elegans. Scientific Reports 8 (1):13333. doi: 10.1038/s41598-018-31215-w.
  • Hartung, T. 2017. Evolution of toxicological science: The need for change. International Journal of Risk Assessment and Management 20 (1/2/3):21. doi: 10.1504/IJRAM.2017.082570.
  • Haselgrübler, R., V. Stadlbauer, F. Stübl, B. Schwarzinger, I. Rudzionyte, M. Himmelsbach, M. Iken, and J. Weghuber. 2018. Insulin Mimetic Properties of Extracts Prepared from Bellis perennis. Molecules 23 (10):2605. doi: 10.3390/molecules23102605.
  • Haselgrübler, R., F. Stübl, V. Stadlbauer, P. Lanzerstorfer, and J. Weghuber. 2018. An in ovo model for testing insulin-mimetic compounds. Journal of Visualized Experiments. 134:e57237. doi: 10.3791/57237.
  • Horzmann, K. A., and J. L. Freeman. 2018. Making Waves: New Developments in Toxicology With the Zebrafish. Toxicological Sciences: An Official Journal of the Society of Toxicology 163 (1):5–12. doi: 10.1093/toxsci/kfy044.
  • Howe, K., M. D. Clark, C. F. Torroja, J. Torrance, C. Berthelot, M. Muffato, J. E. Collins, S. Humphray, K. McLaren, L. Matthews, et al. 2013. The zebrafish reference genome sequence and its relationship to the human genome. Nature 496 (7446):498–503. doi: 10.1038/nature12111.
  • Hunt, P. R. 2017. The C. elegans model in toxicity testing. Journal of Applied Toxicology: JAT 37 (1):50–9. doi: 10.1002/jat.3357.
  • Hunt, P. R., J. A. Camacho, and R. L. Sprando. 2020. Caenorhabditis elegans for predictive toxicology. Current Opinion in Toxicology 23-24:23–8. doi: 10.1016/j.cotox.2020.02.004.
  • Hunter, P. 2008. The paradox of model organisms. The use of model organisms in research will continue despite their shortcomings. EMBO Reports 9 (8):717–20. doi: 10.1038/embor.2008.142.
  • Hunt, P. R., N. Olejnik, K. D. Bailey, C. A. Vaught, and R. L. Sprando. 2018. C. elegans Development and Activity Test detects mammalian developmental neurotoxins. Food and Chemical Toxicology : An International Journal Published for the British Industrial Biological Research Association 121:583–92. doi: 10.1016/j.fct.2018.09.061.
  • ICCVAM. 2006a. In Vitro Cytotoxicity Test Methods for Estimating Starting Doses for Acute Oral Systemic Toxicity Testing.
  • ICCVAM. 2006b. In vitro ocular toxicity test methods for identifying severe irritant and corrosives.
  • ICH Guideline S3A. 1994. Toxicokinetics: A Guidance for Assessing Systemic Exposure in Toxicology Studies.
  • Jin, Y.-M., S.-Z. Zhao, Z.-L. Zhang, Y. Chen, X. Cheng, M. Chuai, G.-S. Liu, K. K. H. Lee, and X. Yang. 2019. High Glucose Level Induces Cardiovascular Dysplasia During Early Embryo Development. Experimental and Clinical Endocrinology & Diabetes : Official Journal, German Society of Endocrinology [and] German Diabetes Association 127 (9):590–7. doi: 10.1055/s-0043-109696.
  • Jones, L. M., S. J. Rayson, A. J. Flemming, and P. E. Urwin. 2013. Adaptive and specialised transcriptional responses to xenobiotic stress in Caenorhabditis elegans are regulated by nuclear hormone receptors. PLoS ONE 8 (7):e69956. doi: 10.1371/journal.pone.0069956.
  • Jovanović, B., N. Jovanović, V. J. Cvetković, S. Matić, S. Stanić, E. M. Whitley, and T. L. Mitrović. 2018. The effects of a human food additive, titanium dioxide nanoparticles E171, on Drosophila melanogaster - a 20 generation dietary exposure experiment. Scientific Reports 8 (1):17922. doi: 10.1038/s41598-018-36174-w.
  • Jung, S.-K., B. Aleman-Meza, C. Riepe, and W. Zhong. 2014. QuantWorm: A comprehensive software package for Caenorhabditis elegans phenotypic assays. PLoS ONE 9 (1):e84830. doi: 10.1371/journal.pone.0084830.
  • Kasendra, M., A. Tovaglieri, A. Sontheimer-Phelps, S. Jalili-Firoozinezhad, A. Bein, A. Chalkiadaki, W. Scholl, C. Zhang, H. Rickner, C. A. Richmond, et al. 2018. Development of a primary human Small Intestine-on-a-Chip using biopsy-derived organoids. Scientific Reports 8 (1):2871. doi: 10.1038/s41598-018-21201-7.
  • Keller, J., A. Borzekowski, H. Haase, R. Menzel, L. Rueß, and M. Koch. 2018. Toxicity assay for citrinin, zearalenone and zearalenone-14-sulfate using the nematode caenorhabditis elegans as model organism. Toxins (Basel) 10 (7):284. doi: 10.3390/toxins10070284.
  • Kharat, P., P. Sarkar, S. Mouliganesh, V. Tiwary, V. B. R. Priya, N. Y. Sree, H. V. Annapoorna, D. K. Saikia, K. Mahanta, and K. Thirumurugan. 2020. Ellagic acid prolongs the lifespan of Drosophila melanogaster. Geroscience 42 (1):271–85. doi: 10.1007/s11357-019-00135-6.
  • King-Jones, K.,. M. A. Horner, G. Lam, and C. S. Thummel. 2006. The DHR96 nuclear receptor regulates xenobiotic responses in Drosophila. Cell Metabolism 4 (1):37–48. doi: 10.1016/j.cmet.2006.06.006.
  • Köhle, C., and K. W. Bock. 2009. Coordinate regulation of human drug-metabolizing enzymes, and conjugate transporters by the Ah receptor, pregnane X receptor and constitutive androstane receptor. Biochemical Pharmacology 77 (4):689–99. doi: 10.1016/j.bcp.2008.05.020.
  • Koiwa, J., T. Shiromizu, Y. Adachi, M. Ikejiri, K. Nakatani, T. Tanaka, and Y. Nishimura. 2019. Generation of a Triple-Transgenic Zebrafish Line for Assessment of Developmental Neurotoxicity during Neuronal Differentiation. Pharmaceuticals (Basel) 12 (12):14. doi: 10.3390/ph12040145.
  • Kulthong, K., L. Duivenvoorde, B. Z. Mizera, D. Rijkers, G. t Dam, G. Oegema, T. Puzyn, H. Bouwmeester, and M. van der Zande. 2018. Implementation of a dynamic intestinal gut-on-a-chip barrier model for transport studies of lipophilic dioxin congeners. RSC Advances 8 (57):32440–53. doi: 10.1039/C8RA05430D.
  • Kuzin, B. A., E. A. Nikitina, R. O. Cherezov, J. E. Vorontsova, M. S. Slezinger, O. G. Zatsepina, O. B. Simonova, G. N. Enikolopov, and E. V. Savvateeva-Popova. 2014. Combination of hypomorphic mutations of the Drosophila homologues of aryl hydrocarbon receptor and nucleosome assembly protein family genes disrupts morphogenesis, memory and detoxification. PLoS ONE 9 (4):e94975. doi: 10.1371/journal.pone.0094975.
  • Lackmann, C., M. M. Santos, S. Rainieri, A. Barranco, H. Hollert, P. Spirhanzlova, M. Velki, and T.-B. Seiler. 2018. Novel procedures for whole organism detection and quantification of fluorescence as a measurement for oxidative stress in zebrafish (Danio rerio) larvae. Chemosphere 197:200–9. doi: 10.1016/j.chemosphere.2018.01.045.
  • Lai, C. H., C. Y. Chou, L. Y. Ch'ang, C. S. Liu, and W. Lin. 2000. Identification of novel human genes evolutionarily conserved in Caenorhabditis elegans by comparative proteomics. Genome Research 10 (5):703–13. doi: 10.1101/gr.10.5.703.
  • Lanzerstorfer, P., G. Sandner, J. Pitsch, B. Mascher, T. Aumiller, and J. Weghuber. 2021. Acute, reproductive, and developmental toxicity of essential oils assessed with alternative in vitro and in vivo systems. Archives of Toxicology 95 (2):673–19. . doi: 10.1007/s00204-020-02945-6.
  • Lee, S., Y. Kim, and J. Choi. 2020. Effect of soil microbial feeding on gut microbiome and cadmium toxicity in Caenorhabditis elegans. Ecotoxicology and Environmental Safety 187:109777. doi: 10.1016/j.ecoenv.2019.109777.
  • Lemieux, G. A., and K. Ashrafi. 2015. Insights and challenges in using C. elegans for investigation of fat metabolism. Critical Reviews in Biochemistry and Molecular Biology 50 (1):69–84. Epub 2014 Sep 17. eng. doi: 10.3109/10409238.2014.959890.
  • Lev, I., R. Bril, Y. Liu, L. I. Ceré, and O. Rechavi. 2019. Inter-generational consequences for growing Caenorhabditis elegans in liquid. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 374 (1770):20180125. doi: 10.1098/rstb.2018.0125.
  • Liao, V. H.-C. 2018. Use of Caenorhabditis elegans To Study the Potential Bioactivity of Natural Compounds. Journal of Agricultural and Food Chemistry 66 (8):1737–42. doi: 10.1021/acs.jafc.7b05700.
  • Lindblom, T. H., and A. K. Dodd. 2006. Xenobiotic detoxification in the nematode Caenorhabditis elegans. Journal of Experimental Zoology. Part A, Comparative Experimental Biology 305 (9):720–30. doi: 10.1002/jez.a.324.
  • Ludewig, A. H., C. Gimond, J. C. Judkins, S. Thornton, D. C. Pulido, R. J. Micikas, F. Döring, A. Antebi, C. Braendle, and F. C. Schroeder. 2017. Larval crowding accelerates C. elegans development and reduces lifespan. PLoS Genetics 13 (4):e1006717. doi: 10.1371/journal.pgen.1006717.
  • Ma, H., K. A. Lenz, X. Gao, S. Li, and L. K. Wallis. 2019. Comparative toxicity of a food additive TiO2, a bulk TiO2, and a nano-sized P25 to a model organism the nematode C. elegans. Environmental Science and Pollution Research International 26 (4):3556–68. doi: 10.1007/s11356-018-3810-4.
  • Mathew, M. D., N. D. Mathew, and P. R. Ebert. 2012. WormScan: A technique for high-throughput phenotypic analysis of Caenorhabditis elegans. PLoS ONE 7 (3):e33483. doi: 10.1371/journal.pone.0033483.
  • Ma, L.-D., Y.-T. Wang, J.-R. Wang, J.-L. Wu, X.-S. Meng, P. Hu, X. Mu, Q.-L. Liang, and G.-A. Luo. 2018. Design and fabrication of a liver-on-a-chip platform for convenient, highly efficient, and safe in situ perfusion culture of 3D hepatic spheroids. Lab on a Chip 18 (17):2547–62. doi: 10.1039/c8lc00333e.
  • McNamee, P., J. Hibatallah, M. Costabel-Farkas, C. Goebel, D. Araki, E. Dufour, N. J. Hewitt, P. Jones, A. Kirst, B. Le Varlet, et al. 2009. A tiered approach to the use of alternatives to animal testing for the safety assessment of cosmetics: Eye irritation. Regulatory Toxicology and Pharmacology: RTP 54 (2):197–209. doi: 10.1016/j.yrtph.2009.04.004.
  • Merinas-Amo, R., M. Martínez-Jurado, S. Jurado-Güeto, Á. Alonso-Moraga, and T. Merinas-Amo. 2019. Biological Effects of Food Coloring in In Vivo and In Vitro Model Systems. Foods 8 (5):176. doi: 10.3390/foods8050176.
  • Merinas-Amo, T., R. Merinas-Amo, V. García-Zorrilla, A. Velasco-Ruiz, L. Chladek, V. Plachy, M. Del Río-Celestino, R. Font, L. Kokoska, and Á. Alonso-Moraga. 2019. Toxicological Studies of Czech Beers and Their Constituents. Foods 8 (8):328. doi: 10.3390/foods8080328.
  • More, S. J., V. Bampidis, D. Benford, C. Bragard, T. I. Halldorsson, A. F. Hernández‐Jerez, S. Hougaard Bennekou, K. P. Koutsoumanis, K. Machera, H. Naegeli, et al. 2019. Guidance on the use of the Threshold of Toxicological Concern approach in food safety assessment. EFSA Journal 17 (6):e05708. doi: 10.2903/j.efsa.2019.5708.
  • Mourabit, S., J. A. Fitzgerald, R. P. Ellis, A. Takesono, C. S. Porteus, M. Trznadel, J. Metz, M. J. Winter, T. Kudoh, and C. R. Tyler. 2019. New insights into organ-specific oxidative stress mechanisms using a novel biosensor zebrafish. Environment International 133 (Pt A):105138. doi: 10.1016/j.envint.2019.105138.
  • Moyson, S., R. M. Town, K. Vissenberg, and R. Blust. 2019. The effect of metal mixture composition on toxicity to C. elegans at individual and population levels. PLoS One 14 (6):e0218929. doi: 10.1371/journal.pone.0218929.
  • Murugesu, S., A. Khatib, Q. U. Ahmed, Z. Ibrahim, B. F. Uzir, K. Benchoula, N. I. N. Yusoff, V. Perumal, M. F. Alajmi, S. Salamah, et al. 2019. Toxicity study on Clinacanthus nutans leaf hexane fraction using Danio rerio embryos. Toxicology Reports 6:1148–54. doi: 10.1016/j.toxrep.2019.10.020.
  • Muthulakshmi, S., K. Maharajan, H. R. Habibi, K. Kadirvelu, and M. Venkataramana. 2018. Zearalenone induced embryo and neurotoxicity in zebrafish model (Danio rerio): Role of oxidative stress revealed by a multi biomarker study. Chemosphere 198:111–21. doi: 10.1016/j.chemosphere.2018.01.141.
  • Naik, M., P. Brahma, and M. Dixit. 2018. A cost-effective and efficient chick ex-ovo CAM assay protocol to assess angiogenesis. Methods Protoc 1 (2):19. doi: 10.3390/mps1020019.
  • Nihad, A. S. M., R. Deshpande, V. P. Kale, R. R. Bhonde, and S. P. Datar. 2018. Establishment of an in ovo chick embryo yolk sac membrane (YSM) assay for pilot screening of potential angiogenic and anti-angiogenic agents. Cell Biology International 42 (11):1474–83. doi: 10.1002/cbin.11051.
  • Nobrega, A. K., and L. C. de Lyons. 2020. Aging and the clock: Perspective from flies to humans. The European Journal of Neuroscience 51 (1):454–81. doi: 10.1111/ejn.14176.
  • OECD. 2013. OECD Guideline for the testing of chemicals - Fish Embryo Toxicity Test.
  • Oishi, K., S. Higo-Yamamoto, and Y. Yasumoto. 2016. Moderately high doses of the artificial sweetener saccharin potentially induce sleep disorders in mice. Nutrition (Burbank, Los Angeles County, Calif.) 32 (10):1159–61. eng. doi: 10.1016/j.nut.2016.03.013.
  • Panzica-Kelly, J. M., C. X. Zhang, and K. A. Augustine-Rauch. 2015. Optimization and performance assessment of the chorion-off [dechorinated] zebrafish developmental toxicity assay. Toxicological Sciences : An Official Journal of the Society of Toxicology 146 (1):127–34. doi: 10.1093/toxsci/kfv076.
  • Pascussi, J.-M., S. Gerbal-Chaloin, C. Duret, M. Daujat-Chavanieu, M.-J. Vilarem, and P. Maurel. 2008. The tangle of nuclear receptors that controls xenobiotic metabolism and transport: Crosstalk and consequences. Annual Review of Pharmacology and Toxicology 48:1–32. doi: 10.1146/annurev.pharmtox.47.120505.105349.
  • Piechulek, A., L. C. Berwanger, and A. v Mikecz. 2019. Silica nanoparticles disrupt OPT-2/PEP-2-dependent trafficking of nutrient peptides in the intestinal epithelium. Nanotoxicology 13 (8):1133–48. doi: 10.1080/17435390.2019.1643048.
  • Piechulek, A., and A. v Mikecz. 2018. Life span-resolved nanotoxicology enables identification of age-associated neuromuscular vulnerabilities in the nematode Caenorhabditis elegans. Environmental Pollution (Barking, Essex: 1987) 233:1095–103. doi: 10.1016/j.envpol.2017.10.012.
  • Poetini, M. R., S. M. Araujo, M. Trindade de Paula, V. C. Bortolotto, L. B. Meichtry, F. Polet de Almeida, C. R. Jesse, S. N. Kunz, and M. Prigol. 2018. Hesperidin attenuates iron-induced oxidative damage and dopamine depletion in Drosophila melanogaster model of Parkinson's disease. Chemico-Biological Interactions 279:177–86. doi: 10.1016/j.cbi.2017.11.018.
  • Proquin, H., C. Rodríguez-Ibarra, C. G. J. Moonen, I. M. Urrutia Ortega, J. J. Briedé, T. M. de Kok, H. van Loveren, and Y. I. Chirino. 2017. Titanium dioxide food additive (E171) induces ROS formation and genotoxicity: Contribution of micro and nano-sized fractions. Mutagenesis 32 (1):139–49. doi: 10.1093/mutage/gew051.
  • Qin, H., and J. A. Powell-Coffman. 2004. The Caenorhabditis elegans aryl hydrocarbon receptor, AHR-1, regulates neuronal development. Developmental Biology 270 (1):64–75. doi: 10.1016/j.ydbio.2004.02.004.
  • Raies, A. B., and V. B. Bajic. 2018. In silico toxicology: Comprehensive benchmarking of multi-label classification methods applied to chemical toxicity data. Wiley Interdisciplinary Reviews. Computational Molecular Science 8 (3):e1352. doi: 10.1002/wcms.1352.
  • Ramadan, Q., and M. Zourob. 2020. Organ-on-a-chip engineering: Toward bridging the gap between lab and industry. Biomicrofluidics 14 (4):041501. doi: 10.1063/5.0011583.
  • Ribatti, D. 2016. The chick embryo chorioallantoic membrane (CAM). A multifaceted experimental model. Mechanisms of Development 141:70–7. doi: 10.1016/j.mod.2016.05.003.
  • Saleem, M., M. Asif, A. Parveen, H. S. Yaseen, M. Saadullah, A. Bashir, J. Asif, M. Arif, I. U. Khan, and R. U. Khan. 2020. Investigation of in vivo anti-inflammatory and anti-angiogenic attributes of coumarin-rich ethanolic extract of Melilotus indicus. Inflammopharmacology. 29 (1):281–293. doi: 10.1007/s10787-020-00703-9.
  • Sandner, G., A. S. Mueller, X. Zhou, V. Stadlbauer, B. Schwarzinger, C. Schwarzinger, U. Wenzel, K. Maenner, J. D. van der Klis, S. Hirtenlehner, et al. 2020. Ginseng extract ameliorates the negative physiological effects of heat stress by supporting heat shock response and improving intestinal barrier integrity: evidence from studies with heat-stressed caco-2 Cells, C. elegans and growing broilers. Molecules 25 (4):835. doi: 10.3390/molecules25040835.
  • Santbergen, M. J. C., M. van der Zande, A. Gerssen, H. Bouwmeester, and M. W. F. Nielen. 2020. Dynamic in vitro intestinal barrier model coupled to chip-based liquid chromatography mass spectrometry for oral bioavailability studies. Analytical and Bioanalytical Chemistry 412 (5):1111–22. doi: 10.1007/s00216-019-02336-6.
  • Sarasquete, C., M. Úbeda-Manzanaro, and J. B. Ortiz-Delgado. 2018. Toxicity and non-harmful effects of the soya isoflavones, genistein and daidzein, in embryos of the zebrafish, Danio rerio. Comparative Biochemistry and Physiology. Toxicology & Pharmacology: CBP 211:57–67. doi: 10.1016/j.cbpc.2018.05.012.
  • Schifano, E., P. Zinno, B. Guantario, M. Roselli, S. Marcoccia, C. Devirgiliis, and D. Uccelletti. 2019. The foodborne strain lactobacillus fermentum MBC2 triggers pept-1-dependent pro-longevity effects in caenorhabditis elegans. Microorganisms 7 (2):45. doi: 10.3390/microorganisms7020045.
  • Senthilkumar, S., R. Raveendran, S. Madhusoodanan, M. Sundar, S. S. Shankar, S. Sharma, V. Sundararajan, P. Dan, and S. Sheik Mohideen. 2020. Developmental and behavioural toxicity induced by acrylamide exposure and amelioration using phytochemicals in Drosophila melanogaster. Journal of Hazardous Materials 394:122533. doi: 10.1016/j.jhazmat.2020.122533.
  • Smeriglio, A., M. Denaro, D. Barreca, V. D'Angelo, M. P. Germanò, and D. Trombetta. 2018. Polyphenolic profile and biological activities of black carrot crude extract (Daucus carota L. ssp. sativus var. atrorubens Alef.). Fitoterapia 124:49–57. doi: 10.1016/j.fitote.2017.10.006.
  • Souza Anselmo, C., de, Sardela, V. F. Sousa, V. P. de, Pereira. and H. M. G. 2018. Zebrafish (Danio rerio): A valuable tool for predicting the metabolism of xenobiotics in humans? Comparative Biochemistry and Physiology. Toxicology & Pharmacology: CBP 212:34–46. doi: 10.1016/j.cbpc.2018.06.005.
  • Spanier, B., R. Lang, D. Weber, A. Lechner, T. Thoma, M. Rothner, K. Petzold, T. Lang, A. Beusch, M. Bösl, et al. 2019. Bioavailability and biological effects of 2- O-β-d-glucopyranosyl-carboxyatractyligenin from green coffee in caenorhabditis elegans. Journal of Agricultural and Food Chemistry 67 (17):4774–81. doi: 10.1021/acs.jafc.8b06785.
  • Staats, S., K. Lüersen, A. E. Wagner, and G. Rimbach. 2018. Drosophila melanogaster as a versatile model organism in food and nutrition research. Journal of Agricultural and Food Chemistry 66 (15):3737–53. doi: 10.1021/acs.jafc.7b05900.
  • Staats, S., A. E. Wagner, B. Kowalewski, F. T. Rieck, S. T. Soukup, S. E. Kulling, and G. Rimbach. 2018. Dietary resveratrol does not affect life span, body composition, stress response, and longevity-related gene expression in drosophila melanogaster. International Journal of Molecular Sciences 19 (1):223. doi: 10.3390/ijms19010223.
  • Steele, W. B., R. A. Mole, and B. W. Brooks. 2018. Experimental protocol for examining behavioral response profiles in larval fish: application to the neuro-stimulant caffeine. Journal of Visualized Experiments. 137:57938. doi: 10.3791/57938.
  • Stokes, W. S., S. Casati, J. Strickland, and M. Paris. 2008. Neutral red uptake cytotoxicity tests for estimating starting doses for acute oral toxicity tests. Current Protocols in Toxicology Chapter 20:Unit 20.4. eng. doi: 10.1002/0471140856.tx2004s36.
  • Strange, K. 2016. Drug Discovery in Fish, Flies, and Worms. ILAR Journal 57 (2):133–43. doi: 10.1093/ilar/ilw034.
  • Tavakkoli, H., A. Derakhshanfari, J. Moayedi, and A. Poostforoosh Fard. 2020. Utilization of a chicken embryo membrane model for evaluation of embryonic vascular toxicity of Dorema ammoniacum. Journal of Phynomedicine 10 (2):152–160.
  • Tayemeh, M. B., M. R. Kalbassi, H. Paknejad, and H. S. Joo. 2020. Dietary nanoencapsulated quercetin homeostated transcription of redox-status orchestrating genes in zebrafish (Danio rerio) exposed to silver nanoparticles. Environmental Research 185:109477eng. doi: 10.1016/j.envres.2020.109477.
  • Thiel, C., S. Schneckener, M. Krauss, A. Ghallab, U. Hofmann, T. Kanacher, S. Zellmer, R. Gebhardt, J. G. Hengstler, and L. Kuepfer. 2015. A systematic evaluation of the use of physiologically based pharmacokinetic modeling for cross-species extrapolation. Journal of Pharmaceutical Sciences 104 (1):191–206. eng. doi: 10.1002/jps.24214.
  • Vingskes, A. K., and N. Spann. 2018. The toxicity of a mixture of two antiseptics, triclosan and triclocarban, on reproduction and growth of the nematode Caenorhabditis elegans. Ecotoxicology (London, England) 27 (4):420–9. eng. doi: 10.1007/s10646-018-1905-9.
  • Wang, J., N. Deng, H. Wang, T. Li, L. Chen, B. Zheng, and R. H. Liu. 2020. Effects of Orange Extracts on Longevity, Healthspan, and Stress Resistance in Caenorhabditis elegans. Molecules 25 (2):351. eng. doi: 10.3390/molecules25020351.
  • Wang, G., J. Liang, L.-R. Gao, Z.-P. Si, X.-T. Zhang, G. Liang, Y. Yan, K. Li, X. Cheng, Y. Bao, et al. 2018. Baicalin administration attenuates hyperglycemia-induced malformation of cardiovascular system. Cell Death & Disease 9 (2):234. eng. doi: 10.1038/s41419-018-0318-2.
  • Wittkowski, P., P. Marx-Stoelting, N. Violet, V. Fetz, F. Schwarz, M. Oelgeschläger, G. Schönfelder, and S. Vogl. 2019. Caenorhabditis elegans As a Promising Alternative Model for Environmental Chemical Mixture Effect Assessment-A Comparative Study. Environmental Science & Technology 53 (21):12725–33. eng. doi: 10.1021/acs.est.9b03266.
  • World Health Organization. 2009. Principles and Methods for the Risk Assessment of Chemicals in Food, 788. Geneva: World Health Organization. (Environmental Health Criteria). ISBN: 9789241572408. http://gbv.eblib.com/patron/FullRecord.aspx?p=760420.
  • Wu, Q., J. Liu, X. Wang, L. Feng, J. Wu, X. Zhu, W. Wen, and X. Gong. 2020. Organ-on-a-chip: Recent breakthroughs and future prospects. Biomedical Engineering Online 19 (1):9. doi: 10.1186/s12938-020-0752-0.
  • Xia, Q., L. Wei, Y. Zhang, H. Kong, Y. Shi, X. Wang, X. Chen, L. Han, and K. Liu. 2018. Psoralen Induces Developmental Toxicity in Zebrafish Embryos/Larvae Through Oxidative Stress, Apoptosis, and Energy Metabolism Disorder. Frontiers in Pharmacology 9:1457. doi: 10.3389/fphar.2018.01457.
  • Xue, D., Y. Wang, J. Zhang, D. Mei, Y. Wang, and S. Chen. 2018. Projection-Based 3D Printing of Cell Patterning Scaffolds with Multiscale Channels. ACS Applied Materials & Interfaces 10 (23):19428–35. doi: 10.1021/acsami.8b03867.
  • Yin, L., G. Du, B. Zhang, H. Zhang, R. Yin, W. Zhang, and S.-M. Yang. 2020. Efficient Drug Screening and Nephrotoxicity Assessment on Co-culture Microfluidic Kidney Chip. Scientific Reports 10 (1):6568. doi: 10.1038/s41598-020-63096-3.
  • Yin, F., Y. Zhu, M. Zhang, H. Yu, W. Chen, and J. Qin. 2019. A 3D human placenta-on-a-chip model to probe nanoparticle exposure at the placental barrier. Toxicology in Vitro: An International Journal Published in Association with BIBRA 54:105–13. doi: 10.1016/j.tiv.2018.08.014.
  • Younes, M., P. Aggett, F. Aguilar, R. Crebelli, B. Dusemund, M. Filipič, M. J. Frutos, P. Galtier, D. Gott, U. Gundert‐Remy, et al. 2018a. Evaluation of four new studies on the potential toxicity of titanium dioxide used as a food additive (E 171. EFSA Journal 16 (7):16. doi: 10.2903/j.efsa.2018.5366.
  • Younes, M., P. Aggett, F. Aguilar, R. Crebelli, B. Dusemund, M. Filipič, M. J. Frutos, P. Galtier, D. Gott, U. Gundert‐Remy, et al. 2018b. Re‐evaluation of silicon dioxide (E 551) as a food additive. EFSA Journal 16 (1):5088. doi: 10.2903/j.efsa.2018.5088.
  • Zabihihesari, A., A. J. Hilliker, and P. Rezai. 2019. Fly-on-a-Chip: Microfluidics for Drosophila melanogaster Studies. IntIntegrative Biology : Quantitative Biosciences from Nano to Macro 11 (12):425–43. eng. doi: 10.1093/intbio/zyz037.
  • Zenki, K. C., L. d Souza, A. M. Góis, B. D. S. Lima, AAdS. Araújo, J. S. Vieira, E. A. Camargo, E. Kalinine, D. d Oliveira, and C. I. B. Walker. 2020. Coriandrum sativum extract prevents alarm substance-induced fear- and anxiety-like responses in adult zebrafish. Zebrafish 17 (2):120–30. eng. doi: 10.1089/zeb.2019.1805.
  • Zhang, D., L. Gong, S. Ding, Y. Tian, C. Jia, D. Liu, M. Han, X. Cheng, D. Sun, P. Cai, et al. 2020. FRCD: A comprehensive food risk component database with molecular scaffold, chemical diversity, toxicity, and biodegradability analysis. Food Chemistry 318:126470. Epub 2020 Feb 24. eng. doi: 10.1016/j.foodchem.2020.126470.
  • Zhang, M., C. Xu, L. Jiang, and J. Qin. 2018. A 3D human lung-on-a-chip model for nanotoxicity testing. Toxicology Research 7 (6):1048–60. doi: 10.1039/c8tx00156a.
  • Zhang, M., X. Yang, W. Xu, X. Cai, M. Wang, Y. Xu, P. Yu, J. Zhang, Y. Zheng, J. Chen, et al. 2019. Evaluation of the effects of three sulfa sweeteners on the lifespan and intestinal fat deposition in C. elegans. Food Research International (Ottawa, Ont.) 122:66–76. doi: 10.1016/j.foodres.2019.03.028.
  • Zhao, X., S. Shan, J. Li, L. Cao, J. Lv, and M. Tan. 2019. Assessment of potential toxicity of foodborne fluorescent nanoparticles from roasted pork. Nanotoxicology 13 (10):1310–23. doi: 10.1080/17435390.2019.1652943.
  • Zink, D., J. K. C. Chuah, and J. Y. Ying. 2020. Assessing Toxicity with Human Cell-Based In Vitro Methods. Trends in Molecular Medicine 26 (6):570–82. doi: 10.1016/j.molmed.2020.01.008.