3,457
Views
13
CrossRef citations to date
0
Altmetric
Original Article

Antidiabetic (α-amylase and α-glucosidase) and anti-obesity (lipase) inhibitory activities of edible cassava (Manihot esculenta Crantz) as measured by in vitro gastrointestinal digestion: effects of phenolics and harvested time

ORCID Icon, ORCID Icon & ORCID Icon
Pages 492-508 | Received 05 Nov 2021, Accepted 02 Mar 2022, Published online: 15 Mar 2022

References

  • Grochowski, D. M.; Uysal, S.; Aktumsek, A.; Granica, S.; Zengin, G.; Ceylan, R.; Locatelli, M.; Tomczyk, M. In Vitro Enzyme Inhibitory Properties, Antioxidant Activities, and Phytochemical Profile of Otentilla Thuringiaca. Phytochem. Lett. 2017. DOI: 10.1016/j.phytol.2017.03.005.
  • WHO, World Health Organization. Global Report on Diabetes. http://apps.who.int/iris/bitstream/10665/204871/1/9789241565257_eng.pdf,2016 ( accessed 2020).
  • Burton-Freeman, B. M.; Sandhu, A. K.; Edirisinghe, I. Red Raspberries and Their Bioactive Polyphenols: Cardiometabolic and Neuronal Health Links 1,2. Am. Soc. Nutri. Adv. Nutr. 2016, 7, 44–65.
  • Ozer, B.; Kirkan, M. S.; Sarikurkcu, C.; Cengiz, M.; Ceylan, O.; Atılgan, N.; Tepe, B. Onosma Heterophyllum: Phenolic Composition, Enzyme Inhibitory and Antioxidant Activities. Ind. Crops. Produ. 2018, 111, 179–184. DOI: 10.1016/j.indcrop.2017.10.026.
  • Shamloo, M.; Peter, J. H.; Eck, P. Inhibition of Intestinal Cellular Glucose Uptake by Phenolics Extracted from Whole Wheat Grown at Different Locations. J. Nutri. Metabol. 2018. Article ID 5421714. doi:10.1155/2018/5421714.
  • Liu, Q.; Hu, H. J.; Li, P. F.; Yang, Y.-B.; Wu, L.-H.; Chou, G.-X.; Wang, Z.-T. Diterpenoids and Phenylethanoid Glycosides from the Roots of Clerodendrum Bungei and Their Inhibitory Effects against Angiotensin Converting Enzyme and α-glucosidase. Phytochem. 2014, 103, 196–202. DOI: 10.1016/j.phytochem.2014.02.015.
  • Rienks, J.; Barbaresko, J.; Oluwagbemigun, K., Schmid, M.; Nöthlings, U. Polyphenol Exposure and Risk of Type 2 Diabetes: Dose-response Meta-analyses and Systematic Review of Prospective Cohort Studies. Am. J. Clin. Nutri. 2018, 108, 1–13.
  • Kim, B.; Woo, S.; Kim, M.-J.; Kwon, S.-W.; Lee, J.; Sung, S. H.; Koh, H.-J. Identification and Quantification of Flavonoids in Yellow Grain Mutant of Rice (Oyza Sativa L). Food Chem. 2018, 241, 154–162. DOI: 10.1016/j.foodchem.2017.08.089.
  • Yang, M.-L.; Lu, C.; Fan, Z.-F.; Zhao, T.-R.; Cheng, -G.-G.; Wang, Y.-D.; Cao, J.-X.; Liu, Y.-P. Hypoglycemic and Hypolipidemic Effects of Epigynum Auritum in High Fat Diet and Streptozotocin-induced Diabetic Rats. J. Ethnopharmacol. 2022, 288, 114986. DOI: 10.1016/j.jep.2022.114986.
  • Fernández-Quintela, A.; Milton-Laskibar, I., Aguirre, L. Effects of Quercetin on Mitochondriogenesis in Skeletal Muscle: Consequences for Physical Endurance and Glycemic Control. Int. Nutr. Skel. Musc. 2019, 505–516.
  • Balamurugan, T.; Anbuselvi, S. Physicochemical Characteristics of Manihot Esculenta Plant and Its Waste. J. Chem. Pharma Res. 2013, 5(2), 258–260.
  • Saad, R.; Appalasamy, L.; Khan, J.; Kazi, H.; Yusuf, E.; Asmani, F. Phytochemical Screening and Antibacterial Activity of Five Malaysian Medicinal Plants. Brit. J. Pharma Res. 2014, 4(17), 2019–2032.
  • Koubala, B. B.; Laya, A., Massai, H.; Kouninki H.; Nukenine, E.N. Physico-chemical Characterization Leaves from Five Genotypes of Cassava (Manihot Esculenta Crantz) Consumed in the Far North Region (Cameroon). Am J. Food Sci. Technol. 2015, 3(2), 40–47.
  • Oresegun, A.; Fagbenro, O. A.; Ilona, P.; Bernard, E. Nutritional and Anti-nutritional Composition of Cassava Leaf Protein Concentrate from Six Cassava Varieties for Use in Aqua Feed. Cog. Food. Agri. 2016, 2, 1147323.
  • Chandrika, U. G.; Svenberg, U.; Jansz, E. R. Content and in Vitro Accessibility of β-carotene from Cooked Sri Lankan Green Vegetables and Their Estimated Contribution to Vitamin A Requirement. J. Sci. Food. Agri. 2006, 86, 54–61. DOI: 10.1002/jsfa.2307.
  • Chandrika, R.; Sarawasthi, K. J. T.; Shivakameshwari, M. N. Phonological Events of Eryngium Foetidum L. From Karnataka, India. Int. J. Plant Reprod. Biol. 2013, 5(1), 89–91.
  • Shahidi, F.; Yeo, J. D. Insoluble-bound Phenolics in Food. Molecules. 2016, 21, 1216–1237. DOI: 10.3390/molecules21091216.
  • Laddomada, B.; Durante, M.; Minervini,; Minervini, F.; Garbetta, A.; Cardinali, A.; D’Antuono, I.; Caretto, S.; Blanco, A.; Mita, G., et al. Phytochemical Characterization and Anti-inflammatory Activity of Extracts from the Whole-meal Flour of Italian Durum Wheat Cultivars. Int. J. Mol Sci. 2015, 16, 3512–3527. DOI: 10.3390/ijms16023512.
  • Giordano, D. B. T.; Gagliardi, F.; Blandino, M. Influence of Agricultural Management on Phytochemicals of Colored Corn Genotypes (Zea Mays L.)-Part II: Sowing Time. J. Agri. Food Chem. 2018. DOI: 10.1021/acs.jafc.8b00326.
  • IITA. Pre-emptive Management of the Virulent Cassava Mosaic Disease in Nigeria. Annual report. Ibadan, Nigeria, 2005.
  • Chen, G.-L.; Zhang, X.; Chen, S.-G.; Han, M.-D.; Gao, Y.-Q. Antioxidant Activities and Contents of Free, Esterified and Insoluble-bound Phenolics in 14 Subtropical Fruit Leaves Collected from the South of China. J. Fun Foods. 2017, 30, 290–302. DOI: 10.1016/j.jff.2017.01.011.
  • Laya, A., and Koubala, B. B. Polyphenols in Cassava Leaves (Manihot Esculenta Crantz) and Their Stability in Antioxidant Potential after in Vitro Gastrointestinal Digestion. Heliyon. 2020, 6(3), e03567. DOI: 10.1016/j.heliyon.2020.e03567.
  • Ydjedd, S.; Bouriche, S.; López-Nicolás, R.; Sánchez-Moya, T.; Frontela-Saseta, C.; Ros-Berruezo, G.; Rezgui, F.; Hayette Louaileche, H.; Kati, D-E. Effect of in Vitro Gastrointestinal Digestion on Encapsulated and Nonencapsulated Phenolic Compounds of Carob (Ceratonia Silique L.) Pulp Extracts and Their Antioxidant Capacity. J. Agric. Food Chem. 2017, 1–9. DOI:10.1021/acs.jafc.6b05545.
  • Xiong, L.; Yang, J.; Jiang, Y.; Lu, B.; Hu, Y.; Zhou, F.; Mao, S.; Shen, C. Phenolic Compounds and Antioxidant Capacities of 10 Common Edible Flowers from China. J. Food Sci. 2011, 79(4), C517–C525.
  • Gaytan-Martínez, M.; Cabrera-Ramírez, A. H.; Morales-Sanchez, E.; Ramírez-Jiménez, A. K.; Cruz-Ramírez, J.; Campos-Vega, R.; Velazquez, G.; Loarca-Piña, G.; Mendoza, S. Effect of Nixtamalization Process on the Content and Composition of Phenolic Compounds and Antioxidant Activity of Two Sorghums Varieties. J. Cer. Sci. 2017, 77, 1–8. DOI: 10.1016/j.jcs.2017.06.014.
  • Zhang, L.; Hogan, S.; Li, J.; Sun, S.; Canning, C.; Zheng, S. J.; Zhou, K. Grape Skin Extract Inhibits Mammalian Intestinal A-glucosidase Activity and Suppresses Postprandial Glycemic Response in Streptozocin-treated Mice. Food Chem. 2011, 126, 466–471. DOI: 10.1016/j.foodchem.2010.11.016.
  • Tan, Y.; Chang, S. K. C.; Zhang, Y. Comparison of α-amylase, α-glucosidase and Lipase Inhibitory Activity of the Phenolic Substances in Two Black Legumes of Different Genera. Food Chem. 2017, 214, 259–268. DOI: 10.1016/j.foodchem.2016.06.100.
  • Yang, X.-J.; Dang, B.; Fan, M.-T. Free and Bound Phenolic Compound Content and Antioxidant Activity of Different Cultivated Blue Highland Barley Varieties from the Qinghai-Tibet Plateau. Molecules. 2018, 23, 872–879. Syst. Ecol. 2003;31, 3–16.
  • Bhandari, S. R.; Kwak, J.-H. Seasonal Variation in Phytochemicals and Antioxidant in Different Tissues of Various Broccoli Cultivars. Afr. J. Biotechnol. 2014, 13(4), 604–615. DOI: 10.5897/AJB2013.13432.
  • Williamson, G.; Clifford, M. N. Clifford, Role of the Small Intestine, Colon and Microbiota in Determining the Metabolic Fate of Polyphenols. Biochem. Pharma. 2017, 34, 65–73.
  • Ossipov, V.; Salminen, J.-P., Ossipova, S.; Haukioja, E.; Pihlaja, K. Gallic Acid and Hydrolysable Tannins are Formed in Birch Leaves from an Intermediate Compound of the Shikimate Pathway. Biochem Syst. Ecol, 2003, 31, 3–16.
  • Alminger, M.; Aura, A-M.; Bohn, T.; Dufour, S N E.; Gomes, A.; Karakaya, S.; Martínez-Cuesta, M C.; McDougall, G J.; Requena, T.; Santos, CN. In Vitro Models for Studying Secondary Plant Metabolite Digestion and Bioaccessibility.13. Compreh Rev.Food Sci. Food Saf. 2014, 43, 23–30.
  • Gouvea, D. R.; Gobbo-Neto, L.; Sakamoto,; Sakamoto, H. T.; Lopes, N. P.; Lopes, J. L. C.; Meloni, F.; Amaral, J. G. Seasonal Variation of the Major Secondary Metabolites Present in the Extract of Erementhus Mattogrossensis Less (Astreraceae: Vernonieae) Leaves. Quim. Nova. 2012, 35, 2139–2145. DOI: 10.1590/S0100-40422012001100007.
  • Ernst, W. H.; Kuiters, A. T.; Nelissen,; Nelissen, H. J. M.; Tolsma, D. J. Seasonal Variation in Phenolics in Several Tree Species in Botswana. Acta Bot. Neerl. 1991, 40, 63–74. DOI: 10.1111/j.1438-8677.1991.tb01514.x.
  • Anttonen, M. J.; Hoppula, K. I.; Nestby, R.; Verheul, M. J.; Karjalainen, R. O. Influence of Fertilization, Mulch Color, Early Forcing, Fruit Order, Planting Date, Shading, Growing Environment, and Genotype on the Contents of Selected Phenolics in Strawberry (Fragaria×ananassafragaria × Ananassa Duch.) Fruits. J. Agric. Food Chem. 2006, 54, 2614–2620. DOI: 10.1021/jf052947w.
  • Jaakola, L.; Määttä-Riihinen, K.; Kärenlampi, S.; Hohtola, A. Activation of Flavonoid Biosynthesis by Solar Radiation in Bilberry (Vaccinium Myrtillus L.) Leaves. Planta. 2004, 218, 721–728. DOI: 10.1007/s00425-003-1161-x.
  • Bujor, O. C.; Giniès, C.; Popa,; Popa, V. I.; Dufour, C. Phenolic Compounds and Antioxidant Activity of Lingonberry (Vaccinium Vitis-idaea L.) Leaf, Stem and Fruit at Different Harvest Periods. Food Chem. 2018. DOI: 10.1016/j.foodchem.2018.01.052.
  • Khanam, U. K. S.; Oba, S.; Yanase, E.; Murakami, Y. Phenolic Acids, Flavonoids and Total Antioxidant Capacity of Selected Leafy Vegetables. J. Funct Foods. 2012, 4(4), 979–987.
  • Gonzales, G. B.; Smagghe, G.; Grootaert, C.; Zotti, M.; Raes, K.; Camp, J. V. Flavonoid Interactions during Digestion, Absorption, Distribution and Metabolism: A Sequential Structure–activity/property Relationship-based Approach in the Study of Bioavailability and Bioactivity. Drug Metabol. Rev. 2015, 47(2), 175–190.
  • Bouayed, J.; Hoffmann, L.; Torsten, B. Total Phenolics, Flavonoids, Anthocyanins and Antioxidant Activity following Simulated Gastro-intestinal Digestion and Dialysis of Apple Varieties: Bioaccessibility and Potential Uptake. Food Chem. 2012, 128, 14–21. DOI: 10.1016/j.foodchem.2011.02.052.
  • McDougall, G. J.; Kulkarni, N. N.; Stewart, D. Current Developments on the Inhibitory Effects of Berry Polyphenols on Digestive Enzymes. Bio Fact. 2008, 34(1), 73–80.
  • Adewole, S. O.; Caxton-Martins, E. A.; Ojewole, J. A. Protective Effect of Quercetin on the Morphology of Pancreatic β-cells of Streptozotocin-treated Diabetic Rats. Afr. J. Tradit. Complement. Altern. Med. 2007, 4(1), 64–74. DOI: 10.4314/ajtcam.v4i1.31196.
  • Soltesova-Prnova, M.; Milackova, I.; Stefek, M. 3′-O-(3-Chloropivaloyl) Quercetin, α-glucosidase Inhibitor with Multi-targeted Therapeutic Potential in Relation to Diabetic Complications. Chem. Pap. 2016, 70(11), 1439–1444. DOI: 10.1515/chempap-2016-0078.
  • Kwon, Y.-I.; Apostolidis, E.; Shetty, K. Evaluation of Pepper (Capsicum Annuum) for Management of Diabetes and Hypertension. J. Food Biochem. 2007, 31(3), 370–385. DOI: 10.1111/j.1745-4514.2007.00120.x.
  • Oboh, G.; Agunloye, O. M.; Adefegha, S. A., Akinyemi A. J., Ademiluyi A. O. Caffeic and Chlorogenic Acids Inhibit Key Enzymes Linked to Type 2 Diabetes (In Vitro): A Comparative Study. J. Basic Clin. Physiol. Pharma. 2015, 26(2), 165–170.
  • Rosicka-Kaczmarek, J. Polifenole jako naturalne antyoksydanty w_ zywnos´ci,”. Przeg Piek. Cuk. 2004, 6, 12–16.
  • Eldaim, M. A. A.; Elrasoul, A. S. A.; Elaziz, S. A. A. Moringa Oleifera Leaves Aqueous Extract Ameliorates Hepatotoxicity in Alloxan- Induced Diabetic Rats. Biochem. Cell Biol. 2017, 95(4), 524–530. DOI: 10.1139/bcb-2016-0256.
  • De Pradhan, I.; Dutta, M.; Choudhur, K.; De, B. Metabolic Diversity and in Vitro Pancreatic Lipase Inhibition Activity of Some Varieties of Mangifera Indica L. Fruits. Int. J. Food Prop. 20 2017, S3, S3212–S3223. DOI: 10.1080/10942912.2017.1357041.
  • Amina, M. D.; Attakpa, S. E.; Machioud, S. M.; Félix, G.; Rodrigue, A.; Abdou Madjid, A.; Latifou, L.; Lamine, B.-M.; Seri, B.; Akhtar Khan, N., et al. Molecular Mechanisms of Hypoglycemic and Antioxidative Effects of Phyllanthus Amarus on Streptozotocin-Induced Diabetic Rats. J. Endocrinol. Diab. 2018, 5(4), 1–16. DOI: 10.15226/2374-6890/5/4/01112.
  • Liang, L.; Wu, X.; Zhao, T.; Zhao, J.; Li, F.; Zou, Y.; Mao, G.; Yang, L. In Vitro Bioaccessibility and Antioxidant Activity of Anthocyanins from Mulberry (Morus Atropurpurea Roxb.) Following Simulated Gastrointestinal Digestion. Food Res. Inter. 2012, 46, 76–82. DOI: 10.1016/j.foodres.2011.11.024.