2,887
Views
7
CrossRef citations to date
0
Altmetric
Articles

Structural prope rties, functional evaluation, and in vitro protein digestibility of black and yellow quinoa (Chenopodium petiolare) protein isolates

Propiedades estructurales, evaluación funcional y digestibilidad proteica in- vitro de aislados de quinoa negra y amarilla (Chenopodium petiolare)

, , &
Pages 864-872 | Received 12 Jun 2019, Accepted 11 Sep 2019, Published online: 18 Oct 2019

References

  • AACCI. (2000). Approved methods of the AACC (10th ed.). A. A. Of & C. Chemists Eds., St. Paul, MN: American Association of Cereal Chemists International.
  • Abugoch James, L. E. (2009). Chapter 1. Quinoa (Chenopodium quinoa Willd.): Composition, chemistry, nutritional, and functional properties. Advances in Food and Nutrition Research, 58, 1–31. doi:10.1016/S1043-4526(09)58001-1
  • Abugoch, L. E., Romero, N., Tapia, C. A., Silva, J., & Rivera, M. (2008). Study of some physicochemical and functional properties of quinoa (Chenopodium quinoa Willd) protein isolates. Journal of Agricultural and Food Chemistry, 56(12), 4745–4750. doi:10.1021/jf703689u
  • Alonso-Miravalles, L., & O’Mahony, J. A. (2018). Composition, protein profile and rheological properties of pseudocereal-based protein-rich ingredients. Foods (Basel, Switzerland), 7(5), 73. doi:10.3390/foods7050073
  • Aluko, R. E., & Monu, E. (2003). Functional and bioactive properties of quinoa seed protein hydrolysates. Journal of Food Science, 68(4), 1254–1258. doi:10.1111/j.1365-2621.2003.tb09635.x
  • Alvarez-Jubete, L., Arendt, E. K., & Gallagher, E. (2010). Nutritive value of pseudocereals and their increasing use as functional gluten-free ingredients. Trends in Food Science & Technology, 21, 106–113. doi:10.1016/j.tifs.2009.10.014
  • AOAC. (1992). Association of official analytical chemists. Official methods 962.09, 978.02, 925.10, 923.03. Crude fiber determination, total nitrogen content, moisture content, ash content. Washington, DC: Association of Official Analytical Chemists.
  • AOCS. (2006). Official and tentative methods of the American Oil Chemists Society. American Oil Chemist’s Society (AOCS).Urbana, IL, EU.
  • Arzapalo Quinto, D., Huamán Cóndor, K., Quispe Solano, M., & Espinoza Silva, C. (2015). Extracción y caracterización del almidón de tres variedades de quinua (Chenopodium quinoa Willd) negra collana, pasankalla roja y blanca junín. Revista De La Sociedad Química Del Perú, 81(1), 44–54.
  • Avila Ruiz, G., Xiao, W., van Boekel, M., Minor, M., & Stieger, M. (2016). Effect of extraction pH on heat-induced aggregation, gelation and microstructure of protein isolate from quinoa (Chenopodium quinoa Willd). Food Chemistry, 209, 203–210. doi:10.1016/j.foodchem.2016.04.052
  • Avilés‐Gaxiola, S., Chuck‐Hernández, C., & Serna Saldívar, S. O. (2018). Inactivation methods of trypsin inhibitor in legumes: A review. Journal of Food Science, 83(1), 17–29. doi:10.1111/1750-3841.13985
  • Berti, C., Ballabio, C., Restani, P., Porrini, M., Bonomi, F., & Iametti, S. (2004). Immunochemical and molecular properties of proteins in Chenopodium quinoa. Cereal Chemistry, 81(2), 275–277. doi:10.1094/CCHEM.2004.81.2.275
  • Brinegar, C., & Goundan, S. (1993). Isolation and characterization of chenopodin, the 11S seed storage protein of quinoa (Chenopodium quinoa). Journal of Agricultural and Food Chemistry, 41, 182–185. doi:10.1021/jf00026a006
  • Chauhan, G. S., Cui, W., & Eskin, N. A. M. (1999). Effect of saponin on the surface properties of quinoa proteins. International Journal of Food Properties, 2(1), 13–22. doi:10.1080/10942919909524586
  • Chuck-Hernández, C., & Ozuna, C. (2019). Protein isolates from meat processing by-products. In C. Galanakis (Ed.), Proteins: Sustainable sources, processing and applications (1st ed., pp. 131–162). United Kingdom: Academic Press. doi: 10.1016/B978-0-12-816695-6.00005-2.
  • D’Amico, S., Schoenlechner, R., Tömösköszi, S., & Langó, B. (2017). Proteins and amino acids of kernels. In C. M. Haros & R. Schoenlechner (Eds.), Pseudocereals: Chemistry and Technology (1st ed., pp. 94–116). Oxford, UK: John Wiley & Sons, Ltd.
  • de Jongh, H. H. J., & Broersen, K. (2012). Application potential of food protein modification. In Z. Nawaz & S. Naveed (Eds.), Advances in chemical engineering (pp. 584). London, UK: Intech Open.
  • Di Renzo, T., Reale, A., Boscaino, F., & Messia, M. C. (2018). Flavoring production in kamut®, quinoa and wheat doughs fermented by Lactobacillus paracasei, Lactobacillus plantarum, and Lactobacillus brevis: A SPME-GC/MS study. Frontiers in Microbiology, 9, 429. doi: 10.3389/fmicb.2018.00429.
  • Drzewiecki, J., Delgado-Licon, E., Haruenkit, R., Pawelzik, E., Martin-Belloso, O., Park, Y.-S., … Gorinstein, S. (2003). Identification and differences of total proteins and their soluble fractions in some pseudocereals based on electrophoretic patterns. Journal of Agricultural and Food Chemistry, 51(26), 7798–7804. doi:10.1021/jf030322x
  • Elsohaimy, S. A., Refaay, T. M., & Zaytoun, M. A. M. (2015). Physicochemical and functional properties of quinoa protein isolate. Annals of Agricultural Science, 60(2), 297–305. doi:10.1016/j.aoas.2015.10.007
  • Föste, M., Elgeti, D., Brunner, A.-K., Jekle, M., & Becker, T. (2015). Isolation of quinoa protein by milling fractionation and solvent extraction. Food and Bioproducts Processing, 96, 20–26. doi:10.1016/J.FBP.2015.06.003
  • García-Salcedo, Á. J., Torres-Vargas, O. L., & Ariza-Calderón, H. (2018). Physical-chemical characterization of quinoa (Chenopodium quinoa Willd.), amaranth (Amaranthus caudatus L.), and chia (Salvia hispanica L.) flours and seeds. Acta Agronómica, 67, 215–222. doi:10.15446/acag.v67n2.63666
  • Guerreo-Ochoa, M. R., Pedreschi, R., & Chirinos, R. (2015). Optimised methodology for the extraction of protein from quinoa (Chenopodium quinoa Willd.). International Journal of Food Science and Technology, 50, 1815–1822. doi:10.1111/ijfs.12834
  • Jancurová, M., Minarovicová, L., & Dandár, A. (2009). Quinoa- A review. Czech Journal of Food Science, 27(2), 71–79. doi:10.17221/32/2008-CJFS
  • Krimm, S., & Bandekar, J. (1986). Vibrational spectroscopy and conformation of peptides, polypeptides, and proteins. Advances in Protein Chemistry, 38, 181–364. doi:10.1016/S0065-3233(08)60528-8
  • L’hocine, L., Boye, J. I., & Arcand, Y. (2006). Composition and functional properties of soy protein isolates prepared using alternative defatting and extraction procedures. Journal of Food Science, 71(3), C137–C145. doi:10.1111/j.1365-2621.2006.tb15609.x
  • Lam, R. S. H., & Nickerson, M. T. (2013). Food proteins: A review on their emulsifying properties using a structure-function approach. Food Chemistry, 141(2), 975–984. doi:10.1016/j.foodchem.2013.04.038
  • López, D. N., Galante, M., Robson, M., Boeris, V., & Spelzini, D. (2018). Amaranth, quinoa and chia protein isolates: Physicochemical and structural properties. International Journal of Biological Macromolecules, 109, 152–159. doi:10.1016/J.IJBIOMAC.2017.12.080
  • Mäkinen, O. E., Zannini, E., Koehler, P., & Arendt, E. K. (2016). Heat-denaturation and aggregation of quinoa (Chenopodium quinoa) globulins as affected by the pH value. Food Chemistry, 196, 17–24. doi:10.1016/J.FOODCHEM.2015.08.069
  • Moure, A., Sineiro, J., Domínguez, H., & Parajó, J. C. (2006). Functionality of oilseed protein products: A review. Food Research International, 39, 945–963. doi:10.1016/j.foodres.2006.07.002
  • Nascimento, A. C., Mota, C., Coelho, I., Gueifão, S., Santos, M., Matos, A. S., … Castanheira, I. (2014). Characterisation of nutrient profile of quinoa (Chenopodium quinoa), amaranth (Amaranthus caudatus), and purple corn (Zea mays L.) consumed in the North of Argentina: Proximates, minerals and trace elements. Food Chemistry, 148, 420–426. doi:10.1016/j.foodchem.2013.09.155
  • Nasir Adnan, M., Pasha, I., Sadiq Butt, M., & Nawaz, H. (2015). Biochemical characterization of quinoa with special reference to its protein quality. Pakistan Journal of Agricuturural Sciences, 52(3), 731–737.
  • Ochoa-Rivas, A., Nava-Valdez, Y., Serna-Saldívar, S. O., & Chuck-Hernández, C. (2017). Microwave and ultrasound to enhance protein extraction from peanut flour under alkaline conditions: Effects in yield and functional properties of protein isolates. Food and Bioprocess Technology, 10(3), 543–555. doi:10.1007/s11947-016-1838-3
  • Ogungbenle, H. N. (2003). Nutritional evaluation and functional properties of quinoa (Chenopodium quinoa) flour. International Journal of Food Sciences and Nutrition, 54(2), 153–158. doi:10.1080/0963748031000084106
  • Paucar-Menacho, L. M., Dueñas, M., Peñas, E., Frias, J., & Martínez-Villaluenga, C. (2018). Effect of dry heat puffing on nutritional composition, fatty acid, amino acid and phenolic profiles of pseudocereals grains. Polish Journal of Food and Nutrition Sciences, 68(4), 289–297. doi:10.1515/pjfns-2018-0005
  • Repo-Carrasco, R., Espinoza, C., & Jacobsen, S. E. (2003). Nutritional value and use of the Andean crops quinoa (Chenopodium quinoa) and kañiwa (Chenopodium pallidicaule). Food Reviews International, 19(1–2), 179–189. doi:10.1081/FRI-120018884
  • Repo-Carrasco-Valencia, R. A.-M., & Serna, L. A. (2011). Quinoa (Chenopodium quinoa Willd.) as a source of dietary fiber and other functional components. Ciência Y Tecnologia Alimentaria Campinas, 31(1), 225–230. doi:10.1590/S0101-20612011000100035
  • Richter, C. K., Skulas-Ray, A. C., Champagne, C. M., & Kris-Etherton, P. M. (2015). Plant protein and animal proteins: Do they differentially affect cardiovascular disease risk? Advances in Nutrition (bethesda, Md.), 6(6), 712–728. doi:10.3945/an.115.009654
  • Ruales, J., & Nair, B. M. (1994). Effect of processing on in vitro digestibility of protein and starch in quinoa seeds. International Journal of Food Science & Technology, 29(4), 449–456. doi:10.1111/j.1365-2621.1994.tb02086.x
  • Ruiz, G. A., Opazo-Navarrete, M., Meurs, M., Minor, M., Sala, G., van Boekel, M., … Janssen, A. E. M. (2016). Denaturation and in vitro gastric digestion of heat-treated quinoa protein isolates obtained at various extraction pH. Food Biophysics, 11(2), 184–197. doi:10.1007/s11483-016-9429-4
  • Salinas-Valdés, A., De la Rosa Millán, J., Serna-Saldivar, S. O., & Chuck-Hernández, C. (2015). Yield and textural characteristics of Panela cheeses produced with dairy-vegetable protein (soybean or peanut) blends supplemented with transglutaminase. Journal of Food Science, 80(12), S2950–S2956. doi:10.1111/1750-3841.13126
  • Sánchez-Reséndiz, A., Rodríguez-Barrientos, S., Rodríguez-Rodríguez, J., Barba-Dávila, B., Serna-Saldívar, S. O., & Chuck-Hernández, C. (2018). Phosphoesterification of soybean and peanut proteins with sodium trimetaphosphate (STMP): Changes in structure to improve functionality for food applications. Food Chemistry, 260. doi:10.1016/j.foodchem.2018.04.009
  • Sant’Ana, R. D. C. O., Mendes, F. Q., Pires, C. V., & Oliveira, M. G. D. A. (2011). Influence of lipid extraction from different protein sources on in vitro digestibility. Ciência E Agrotecnologia, 35(4), 758–764. doi:10.1590/S1413-70542011000400015
  • Soria-Hernández, C., Serna-Saldívar, S., & Chuck-Hernández, C. (2015). Physicochemical and functional properties of vegetable and cereal proteins as potential sources of novel food ingredients. Food Technology & Biotechnology, 53(3), 269–277. doi:10.17113/ftb
  • Toapanta, A., Carpio, C., Vilcacundo, R., & Carrillo, W. (2016). Analysis of protein isolate from quinoa (Chenopodium quinoa willd). Asian Journal of Pharmaceutical and Clinical Research, 9(2), 332–334.
  • Valenzuela, C., Abugoch, L., Tapia, C., & Gamboa, A. (2013). Effect of alkaline extraction on the structure of the protein of quinoa (Chenopodium quinoa Willd.) and its influence on film formation. International Journal of Food Science & Technology, 48(4), 843–849. doi:10.1111/ijfs.12035
  • Vanga, S. K., Singh, A., Kalkan, F., Gariepy, Y., Orsat, V., & Raghavan, V. (2015). Effect of thermal and high electric fields on secondary structure of peanut protein. International Journal of Food Properties, 19, 1259–1271. doi:10.1080/10942912.2015.1071841
  • Vázquez-Ovando, A., Betancur-Ancona, D., & Chel-Guerrero, L. (2013). Physicochemical and functional properties of a protein-rich fraction produced by dry fractionation of chia seeds (Salvia hispanica L.). CyTA - Journal of Food, 11(1), 75–80. doi:10.1080/19476337.2012.692123
  • Vega-Gálvez, A., Miranda, M., Vergara, J., Uribe, E., Puente, L., & Martínez, E. A. (2010). Nutrition facts and functional potential of quinoa (Chenopodium quinoa willd.), an ancient Andean grain: A review. Journal of the Science of Food and Agriculture, 90(15), 2541–2547. doi:10.1002/jsfa.4158
  • Vilcacundo, R., Barrio, D., Carpio, C., García-Ruiz, A., Rúales, J., Hernández-Ledesma, B., & Carrillo, W. (2017). Digestibility of quinoa (Chenopodium quinoa Willd.) protein concentrate and its potential to inhibit lipid peroxidation in the zebrafish larvae model. Plant Foods for Human Nutrition, 72(3), 294–300. doi:10.1007/s11130-017-0626-1
  • Zayas, J. F. (Ed.). (1997). Oil and fat binding properties of proteins. In Functionality of proteins in food (pp. 228–259). New York, NY: Springer-Verlag Berlin Heidelberg. doi:10.1007/978-3-642-59116-7_5