1,250
Views
51
CrossRef citations to date
0
Altmetric
Reviews

Carrageenan for encapsulation and immobilization of flavor, fragrance, probiotics, and enzymes: A review

Pages 1-19 | Received 08 Mar 2017, Accepted 23 Jun 2017, Published online: 13 Sep 2017

References

  • Venugopal, V. Marine Products for Healthcare, Florida: CRC press, 2008, pp. 308–310.
  • Singh, K.K. Carrageenan. In Handbook of Pharmaceutical Excipients, 6th ed.; Rowe, R.C., Sheskey, P.J., Quinn, M.E., Eds. London: Pharmaceutical Press, 2009, pp. 124.
  • Campo, V.L.; Kawano, D.F.; da SilvaJr., D.B.; Carvalho, I. Carrageenans: Biological properties, chemical modifications and structural analysis – A review. Carbohyd. Polym. 2009, 77, 167–180.
  • Morris, E.R.; Rees, D.A.; Welsh, E.J. Cation specific aggregation of Carrageenan helices – domain model of polymer gel structure. J. Mol. Biol. 1980, 138(2), 349–362.
  • Hermansson, A.-M.; Eriksson, E.; Jordansson, E. Effects of potassium, sodium and calcium on the microstructure and rheological behaviour of kappa-CG gels. Carbohyd. Polym. 1991, 16, 297–320.
  • Yuguchi, Y.; Urakawa, H.; Kajiwara, K. Structural characteristics of CG gels: Various types of counter ions. Food Hydrocoll. 2003, 17(4), 481–485.
  • Lizarraga, M.S.; Vicin, D.P.P.; González, R.; Rubiolo, A.; Santiago, L.G. Rheological behaviour of whey protein concentrate and λ-CG▸ aqueous mixtures. Food Hydrocoll. 2006, 20(5), 740–748.
  • Stancioff, D.J.; Renn, D.W. Physiological effects of food carbohydrates, A. In ACS Symposium Series, Vol. 15; Jeanes, A., Hodge, J., Eds. Washington D.C. 1975, pp. 282–295.
  • Cohen, S.M.; Ito, N. A critical review of the toxicological effects of carrageenan and processed eucheuma seaweed on the gastrointestinal tract. Crit. Rev. Toxicol. 2002, 32(5), 413–444.
  • Liang, A. Advance on safety evaluation of carrageenan. China J. Chin. Materia Medica. 2009, 34, 512–514.
  • Weiner, M.L. Toxicological properties of Carrageenan. Agents Actions. 1991, 32(1), 46–51.
  • Sarett, H.P. Safety of Carrageenan used in foods. Lancet. 1981, 317(8212), 151–152.
  • Hansen, P.M.T. Stabilization of αS-Casein by Carrageenan. J. Dairy Sci. 1968, 51(2), 192–195.
  • Pedersen, J.K. Carrageenan, pectin and xanthan/locust bean gum gels. Trends in their food use. Food Chem. 1980, 6(1), 77–88.
  • Kováčov, R.; Štětina, J.; Čurd, L. Influence of processing and κ-Carrageenan on properties of whipping cream. J. Food Eng. 2010, 99(4), 471–478.
  • Tye, R.J. Industrial and non-food uses for Carrageenan. Carbohyd. Polym. 1989, 10, 259–280.
  • Cope, S.E. Carrageenan-based skin restructuring cosmetic complex. Patent US 2000–620543 20000725, 2003.
  • Valenta, C.; Schultz, K. Influence of CG on the rheology and skin permeation of microemulsion formulations. J. Control. Release. 2004, 95(2), 257–265.
  • Thomson, A.W.; Fowler, E.F. Carrageenan: A review of its effects on the immune system. Agents Actions. 1981, 11(3), 265–273.
  • De Ruiter, G.A.; Rudolph, B. Carrageenan biotechnology. Trends Food Sci. Technol. 1997, 8(12), 389–395.
  • Bhardwaj, T.R.; Kanwar, M.; Lal, R.; Gupta, A. Natural gums and modified natural gums as sustained-release carriers. Drug Dev. Ind. Phar. 2000, 26(10), 1025–1038.
  • Li, L.; Ni, R.; Shao, Y.; Mao, S. Carrageenan and its applications in drug delivery. Carbohyd. Polym. 2014, 103, 1–11.
  • Liu, J.; Zhan, X.; Wan, J.; Wang, Y.; Wang, C. Review for carrageenan-based pharmaceutical biomaterials: Favourable physical features versus adverse biological effects. Carbohyd. Polym. 2015, 121, 27–36.
  • Wijesekara, I.; Pangestuti, R.; Kim, S.-K. Biological activities and potential health benefits of sulfated polysaccharides derived from marine algae. Carbohyd. Polym. 2011, 84(1), 14–21.
  • Mudgil, D.; Barak, S. Composition, properties and health benefits of indigestible carbohydrate polymers as dietary fiber: A review. Int. J. Biol. Macromolec. 2013, 61, 1–6.
  • Necas, J.; Bartosikova, L. Carrageenan: A review. Vet. Med-Us. 2013, 58(4), 187–205.
  • Prajapati, V.D.; Maheriya, P.M.; Jani, G.K.; Solanki, H.K. CG: A natural seaweed polysaccharide and its applications. Carbohyd. Polym. 2014, 105, 97–112.
  • Zia, K.M.; Tabasum, S.; Nasif, M.; Sultan, N.; Aslam N.; Noreen A.; Zuber M. A review on synthesis, properties and applications of natural polymer based carrageenan blends and composites. Int. J. Biol. Macromolec. 2017, 96, 282–301.
  • Madene, A.; Jacquot, M.; Scher, J.; Desobry, S. Flavor encapsulation and controlled release – a review. Int. J. Food Sci. Tech. 2006, 41(1), 1–21.
  • Guinard, J.-X.; Marty, C. Time-intensity measurement of flavor release from a model gel system: Effect of gelling agent type and concentration. J. Food Sci. 1995, 60(4), 727–730.
  • Juteau, A.; Doublier, J.-L.; Guichard, E. Flavor release from ι- Carrageenan matrices: A kinetic approach. J. Agr. Food Chem. 2004, 52(6), 1621–1629.
  • Gostan, T.; Moreau, C.; Juteau, A.; Guichard, E.; Delsuc, M.A. Measurement of aroma compound self-diffusion in food models by DOSY. Magn. Reson. Chem. 2004, 42(6), 496–499.
  • Chana, A.; Tromelin, A.; Andriot, I.; Guichard, E. Flavor release from ι- Carrageenan matrix: A quantitative structure−property relationships approach. J. Agr. Food Chem. 2006, 54(1), 3679–3685.
  • Hambleton, A.; Debeaufort, F.; Beney, L.; Karbowiak, T.; Voilley, A. Protection of active aroma compound against moisture and oxygen by encapsulation in biopolymeric emulsion-based edible films. Biomacromolecules. 2008, 9(3), 1058–1063.
  • Fabra, M.J.; Hambleton, A.; Talens, P.; Debeaufort, F.; Chiralt, A.; Voilley, A. Influence of interactions on water and aroma permeabilities of i-CG–oleic acid–beeswax films used for flavour encapsulation. Carbohyd. Polym. 2009, 76, 325–332.
  • Fabra, M.J.; Chambin, O.; Voilley, A.; Gay, J.-P.; Debeaufort, F. Influence of temperature and NaCl on the release in aqueous liquid media of aroma compounds encapsulated in edible films. J. Food Eng. 2012, 108(1), 30–36.
  • Hambleton, S.; Fabra, M.-J.; Debeaufort, F.; Cécile Dury-Brun, C.; Voilley, A. Interface and aroma barrier properties of iota- Carrageenan emulsion-based films used for encapsulation of active food compounds. J. Food Eng. 2009, 93, 80–88.
  • Hambleton, A.; Voilley, A.; Debeaufort, F. Transport parameters for aroma compounds through i-carrageenan and sodium alginate-based edible films. Food Hydrocoll. 2011, 25, 1128e1133.
  • Marcuzzo, E.; Sensidoni, A.; Debeaufort, F.; Voilley, A. Encapsulation of aroma compounds in biopolymeric emulsion based edible films to control flavour release. Carbohyd. Polym. 2010, 80, 984–988.
  • Sengupta, T.; Sengupta, A.K. Multilayer fragrance encapsulation comprising kappa carrageenan. Patent US8188022 B2, 2012.
  • Dima, C.; Cotârlet, M.; Alexe, P.; Dima, S. Microencapsulation of essential oil of pimento [Pimenta dioica (L) Merr.] by chitosan/k-CG complex coacervation method. Innov Food Sci. Emerg. 2014, 25, 97–105.
  • Tavassoli-Kafrani, E.; Shekarchizadeh, H.; Masoudpour-Behabadi, M. Development of edible films and coatings from alginates and carrageenans. Carbohyd. Polym. 2016, 137(10), 360–374.
  • Burgain, J.; Gaiani, C.; Linder, M.; Scher, J. Encapsulation of probiotic living cells: From laboratory scale to industrial Applications. J. Food Eng. 2011, 104(4), 467–483.
  • Priya, A.J.; Vijayalakshmi, S.P.; Raichur, A.M. Enhanced survival of probiotic Lactobacillus acidophilus by encapsulation with nanostructured polyelectrolyte layers through layer-by-layer approach. J. Agr. Food Chem. 2011, 59(21), 11838–11845.
  • Shi, L.-E.; Li, Z.-H.; Zhang, Z.-L.; Zhang, T.-T.; Yu, W.-M.; Zhou, M.-L.; Tang. Z.-X. Encapsulation of Lactobacillus bulgaricus in Carrageenan -locust bean gum coated milk micro- spheres with double layer structure. LWT - Food Sci. Technol. 2013, 54(1), 147–151.
  • Trabelsi, I.; Bejar, W.; Ayadi, D.; Chouayekh, H.; Kammoun, R.; Bejar, S.; Ben Salah, R. Encapsulation in alginate and alginate coated-chitosan improved the survival of newly probiotic in oxgall and gastric juice. Int. J. Biol. Macromol. 2013, 61, 36–42.
  • Eratte, D.; McKnight, S.; Gengenbach, T.R.; Dowling, K.; Barrow, C.J.; Adhikari, B.P. Co-encapsulation and characterization of omega-3 fatty acids and probiotic bacteria in whey protein isolate–gum Arabic complex coacervates. J. Funct. Foods. 2015, 9(B), 882–892.
  • Sathyabama, S.; Ranjith kumar, M.; Bruntha devi, P.; Vijayabharathi, R.; Priyadharisini, V.B. Co-encapsulation of probiotics with prebiotics on alginate matrix and its effect on viability in simulated gastric environment. LWT-Food Sci. Technol. 2014, 57(1), 419–425.
  • Tomás, M.S.J.; De Gregorio, P.R.; Terraf, M.C.L.; Nader-Macías, M.E.F. Encapsulation and subsequent freeze-drying of Lactobacillus reuteri CRL 1324 for its potential inclusion in vaginal probiotic formulations. Pharmaceutical Sci. 2015, 79, 87–95.
  • Vidyalakshi, R.; Bhakyaraj, R.; Subhasree, R.J. Encapsulation “The Future of Probiotics”–A Review. Adv. Biol. Res. 2009, 3(3–4), 96–103.
  • Dinakar, P.; Mistry, V.V. Growth and viability of Bifidobacterium bifidum in cheddar cheese. J. Dairy Sci. 1994, 77(10), 2854–2864.
  • Adhikari, K.; Mustapha, A.; Grün, I.U.; Fernando, L. Viability of microencapsulated bifidobacteria in set yogurt during refrigerated storage. J. Dairy Sci. 2000, 83(9), 1946–1951.
  • Adhikari, K.; Mustapha, A.; Grün, I.U. Survival and metabolic activity of microencapsulated bifidobacterium longum in stirred yogurt. J. Food Sci. 2006, 68(1), 275–280.
  • Shi, L.-E.; Li, Z.-H.; Zhang, Z.-L.; Zhang, T.-T.; Yu, W.-M.; Zhou, M.-L.; Tang. Z.-X. Encapsulation of Lactobacillus bulgaricus in Carrageenan–locust bean gum coated milk microspheres with double layer structure. LWT - Food Sci. Technol. 2013, 54(1), 147–151.
  • Cheow, W.S.; Hadinoto, K. Biofilm-like Lactobacillus rhamnosus probiotics encapsulated in Alginate and CG microcapsules exhibiting enhanced thermotolerance and freeze-drying resistance. Biomacromolecules 2013, 14(1), 3214–3222.
  • Mustapha, A.; Kerley, M.; Ahn, J. Microencapsulated probiotics for reducing fecal shedding of pathogenic microbes in animals. Patent US 20130115328 A1, 2013.
  • Tsen, J.-H.; Lin Y.-P.; King, V.A.-E. Fermentation of banana media by using κ-Carrageenan immobilized Lactobacillus acidophilus. Int. J. Food Microbiol. 2004, 91(2), 215–220.
  • Dafe, A.; Etemadi, H.; Zarredar, H.; Mahdavinia, G.R. Development of novel carboxymethyl cellulose/k-carrageenan blends as an enteric delivery vehicle for probiotic bacteria. Int. J. Biol. Macromolec. 2017, 97, 299–307.
  • Dumitriu, S.; Popa, M.; Artenie, V.; Dan, F. Bioactive polymers. 56: Urease immobilization on carboxymethylcellulose. Biotechnol. Bioeng. 1989, 34(3), 283–290.
  • Gauthier, S.F.; Vuillemarda, J.-C.; Lizottea, N. Immobilization of α‐chymotrypsin and trypsin on different agarose gels. Food Biotechnol. 1991, 5(2), 105–117.
  • Krajewska, B. Application of chitin- and chitosan-based materials for enzyme immobilizations: A review. Enzyme Microb. Tech. 2004, 35(2–3), 126–139.
  • Minteer S.D.; Klotzbach, T.L.; Rodica, D. Enzymes immobilized in hydrophobically modified polysaccharides. Patent EP 1946397 A2, 2008.
  • Silva, T.M.; Santiago, P.O.; Purcena, L.L.A.; Fernandes, K.F. Study of the cashew gum polysaccharide for the horseradish peroxidase immobilization – Structural characteristics, stability and recovery. Mater. Sci. Eng.: C 2010, 30(4), 526–530.
  • Gan, Z.; Zhang, T.; Liu, Y.; Wu, D. Temperature-triggered enzyme immobilization and release based on cross-linked gelatin nanoparticles. Pub. Lib. Sci. One. 2012, 7(10), e47154.
  • Anusha, J.R.; Fleming, A.T.; Kim, H.-J.; Kim, B.C.; Yu, K.-H.; Raj, C.J. Effective immobilization of glucose oxidase on chitosan submicron particles from gladius of Todarodes pacificus for glucose sensing. Bioelectrochemistry. 2015, 104, 44–50.
  • Badgujar, K.C.; Bhanage, B.M. Carbohydrate base co-polymers as an efficient immobilization matrix to enhance lipase activity for potential biocatalytic applications. Carbohyd. Poly. 2015, 134, 709–717.
  • De Brito, A.K.; Nordi, C.S.F.; Caseli, L. Algal polysaccharides as matrices for the immobilization of urease in lipid ultrathin films studied with tensiometry and vibrational spectroscopy: Physical–chemical properties and implications in the enzyme activity. Colloid Surfaces B. 2015, 135(1), 639–645.
  • Mohan, T.; Rathner, R.; Reishofer, D.; Koller, M.; Elschner, T.; Spirk, S.; Heinze, T.; Stana-Kleinschek K.; Kargl, R. Designing hydrophobically modified polysaccharide derivatives for highly efficient enzyme immobilization. Biomacromolecules. 2015, 16(8), 2403–2411.
  • Kourkoutas, Y.; Bekatorou, A.; Banat, I.M.; Marchant, R.; Koutinas, A.A. Immobilization technologies and support materials suitable in alcohol beverages production: A review. Food Microbiol. 2004, 21(4), 377–397.
  • Takata, I.; Tosa, T.; Chibata, I. Screening of matrix suitable for immobilization of microbial cells. J. Solid-Phase Biochem. 1977, 2(3), 225–236.
  • Tosa, T.; Sato, T.; Mori, T.; Yamamoto, K.; Takata, I.; Nishida, Y.; Chibata, I. Immobilization of enzymes and microbial cells using CG as matrix. Biotechnol. Bioeng. 1979, 21(10), 1697–1709.
  • Sato, T.; Nishida, Y.; Tosa, T.; Chibata, I. Immobilization of Escherichia coli cells containing aspartase activity with kappa-carrageenan. Enzymic properties and application for L-aspartic acid production. Biochim. Biophys. Acta. 1979, 570(1), 179–186.
  • Takata, I.; Yamamoto, K.; Tosa, T.; Chibata, I. Screening of microorganisms having high fumarase activity and their immobilization with carrageenan. Eur. J. App. Microbiol. 1979, 7(2), 161–172.
  • Takata, I.; Tosa, T.; Chibata, I. Stabilization of fumarase activity of Brevibacterium flavum cells by immobilization with κ-carrageenan. Appl. Biochem. Biotech. 1983, 8(1), 31–38.
  • Takata, I.; Tosa, T.; Chibata, I. Reasons for the high stability of fumarase activity of Brevibacterium flavum cells immobilized with κ-carrageenan gel. Appl. Biochem. Biotech. 1983, 8(1), 39–54.
  • Takata, I.; Tosa T.; Chibata, I. Stability of fumarase activity of Brevibacterium flavum immobilized with ϰ-carrageenan and Chinese gallotannin. Appl. Microbiol. Biot. 1984, 19(2), 85–90.
  • Umemura, I.; Takamatsu, S.; Sato, T.; Tosa T.; Chibata, I. Improvement of production of l-aspartic acid using immobilized microbial cells. Appl. Microbiol Biot. 1984, 20(5), 291–295.
  • Nagalakshmi, V.; Pai, J.S. Immobilisation of penicillin acylase producing E.coli cells with κ-carrageenan. Indian J. Microbiol. 1997, 37, 17–20.
  • Tosa, T.; Shibatani, T. Industrial application of immobilized biocatalysts in Japan. Ann. NY Acad. Sci. 1995, 750, 364–75.
  • Younes, G.; Brenton, A.M.; Guespin-Michel, J. Enhancement of extracellular activities produced by immobilized growing cells of Myxococcus xanthus. Appl. Microbiol. Biot. 1984, 19(1), 67–69.
  • Younes, G.; Breton, A.M.; Guespin-Michel, J. Production of extracellular native and foreign proteins by immobilized growing cells of Myxococcus xanthus. Appl. Microbiol. Biot. 1987, 25(6), 507–512.
  • Tanaka, T.; Yamamoto, K.; Towprayoon, S.; Nakajima, H.; Sonomoto, K.; Yokozeki, K.; Kubota, K.; Tanaka, A. Continuous production of l-serine by immobilized growing Corynebacterium glycinophilum cells. Appl. Microbiol. Biot. 1989, 30(6), 564–568.
  • Nakajima, H.; Sonomoto, K.; Usui, N.; Sato, F.; Yamada, Y.; Tanaka, A.; Fukui, S. Entrapment of Lavandula vera cells and production of pigments by entrapped cells. J. Biotechnol. 1985, 2(2), 107–117.
  • Asanza Teruel, M.; Gontier, L.E.; Bienaime, C.; Nava Saucedo, J.E.; Barbotin, J.N. Response surface analysis of chlortetracycline and tetracycline production with κ- Carrageenan immobilized Streptomyces aureofaciens. Enzyme Microb. Tech. 1997, 21(5), 314–320.
  • Chi, M.-C.; Lyu, R.-C.; Lin, L.-L.; Huang, H.-B. Characterization of Bacillus kaustophilus leucine aminopeptidase immobilized in Ca-alginate/k-Carrageenan beads. Biochem. Eng. J. 2008, 39(2), 376–382.
  • Moon, S.H.; Parulekar, S.J. Characterization of kappa.- Carrageenan gels used for immobilization of Bacillus firmus. Biotechnol. Progr. 1991, 7(6), 516–525.
  • Mensour, N.A.; Margaritis, A.; Briens, C.L.; Pilkington, H.; Russell, I. Application of immobilized yeast cells in the brewing industry. Progr. Biotechnol. 1996, 11, 661–671.
  • Mensour, N.A.; Margaritis, A.; Briens, C.J.; Pilkington, H.; Russell, L. New developments in the brewing industry using immobilised yeast cell bioreactor systems. J. I. Brewing. 1997, 103(6), 363–370.
  • Norton, S.; Watson, K.; D'Amore, T. Ethanol tolerance of immobilized brewers' yeast cells. Appl. Microbiol. Biot. 1995, 43(1), 18–24.
  • Neufeld, R.J.; Poncelet, D.J.C.M.; Sylvain, D.J.M.; Norton, S.D.J.M. Immobilized-cell carrageenan bead production and a brewing process utilizing carrageenan bead immobilized yeast cells. Patent US5869117 A, 1999.
  • Decamps, C.; Neufeld, R.J.; Norton, S.D.J.M.; Poncelet, D.J.C.M. Continuous process for immobilization of yeast in k-carrageenan gel beads. Patent WO 2004070026 A1, 2004.
  • Nigam, J.N. Continuous ethanol production from pineapple cannery waste using immobilized yeast cells. J. Biotechnol. 2000, 80(2), 189–193.
  • Chevalier, P.; de la Noüe, J. Wastewater nutrient removal with microalgae immobilized in carrageenan. Enzyme Microb. Tech. 1985, 7(12), 621–624.
  • Chevalier, P.; de la Noüe, J. Behavior of algae and bacteria co-immobilized in carrageenan, in a fluidized bed. Enzyme Microb. Tech. 1988, 10(1), 19–23.
  • Lau, P.S.; Tam, N.F.Y.; Wong, Y.S. Effect of carrageenan immobilization on the physiological activities of Chlorella vulgaris. Bioresource Technol. 1998, 63(2), 115–121.
  • Sankalia, M.G.; Sankalia, J.M.; Sutariya, V.B.Y.; Mashru, R.C. Ionotropically cross-linked κ-Carrageenan gel beads of pepsin for stability improvement: Optimization and physicochemical characterization using Box-Behnken design. ARS Pharmaceutica. 2007, 48(3), 213–247.
  • Belyaeva, E.; Della Valle, D.; Poncelet, D. Immobilization of α-chymotrypsin in κ-Carrageenan beads prepared with the static mixer. Enzyme Microb. Tech. 2004, 34, 108–113.
  • Prud'homme, R.K.; Cukras, C.-A.; Pfeffer, H.A. Enzyme immobilization by imbibing an enzyme solution into dehydrated hydrocolloid gel beads. Patent US 6268191 B1, 2001.
  • Crumbliss, A.L.; Stonehuerner, J.G.; Henkens, R.W.; Zhao, J.; O'Daly, J.P. A Carrageenan hydrogel stabilized colloidal gold multi-enzyme biosensor electrode utilizing immobilized horseradish peroxidase and cholesterol oxidase/cholesterol esterase to detect cholesterol in serum and whole blood. Biosens. Bioelectron. 1993, 8(6), 331–337.
  • Sodini, I.; Boquien, C.Y.; Corrieu, G.; Lacroix, C.J. Use of an immobilized cell bioreactor for the continuous inoculation of milk in fresh cheese manufacturing. J. Ind. l Microbiol. Biot. 1997, 18(1), 56–61.
  • Ouellette, V.; Chevalier, P.; Lacroix, C. Continuous fermentation of a supplemented milk with immobilized Bifidobacterium infantis. Biotechnol. Tech. 1994, 8(1), 45–50.
  • Arnaud, J.P.; Laroix, C.; Choplin, L. Effect of agitation rate on cell release rate and metabolism during continues fermentation with entrapped growing Lactobacillus casei subsp. casei. Biotechnol. Tech. 1992, 6(3), 265–270.
  • Arnaud, J.P.; Lacroix, C. Diffusion of lactose in k-Carrageenan/locust bean gum gel beads with or without entrapped growing lactic acid bacteria. Biotechnol. Bioeng. 1991, 38(9), 1041–1049.
  • Audet, P.; Paquin, C.; Lacroix, C. Immobilized growing lactic acid bacteria with k-Carrageenan locust bean gum gel. Appl. Microbiol. Biotechnol. 1988, 29, 11–18.
  • Audet, P.; Paquin, C.; Lacroix, C. Batch fermentations with a mixed culture of lactic acid bacteria immobilized separately in κ-carrageenan locust bean gum gel beads. Appl. Microbiol. Biotechnol. 1990, 32(6), 662–668.
  • Briones, A.V.; Sato, T. Encapsulation of glucose oxidase (GOD) in polyelectrolyte complexes of chitosan–Carrageenan. React. Funct. Polym. 2010, 70(1), 19–27.
  • Tan, I.S.; Lee, K.T. Immobilization of b-glucosidase from Aspergillus niger on j-Carrageenan hybrid matrix and its application on the production of reducing sugar from macroalgae cellulosic residue. Bioresource Technol. 2015, 184, 386–394.
  • Elnashar, M.M.M.; Yassin, M.A. Covalent immobilization of β-galactosidase on Carrageenan coated with chitosan. J. Appl. Polym. Sci. 2009, 114(1), 17–24.
  • Elnashar, M.M.M. Carriers for immobilization and reusability of enzymes. Patent US 20110076737A1, 2011.
  • Patil, R.T.; Speaker, T.J. Carrageenan as an anionic polymer for aqueous microencapsulation. Drug Deliv. 1998, 5(3), 179–182.
  • Patil, R.T.; Speaker, T.J. Water-based microsphere delivery system for proteins. J. Pharm. Sci. 2000, 89(1), 9–15.
  • Makas, Y.G.; Kalkan, N.A.; Aksov, S.; Altinok, H.; Hasirci, N. Immobilization of laccase in κ-Carrageenan based semi-interpenetrating polymer networks. J. Biotechnol. 2010, 148(4), 216–220.
  • Tümtürk, H.; Karaca, N.; Demirel, G.; Şahin, F. Preparation and application of poly(N,N-dimethylacrylamide-co-acrylamide) and poly(N-isopropylacrylamide-co-acrylamide)/κ-Carrageenan hydrogels for immobilization of lipase. Int. J. Biol. Macromol. 2007, 40(3), 281–285.
  • Kitchell, B.S.; Henkens, R.W.; Brown, P.; Baldwin, S.W.; Lochmuller, C.H.; O'Daly, J.P. Carrageenan-immobilized esterase. Patent US 5262313 A, 1993.
  • Girigowda, K.; Mulimani, V.H. Hydrolysis of galacto-oligosaccharides in soymilk by κ-CG-entrapped α-galactosidase from Aspergillus oryzae. World J. Microbiol. Biotech. 2006, 22(5), 437–442.
  • Borglum, G.B. Immobilization of microorganisms in gelled carrageenan. PatentUS4347320A, 1982.
  • Jegannathan, K.L.; Jun-Yee, E.; Chan, E.; Ravindra, P. Design an immobilized lipase enzyme for biodiesel production. J. Renew. Sustain. Energy. 2009, 1, 063101–1– 063101–8.
  • Jegannathan, K.R.; Seng, C.E.; Ravindra, P. Immobilization of lipase in κ-Carrageenan by encapsulation – an environmental friendly approach. J. Environ. Res. Develop. 2009, 4(2), 431–439.
  • Jegannathan, K.; Jun-Yee, L.; Chan, E.; Ravindra, P. Production of biodiesel from palm oil using liquid core lipase encapsulated in κ-carrageenan. Fuel. 2010, 89(9), 2272–2277.
  • Tan, H.; Hossain, H.; Zhang, L. Enzyme encapsulation by static mixer method for hydrolysis of lactose. Int. J. Biotech. Well. Indus. 2012, 1(3), 210–221.
  • Zhang, Z.; Zhang, R.; Chen, L.; McClements, D.J. Encapsulation of lactase (β-galactosidase) into κ-carrageenan-based hydrogel beads: Impact of environmental conditions on enzyme activity. Food Chem. 2016, 200, 69–75.
  • Yamazaki, S.; Mori, T.; Ogino, I.; Mukai, S.R. Flexible film-type catalysts encapsulating urease within k-carrageenan hydrogel network. Chem. Eng. J. 2015, 278, 122–128.
  • Luo, M.; Shao, B.; Nie, W.; Wei, X.-W.; Li, Y.-L.; Wang, B.-L.; He, Z.-Y.; Liang, X.; Ye T.-H.; Wei Y.-Q. Antitumor and adjuvant activity of λ-carrageenan by stimulating immune response in cancer immunotherapy. Scientific Reports 5, 2015, Article number 11062.
  • Sokolova, E.V.; Bogdanovich, L.N.; Ivanova, T.B.; Byankina, A.O.; Kryzhanovskiy, S.P.; Yermak, I.M. Effect of carrageenan food supplement on patients with cardiovascular disease results in normalization of lipid profile and moderate modulation of immunity system markers. Pharma Nutrition. 2014, 2(2), 33–37.
  • Yuan, H.; Song, J.; Li, X.; Li, N.; Dai, J. Immunomodulation and antitumor activity of κ-carrageenan oligosaccharides. Cancer Letters. 2006, 243(2), 228–234.
  • Xu, L.; Yao, Z.; Wu, H.; Wang, F.; Zhang, S. The immune regulation of κ-carrageenan oligosaccharide and its desulfated derivatives on LPS-activated microglial cells. Neurochem. Int. 2012, 61(5), 689–696.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.