4,442
Views
12
CrossRef citations to date
0
Altmetric
Articles

Promoting elementary students’ epistemology of science through computer-supported knowledge-building discourse and epistemic reflection

ORCID Icon &
Pages 668-687 | Received 04 Aug 2017, Accepted 30 Jan 2018, Published online: 17 Feb 2018

References

  • Akerson, V. L., Abd-El-Khalick, F., & Lederman, N. G. (2000). Influence of a reflective explicit activity-based approach on elementary teachers’ conceptions of nature of science. Journal of Research in Science Teaching, 37(4), 295–317. doi: 10.1002/(SICI)1098-2736(200004)37:4<295::AID-TEA2>3.0.CO;2-2
  • Bendixen, L. D. (2016). Teaching for epistemic change in elementary classrooms. In J. A. Greene, W. A. Sandoval, & I. Bråten (Eds.), Handbook of epistemic cognition (pp. 281–299). New York, NY: Routledge.
  • Bereiter, C. (1994). Implications of postmodernism for science, or, science as progressive discourse. Educational Psychologist, 29(1), 3–12. doi: 10.1207/s15326985ep2901_1
  • Bereiter, C. (2016). The epistemology of science and the epistemology of science teaching. Paper presented at the 12th international conference of the learning sciences, Singapore.
  • Brownlee, J. L., Schraw, G., Walker, S., & Ryan, M. (2016). Changes in preservice teachers’ personal epistemologies. In J. A. Greene, W. A. Sandoval, & I. Bråten (Eds.), Handbook of epistemic cognition (pp. 300–317). New York, NY: Routledge.
  • Carey, S., Evans, R., Honda, M., Jay, E., & Unger, C. (1989). ‘An experiment is when you try it and see if it works’: A study of grade 7 students’ understanding of the construction of scientific knowledge. International Journal of Science Education, 11(5), 514–529. doi: 10.1080/0950069890110504
  • Chi, M. T. H. (1997). Quantifying qualitative analyses of verbal data: A practical guide. Journal of the Learning Sciences, 6(3), 271–315. doi: 10.1207/s15327809jls0603_1
  • Chinn, C. A., & Malhotra, B. A. (2002). Epistemologically authentic inquiry in schools: A theoretical framework for evaluating inquiry tasks. Science Education, 86(2), 175–218. doi: 10.1002/sce.10001
  • Chuy, M., Scardamalia, M., Bereiter, C., Prinsen, F., Resendes, M., Messina, R. … Angela Chow, T. C. Y. (2010). Understanding the nature of science and scientific progress: A theory-building approach. Canadian Journal of Learning and Technology, 36(1). Retrieved from https://www.cjlt.ca/index.php/cjlt/article/view/26373/19555
  • Conley, A. M., Pintrich, P. R., Vekiri, I., & Harrison, D. (2004). Changes in epistemological beliefs in elementary science students. Contemporary Educational Psychology, 29(2), 186–204. doi: 10.1016/j.cedpsych.2004.01.004
  • Elby, A., Macrander, C., & Hammer, D. (2016). Epistemic cognition in science. In J. A. Greene, W. A. Sandoval, & I. Bråten (Eds.), Handbook of epistemic cognition (pp. 113–127). New York, NY: Routledge.
  • Elder, A. D. (2002). Characterizing fifth grade students’ epistemological veliefs in science. In B. K. Hofer, & P. R. Pintrich (Eds.), Personal epistemology: The psychology of beliefs about knowledge and knowing (pp. 347–363). Mahwah, NJ: Lawrence Erlbaum.
  • Hofer, B. K., & Pintrich, P. R. (1997). The development of epistemological theories: Beliefs about knowledge and knowing and their relation to learning. Review of Educational Research, 67(1), 88–140. doi: 10.3102/00346543067001088
  • Khishfe, R., & Abd-El-Khalick, F. (2002). Influence of explicit and reflective versus implicit inquiry-oriented instruction on sixth graders’ views of nature of science. Journal of Research in Science Teaching, 39(7), 551–578. doi: 10.1002/tea.10036
  • Lederman, N. G. (2007). Nature of science: Past, present, and future. In S. K. Abell, & N.G. Lederman (Eds.), Handbook of research on science education (pp. 831–879). Mahwah: Lawrence Erlbaum Associates.
  • Lederman, N. G., Abd-El-Khalick, F., Bell, R. L., & Schwartz, R. S. (2002). Views of nature of science questionnaire: Toward valid and meaningful assessment of learners’ conceptions of nature of science. Journal of Research in Science Teaching, 39(6), 497–521. doi: 10.1002/tea.10034
  • Lederman, N. G., Antink, A., & Bartos, S. (2014). Nature of science, scientific inquiry, and socio-scientific issues arising from genetics: A pathway to developing a scientifically literate citizenry. Science & Education, 23(2), 285–302. doi: 10.1007/s11191-012-9503-3
  • Lederman, J. S., & Ko, E. (2004). Views of scientific inquiry, Form E (Unpublished paper). Illinois Institute of Technology, Chicago, IL.
  • Paavola, S., & Hakkarainen, K. (2005). The knowledge creation metaphor – An emergent epistemological approach to learning. Science & Education, 14(6), 535–557. doi: 10.1007/s11191-004-5157-0
  • Ryu, S., & Sandoval, W. A. (2012). Improvements to elementary children's epistemic understanding from sustained argumentation. Science Education, 96(3), 488–526. doi: 10.1002/sce.21006
  • Sandoval, W. A. (2003). Conceptual and epistemic aspects of students’ scientific explanations. Journal of the Learning Sciences, 12(1), 5–51. doi: 10.1207/S15327809JLS1201_2
  • Sandoval, W. A. (2005). Understanding students’ practical epistemologies and their influence on learning through inquiry. Science Education, 89(4), 634–656. doi: 10.1002/sce.20065
  • Sandoval, W. (2014). Science education's need for a theory of epistemological development. Science Education, 98(3), 383–387. doi: 10.1002/sce.21107
  • Sandoval, W. A., & Millwood, K. A. (2005). The quality of students’ use of evidence in written scientific explanations. Cognition and Instruction, 23(1), 23–55. doi: 10.1207/s1532690xci2301_2
  • Sandoval, W. A., & Morrison, K. (2003). High school students’ ideas about theories and theory change after a biological inquiry unit. Journal of Research in Science Teaching, 40(4), 369–392. doi: 10.1002/tea.10081
  • Scardamalia, M. (2004). CSILE/knowledge forum education and technology: An encyclopedia (pp. 183–192). Santa Barbara, CA: ABC-CLIO.
  • Scardamalia, M., & Bereiter, C. (2006). Knowledge building: Theory, pedagogy, and technology. In K. Sawyer (Ed.), Cambridge handbook of the learning sciences (pp. 97–118). New York, NY: Cambridge University Press.
  • Scardamalia, M., & Bereiter, C. (2014). Knowledge building and knowledge creation: Theory, pedagogy, and technology. In R. K. Sawyer (Ed.), Cambridge handbook of the learning sciences (pp. 397–417). New York, NY: Cambridge University Press.
  • Schommer, M. (1990). Effects of beliefs about the nature of knowledge on comprehension. Journal of Educational Psychology, 82(3), 498–504. doi: 10.1037/0022-0663.82.3.498
  • Sinatra, G. M. (2016). Thoughts on knowledge about thinking about knowledge. In J. A. Greene, W. A. Sandoval, & I. Bråten (Eds.), Handbook of epistemic cognition (pp. 479–491). New York, NY: Routledge.
  • Smith, C. L., Maclin, D., Houghton, C., & Hennessey, M. G. (2000). Sixth-grade students’ epistemologies of science: The impact of school science experiences on epistemological development. Cognition and Instruction, 18(3), 349–422. doi: 10.1207/S1532690XCI1803_3
  • Tsai, C. C., & Liu, S. Y. (2005). Developing a multi-dimensional instrument for assessing students’ epistemological views toward science. International Journal of Science Education, 27(13), 1621–1638. doi: 10.1080/09500690500206432
  • van Aalst, J. (2009). Distinguishing knowledge-sharing, knowledge-construction, and knowledge-creation discourses. International Journal of Computer-Supported Collaborative Learning, 4(3), 259–287. doi: 10.1007/s11412-009-9069-5
  • Zhang, J., Scardamalia, M., Lamon, M., Messina, R., & Reeve, R. (2007). Socio-cognitive dynamics of knowledge building in the work of 9- and 10-year-olds. Educational Technology Research and Development, 55(2), 117–145. doi: 10.1007/s11423-006-9019-0