5,250
Views
60
CrossRef citations to date
0
Altmetric
Articles

Food-grade micro-encapsulation systems that may induce satiety via delayed lipolysis: A review

, , , , &

References

  • Abbaspourrad, A., Datta, S. S. and Weitz, D. A. (2013). Controlling release from pH-responsive microcapsules. Langmuir. 29(41):12697–12702.
  • Ahmed, K., Li, Y., McClements, D. J. and Xiao, H. (2012). Nanoemulsion- and emulsion-based delivery systems for curcumin: Encapsulation and release properties. Food Chem. 132(2):799–807.
  • Akkermans, C., van der Goot, A. J., Venema, P., van der Linden, E. and Boom, R. M. (2008). Formation of fibrillar whey protein aggregates: Influence of heat and shear treatment, and resulting rheology. Food Hydrocolloid. 22(7):1315–1325.
  • Albertsson, P.-A., Köhnke, R., Emek, S. C., Mei, J., Rehfeld, J. F., Akerlund, H.-E. and Erlanson-Albertsson, C. (2007). Chloroplast membranes retard fat digestion and induce satiety: Effect of biological membranes on pancreatic lipase/co-lipase. The Biochem. J. 401(3):727–733.
  • Antipina, M. N. and Sukhorukov, G. B. (2011). Remote control over guidance and release properties of composite polyelectrolyte based capsules. Adv. Drug Deliv. Rev. 63(9):716–729.
  • Atuma, C., Strugala, V., Allen, A. and Holm, L. (2001). The adherent gastrointestinal mucus gel layer: Thickness and physical state in vivo. Am. J. Physiol. Gastrointest. Liver Physiol. 280(5):922–929.
  • Augustin, M. A. and Hemar, Y. (2009). Nano- and micro-structured assemblies for encapsulation of food ingredients. Chem. Soc. Rev. 38(4):902–912.
  • Augustin, M. A., Sanguansri, L., Rusli, J. K., Shen, Z., Cheng, L. J., Keogh, J. and Clifton, P. (2014). Digestion of microencapsulated oil powders: In vitro lipolysis and in vivo absorption from a food matrix. Food Funct. 5(11):2905–2912.
  • Bakala N'Goma, J.-C., Amara, S., Dridi, K., Jannin, V. and Carrière, F. (2012). Understanding the lipid-digestion processes in the GI tract before designing lipid-based drug-delivery systems. Ther. Deliv. 3(1):105–124.
  • Barbé, F., Ménard, O., Le Gouar, Y., Buffière, C., Famelart, M.-H., Laroche, B., Le Feunteun, S., et al. (2013). The heat treatment and the gelation are strong determinants of the kinetics of milk proteins digestion and of the peripheral availability of amino acids. Food Chem. 136:1203–1212.
  • Batterham, R. L., Cowley M a., Small, C. J., Herzog, H., Cohen M. a., Dakin, C. L., Wren, A. M., et al. (2002). Gut hormone PYY(3-36) physiologically inhibits food intake. Nature. 418:650–654.
  • Bédard, M. F., De Geest, B. G., Skirtach, A. G., Möhwald, H. and Sukhorukov, G. B. (2010). Polymeric microcapsules with light responsive properties for encapsulation and release. Adv. Colloid Interface Sci. 158:2–14.
  • Beindorff, C. M., Ghislain, C. Y., Sergey, L., Melnikov, M. and Winter, I. (2007). Satiety enhancing food products. Patent WO 2007115899 A1. 1–23.
  • Benshitrit, R. C., Levi, C. S., Tal, S. L., Shimoni, E. and Lesmes, U. (2012). Development of oral food-grade delivery systems: Current knowledge and future challenges. Food Funct. 3(1):10–21.
  • Berton-Carabin, C. C., Coupland, J. N. and Elias, R. J. (2013). Effect of the lipophilicity of model ingredients on their location and reactivity in emulsions and solid lipid nanoparticles. Colloids Surf. A. 431:9–17.
  • Berton-Carabin, C. C., Ropers, M.-H. and Genot, C. (2014). Lipid oxidation in oil-in-water emulsions: Involvement of the interfacial layer. Compr. Rev. Food Sci. Food Saf. 13(5):945–977.
  • Berton-carabin, C. C. and Schroën, K. (2014). Pickering emulsions for food applications: Background, trends and challenges. Ann. Rev. Food Sci. Technol. 31(0):1–55.
  • Bialek, J. M., Melnikov, S. M. and Winter, I. (2006). Satiety emulsions and food compositions. Patent US 2006/0105093 A1.
  • Binks, B. P. (2002). Particles as surfactants—similarities and differences. Curr. Opin. Colloid Interface Sci. 7:21–41.
  • Blundell, J. E. and Bellisle, F. (2013). Satiation, Satiety and the Control of Food Intake. Woodhead Publishing Limited, Cambridge.
  • Bonnaire, L., Sandra, S., Helgason, T., Decker, E. A., Weiss, J. and McClements, D. J. (2008). Influence of lipid physical state on the in vitro digestibility of emulsified lipids. J. Agric. Food Chem. 56(10):3791–3797.
  • Borel, T. and Sabliov, C. M. (2014). Nanodelivery of bioactive components for food applications: Types of delivery systems, properties, and their effect on ADME profiles and toxicity of nanoparticles. Ann. Rev.Food Sci. Technol. 5:1–17.
  • Bornhorst, G. M. and Singh, R. P. (2014). Gastric digestion in vivo and in vitro: How the structural aspects of food influence the digestive process. Ann. Rev. Food Sci. Technol. 5:1–22.
  • Burton, D. D., Kim, H. J., Camilleri, M., Stephens, D. A., Mullan, B. P., O’Connor, M. K. and Talley, N. J. (2005). Relationship of gastric emptying and volume changes after a solid meal in humans. Am J Physiol Gastrointest Liver Physiol, 289(2):261–266.
  • Butstraen, C. and Salaün, F. (2014). Preparation of microcapsules by complex coacervation of gum Arabic and chitosan. Carbohydr. Polym. 99:608–616.
  • Calbet, J. A. L. and MacLean, D. A. (1997). Role of caloric content on gastric emptying in humans. J. Physiol. 498(2):553–559.
  • Carriere, F., Barrowman, J. A., Verger, R. and Laugier, R. (1993). Secretion and contribution to lipolysis of gastric and pancreatic lipases during a test meal in humans. Gastroenterology. 105(3):876–888.
  • Cerqueira, M. a., Pinheiro, A. C., Silva, H. D., Ramos, P. E., Azevedo M. a., Flores-López, M. L., Rivera, M. C., et al. (2013). Design of bio-nanosystems for oral delivery of functional compounds. Food Eng. Rev. 6(1–2):1–19.
  • Chaprenet, J., Berton-Carabin, C. C., Elias, R. J. and Coupland, J. N. (2014). Effect of interfacial properties on the reactivity of a lipophilic ingredient in multilayered emulsions. Food Hydrocolloid. 42:56–65.
  • Chen, P. W., Cadisch, G. and Studart, A. R. (2014). Encapsulation of aliphatic amines using micro fluidics. Langmuir. 30:2346–2350.
  • Cho, H. T., Salvia-Trujillo, L., Kim, J., Park, Y., Xiao, H. and McClements, D. J. (2014). Droplet size and composition of nutraceutical nanoemulsions influences bioavailability of long chain fatty acids and Coenzyme Q10. Food Chem. 156:117–122.
  • Choi, S.-W., Zhang, Y. and Xia, Y. (2010). A temperature-sensitive drug release system based on phase-change materials. Angew. Chem. Int. Edit. 49(43):7904–7908.
  • Christophersen, P. C., Christiansen, M. L., Holm, R., Kristensen, J., Jacobsen, J., Abrahamsson, B. and Müllertz, A. (2014). Fed and fasted state gastro-intestinal in vitro lipolysis: In vitro in vivo relations of a conventional tablet, a SNEDDS and a solidified SNEDDS. Eur. J. Pharm. Sci. 57:232–239.
  • Chu, B.-S., Gunning, a. P., Rich, G. T., Ridout, M. J., Faulks, R. M., Wickham, M. S. J., Morris, V. J., et al. (2010). Adsorption of bile salts and pancreatic colipase and lipase onto digalactosyldiacylglycerol and dipalmitoylphosphatidylcholine monolayers. Langmuir. 26(12):9782–9793.
  • Chu, B.-S., Rich, G. T., Ridout, M. J., Faulks, R. M., Wickham, M. S. J. and Wilde, P. J. (2009). Modulating pancreatic lipase activity with galactolipids: Effects of emulsion interfacial composition. Langmuir. 25(16):9352–9360.
  • Cilla, A., Alegría, A., De Ancos, B., Sánchez-Moreno, C., Cano, M. P., Plaza, L., Clemente, G., et al. (2012). Bioaccessibility of tocopherols, carotenoids, and ascorbic acid from milk- and soy-based fruit beverages: Influence of food matrix and processing. J. Agric. Food Chem. 60:7282–7290.
  • Cook, M. T., Tzortzis, G., Charalampopoulos, D. and Khutoryanskiy, V. V. (2012). Microencapsulation of probiotics for gastrointestinal delivery. J. Control. Release. 162(1):56–67.
  • Coupe, A. J., Davis, S. S. and Wilding, I. R. (1991). Variation in gastrointestinal transit of pharmaceutical dosage forms in healthy subjects. Pharm. Res. 8(3):360.
  • Day, L., Golding, M., Xu, M., Keogh, J., Clifton, P. and Wooster, T. J. (2014). Tailoring the digestion of structured emulsions using mixed monoglyceride–caseinate interfaces. Food Hydrocolloid. 36:151–161.
  • De Boever, P., Deplancke, B. and Verstraete, W. (2000). Fermentation by gut microbiota cultured in a simulator of the human intestinal microbial ecosystem is improved by supplementing a soygerm powder. J. Nutr. 130(10):2599–2606.
  • Deligöz, H. and Tieke, B. (2014). QCM-D study of layer-by-layer assembly of polyelectrolyte blend films and their drug loading-release behavior. Colloids Surf. A. 441:725–736.
  • Diepvens, K., Soenen, S., Steijns, J., Arnold, M., Westerterp-Plantenga, M. (2007). Long-term effects of consumption of a novel fat emulsion in relation to body-weight management. Int. J. Obes. 31(6):942–949.
  • Dong, Q.-Y., Chen, M.-Y., Xin, Y., Qin, X.-Y., Cheng, Z., Shi, L.-E., Tang, Z.-X. (2013). Alginate-based and protein-based materials for probiotics encapsulation: A review. Int. J. Food Sci. Technol. 48(7):1339–1351.
  • Duffy, N., Blonk, H. C. G., Beindorff, C. M., Cazade, M., Bot, A., Duchateau, G. S. M. J. E. (2009). Organogel-based emulsion systems, micro-structural features and impact on in vitro digestion. J. Am. Oil Chem. Soc. 86(8):733–741.
  • EFSA. (2010). Scientific Opinion on the safety of anionic methacrylate copolymer for the proposed uses as a food additive. EFSA J. 8(7):1–1656.
  • EFSA. (2014). Regulated Food Ingredients Applications. European Food Safety Authority. Available from http://www.efsa.europa.eu/en/applicationshelpdesk/foodingredients.htm
  • Elgart, A., Cherniakov, I., Aldouby, Y., Domb, A. J. and Hoffman, A. (2012). Lipospheres and pro-nano lipospheres for delivery of poorly water soluble compounds. Chem. Phys. Lipids. 165(4):438–453.
  • Emin, M. A., Mayer-Miebach, E. and Schuchmann, H. P. (2012). Retention of β-carotene as a model substance for lipophilic phytochemicals during extrusion cooking. LWT - Food Sci. Technol. 48(2):302–307.
  • FDA. (2014). Ingredients, Packaging & Labeling. U.S. Food and Drug Administration. Available from http://www.fda.gov/Food/IngredientsPackagingLabeling/
  • Fiore, A., Troise, A. D., Mogol, A., Roullier, V. and Gourdon, A. (2012). Controlling the maillard reaction by reactant encapsulation: Sodium chloride in cookies. J. Agric. Food Chem. 60:10808–10814.
  • Firoozmand, H. and Rousseau, D. (2014). Tailoring the morphology and rheology of phase-separated biopolymer gels using microbial cells as structure modifiers. Food Hydrocolloid. 42:204–214.
  • Gallier, S. and Singh, H. (2012). Behavior of almond oil bodies during in vitro gastric and intestinal digestion. Food Funct. 3(5):547–555.
  • Gallier, S., Tate, H. and Singh, H. (2013). In vitro gastric and intestinal digestion of a walnut oil body dispersion. J. Agric. Food Chem. 61(2):410–417.
  • Garcia, C., Antona, C., Robert, B., Lopez, C. and Armand, M. (2014). The size and interfacial composition of milk fat globules are key factors controlling triglycerides bioavailability in simulated human gastro-duodenal digestion. Food Hydrocolloids. 35:494–504.
  • Garti, N., Hoshen, G. and Aserin, A. (2012). Lipolysis and structure controlled drug release from reversed hexagonal mesophase. Colloids Surf. B.. 94:36–43.
  • Geraedts, M. C. P., Troost, F. J., Munsters, M. J. M., Stegen JHCH., de Ridder, R. J., Conchillo, J. M., Kruimel, J. W., et al. (2011). Intraduodenal administration of intact pea protein effectively reduces food intake in both lean and obese male subjects. PLoS ONE. 6(9):1–7.
  • Gharsallaoui, A., Roudaut, G., Chambin, O., Voilley, A. and Saurel, R. (2007). Applications of spray-drying in microencapsulation of food ingredients: An overview. Food Res. Int. 40(9):1107–1121.
  • Giang, T. M., Le Feunteun, S., Gaucel, S., Brestaz, P., Anton, M., Meynier, a. and Trelea, I. C. (2015). Dynamic modeling highlights the major impact of droplet coalescence on the in vitro digestion kinetics of a whey protein stabilized submicron emulsion. Food Hydrocolloid. 43:66–72.
  • Gibbs, B. F., Kermasha, S., Alli, I. and Mulligan, C. N. (1999). Encapsulation in the food industry: A review. Int. J. Food Sci. Nutr. 50(3):213–224.
  • Gibbs, J. and Smith, G. P. (1982). Gut peptides and food in the gut produce similar satiety effects. Peptides. 3(3):553–557.
  • Golding, M., Wooster, T. J., Day, L., Xu, M., Lundin, L., Keogh, J. and Clifton, P. (2011). Impact of gastric structuring on the lipolysis of emulsified lipids. Soft Matter. 7(7):3513
  • Golding, M. D., de Groot, P. W. N., Koppert, R. J., Melnikov, S. M. and Pelan, E. G. (2009). Satiety emulsions and food compositions. Patent US 2009/0317509 A1:1–7.
  • Grabovac, V., Guggi, D., Bernkop-Schnürch, A. (2005). Comparison of the mucoadhesive properties of various polymers. Adv. Drug Deliv. Rev. 57(11):1713–1723.
  • Granger, C., Barey, P., Toutain, J. and Cansell, M. (2005). Direct quantification of protein partitioning in oil-in-water emulsion by front-face fluorescence: Avoiding the need for centrifugation. Colloids Surf. B.. 43(3-4):158–162.
  • Gun, W. J. and Routh, A. F. (2013). Formation and characterization of pH-responsive liquid core microcapsules. Langmuir. 29(40):12541–12548.
  • Gunaseelan, K., Romsted, L. S., Gallego, M.-J. P., González-Romero, E., Bravo-Díaz, C. (2006). Determining alpha-tocopherol distributions between the oil, water, and interfacial regions of macroemulsions: Novel applications of electroanalytical chemistry and the pseudophase kinetic model. Adv. Colloid Interface Sci. 123–126:303–311.
  • Gupta, R. and Rousseau, D. (2012). Surface-active solid lipid nanoparticles as Pickering stabilizers for oil-in-water emulsions. Food Funct. 3(3):302–311.
  • Guzey, D. and McClements, D. J. (2006). Formation, stability and properties of multilayer emulsions for application in the food industry. Adv. Colloid Interface Sci. 128(130):227–248.
  • Herslof, B., Lindmark, L., Bohlinder, K. and Carlsson, A. (2003). Satiety Products. Patent US 6,517,883 B1
  • Hoebler, C., Guillon, F., Fardet, A., Cherbut, C. and Barry, J. (1998). Gastrointestinal or Simulated In Vitro Digestion Changes Dietary Fibre Properties and their Fermentation. Journal of the Science of Food and Agriculture, 77:327–333.
  • Horn, A. F., Barouh, N., Nielsen, N. S., Baron, C. P. and Jacobsen, C. (2013). Homogenization pressure and temperature affect protein partitioning and oxidative stability of emulsions. J. Am. Oil Chem. Soc. 90(10):1541–1550.
  • Hu, M., Li, Y., Decker, E. A., McClements, D. J. (2010a). Role of calcium and calcium-binding agents on the lipase digestibility of emulsified lipids using an in vitro digestion model. Food Hydrocolloid. 24(8):719–725.
  • Hu, M., Li, Y., Decker, E. A., Xiao, H., McClements, D. J. (2010b). Impact of layer structure on physical stability and lipase digestibility of lipid droplets coated by biopolymer nanolaminated coatings. Food Biophys. 6:37–48.
  • Hu, B., Zhang, L., Liang, R., Chen, F., He, L., Hu, B. and Zeng, X. (2015). Cross-linking of interfacial casein layer with genipin prevented ph induced structural instability and lipase digestibility of the fat droplets. J. Agric. Food Chem. 63(7):2033–2040.
  • Hur, S. J., Lim, B. O., Decker, E. a. and McClements, D. J. (2011). In vitro human digestion models for food applications. Food Chem. 125:1–12.
  • Hur, S. J., Decker, E. A and McClements, D. J. (2009). Influence of initial emulsifier type on microstructural changes occurring in emulsified lipids during in vitro digestion. Food Chemistry. 114:253–262.
  • Ibekwe, V. C., Fadda, H. M., McConnell, E. L., Khela, M. K., Evans, D. F. and Basit, A. W. (2008). Interplay between intestinal pH, transit time and feed status on the in vivo performance of pH responsive ileo-colonic release systems. Pharm. Res. 25(8):1828–1835.
  • Ibekwe, V. C., Fadda, H. M., Parsons, G. E. and Basit, A. W. (2006). A comparative in vitro assessment of the drug release performance of pH-responsive polymers for ileo-colonic delivery. Int. J. Pharm. 308(1–2):52–60.
  • Inui, A., Asakawa, A., Bowers, C. Y., Mantovani, G., Laviano, A., Meguid, M. M. and Fujimiya, M. (2004). Ghrelin, appetite, and gastric motility: The emerging role of the stomach as an endocrine organ. FASEB J. 18(3):439–456.
  • Israeli-Lev, G. and Livney, Y. D. (2014). Self-assembly of hydrophobin and its co-assembly with hydrophobic nutraceuticals in aqueous solutions: Towards application as delivery systems. Food Hydrocolloid. 35:28–35.
  • Jódar-Reyes, a. B., Torcello-Gómez, a., Wulff-Pérez, M., Gálvez-Ruiz, M. J., Martín-Rodríguez, a. (2010). Different stability regimes of oil-in-water emulsions in the presence of bile salts. Food Res. Int. 43(6):1634–1641.
  • Joyce, P., Tan, A., Whitby, C. P. and Prestidge, C. a. (2014). The role of porous nanostructure in controlling lipase-mediated digestion of lipid loaded into silica particles. Langmuir. 30:2779–2788.
  • Joye, I. J. and McClements, D. J. (2013). Production of nanoparticles by anti-solvent precipitation for use in food systems. Trends Food Sci. Technol. 34(2):109–123.
  • Keogh, J. B., Wooster, T. J., Golding, M., Day, L. and Clifton, P. M. (2011). Slowly and Rapidly Digested Fat Emulsions Are Equally Satiating but Their Triglycerides Are Differentially Absorbed and Metabolized. The Journal of Nutrition. 141(5):809–815.
  • van Klitzing, R. (2006). Internal structure of polyelectrolyte multilayer assemblies. Phys. Chem. Chem. Phys. 8(43):5012–5033.
  • Knutson, L., Fridblom, H., Viberg, A., Sein, A. and Lennerna, H. (2010). Gastrointestinal metabolism of a vegetable-oil emulsion in healthy. Am. J. Clin. Nutr. 92:515–524.
  • Klinkesorn, U. and McClements, D. J. (2010). Impact of Lipase, Bile Salts, and Polysaccharides on Properties and Digestibility of Tuna Oil Multilayer Emulsions Stabilized by Lecithin–Chitosan. Food Biophysics. 5(2):73–81.
  • Kong, F. and Singh, R. P. (2010). A human gastric simulator (HGS) to study food digestion in human stomach. J. Food Sci. 75(9):E627–E635.
  • Kozu, H., Kobayashi, I., Neves, M. a., Nakajima, M., Uemura, K., Sato, S. and Ichikawa, S. (2014). PIV and CFD studies on analyzing intragastric flow phenomena induced by peristalsis using a human gastric flow simulator. Food Funct. 5(8):1839–1847.
  • Krishnamachari, Y., Madan, P. and Lin, S. (2007). Development of pH- and time-dependent oral microparticles to optimize budesonide delivery to ileum and colon. Int. J. Pharm. 338:238–247.
  • Kroes-Nijboer, A., Venema, P., van der Linden, E. (2012). Fibrillar structures in food. Food Funct. 3(3):221–227.
  • Kunz, P., Feinle-Bisset, C., Faas, H., Boesiger, P., Fried, M., Steingötter, A. and Schwizer, W. (2005). Effect of ingestion order of the fat component of a solid meal on intragastric fat distribution and gastric emptying assessed by MRI. J. Magn. Reson. Imaging. 21(4):383–390.
  • Lam, P. L. and Gambari, R. (2014). Advanced progress of microencapsulation technologies: In vivo and in vitro models for studying oral and transdermal drug deliveries. J. Control. Release. 178:25–45.
  • Laouini, A., Koutroumanis, K. P., Charcosset, C., Georgiadou, S., Fessi, H., Holdich, R. G. and Vladisavljević, G. T. (2013). pH-sensitive micelles for targeted drug delivery prepared using a novel membrane contactor method. Appl. Mater. Interfaces. 5(18):8939–8947.
  • Lavin, J. H., Wittert, G. A., Andrews, J., Yeap, B., Wishart, J. M., Morris, H. A., Morley, J. E., et al. (1998). Interaction of insulin, glucagon-like peptide 1, gastric inhibitory polypeptide, and appetite in response to intraduodenal carbohydrate. Am. J. Clin. Nutr. 68:591–598.
  • Leal-Calderon, F., Schmitt, V. and Bibette, J. (2007). Emulsion Science, Basic Principles. Springer Science, NY.
  • Lesmes, U., Baudot, P. and McClements, D. J. (2010). Impact of interfacial composition on physical stability and in vitro lipase digestibility of triacylglycerol oil droplets coated with lactoferrin and/or caseinate. Journal of Agricultural and Food Chemistry. 58(13):7962–7969
  • Lesmes, U. and McClements, D. J. (2009). Structure–function relationships to guide rational design and fabrication of particulate food delivery systems. Trends Food Sci. Technol. 20(10):448–457.
  • Li, X., Fang, Y., Phillips, G. O., Al-Assaf, S. (2013). Improved Sugar Beet Pectin-Stabilized Emulsions through Complexation with Sodium Caseinate. J. Agric. Food Chem. 61(6):1388–1396.
  • Li, Y., Hu, M. and McClements, D. J. (2011). Factors affecting lipase digestibility of emulsified lipids using an in vitro digestion model: Proposal for a standardised pH-stat method. Food Chem. 126(2):498–505.
  • Li, Y., Hu, M., Xiao, H., Du, Y., Decker, E. A. and McClements, D. J. (2010). Controlling the functional performance of emulsion-based delivery systems using multi-component biopolymer coatings. Eur. J. Pharm. Biopharm. 76(1):38–47.
  • Li, Y., Kim, J., Park, Y. and McClements, D. J. (2012). Modulation of lipid digestibility using structured emulsion-based delivery systems: Comparison of in vivo and in vitro measurements. Food Funct. 3(5):528–536.
  • Li, Y. and McClements, D. J. (2014a). Modulating lipid droplet intestinal lipolysis by electrostatic complexation with anionic polysaccharides: Influence of cosurfactants. Food Hydrocolloid. 35:367–374.
  • Li, Y. and McClements, D. J. (2014b). Influence of cosurfactant on the behavior of structured emulsions under simulated intestinal lipolysis conditions. Food Hydrocolloid. 40:96–103.
  • Liu, F. and Tang, C.-H. (2014). Phytosterol colloidal particles as Pickering stabilizers for emulsions. J. Agric. Food Chem. 62(22):5133–5141.
  • Losada-Barreiro, S., Bravo-Diaz, C., Paiva-Martins, F. and Romsted, L. S. (2013). Maxima in antioxidant distributions and efficiencies with increasing hydrophobicity of gallic acid and its alkyl esters. The pseudophase model interpretation of the “cut off effect.” J. Agric. Food Chem. 61:6533–6543.
  • Luo, Q., Boom, R. M. and Janssen, A. E. M. (2015). Digestion of protein and protein gels in simulated gastric environment. LWT - Food Sci. Technol. 63(1):161–168.
  • Luo, R., Venkatraman, S. S. and Neu, B. (2013). Layer-by-layer polyelectrolyte—polyester hybrid microcapsules for encapsulation and delivery of hydrophobic drugs. Biomacromolecules. 14:2262–2271.
  • Mackie, A., Gunning, A., Wilde, P. and Morris, V. (1999). Orogenic displacement of protein from the air/water interface by competitive adsorption. J. Colloid Interface Sci. 210(1):157–166.
  • Madene, A., Jacquot, M., Scher, J. and Desobry, S. (2006). Flavour encapsulation and controlled release—A review. Int. J. Food Sci. Technol. 41(1):1–21.
  • Makkhun, S., Khosla, A., Foster, T., McClements, D. J., Grundy, M. M. L. and Gray, D. a. (2015). Impact of extraneous proteins on the gastrointestinal fate of sunflower seed (Helianthus annuus) oil bodies: A simulated gastrointestinal tract study. Food Funct. 6(1):124–133.
  • Maldonado-Valderrama, J., Wilde, P., Macierzanka, A. and Mackie, A. (2011). The role of bile salts in digestion. Adv Colloid Interface Sci. 165:36–46.
  • Malinauskytė, E., Ramanauskaitė, J., Leskauskaitė, D., Devold, T. G., Schüller, R. B. and Vegarud, G. E. (2014). Effect of human and simulated gastric juices on the digestion of whey proteins and carboxymethylcellulose-stabilised O/W emulsions. Food Chem. 165:104–112.
  • Maljaars, P. W. J., Peters, H. P. F., Kodde, A., Geraedts, M., Troost, F. J., Haddeman, E. and Masclee, A. A. M. (2011). Length and site of the small intestine exposed to fat influences hunger and food intake. Br. J. Nutr. 106(10):1609–1615.
  • Maljaars, J., Peters, H. P. F. and Masclee, A. M. (2007). Review article: The gastrointestinal tract: Neuroendocrine regulation of satiety and food intake. Aliment. Pharmacol. Ther. 26(2):241–250.
  • Maljaars, P. W. J., Peters, H. P. F., Mela, D. J. and Masclee, A. A. M. (2008a). Ileal brake: A sensible food target for appetite control. A review. Physiol. Behav. 95(3):271–281.
  • Maljaars, J., Romeyn, E. A., Haddeman, E., Peters, H. P. F. and Masclee, A. A. M. (2009). Effect of fat saturation on satiety, hormone release, and food intake. Am. J. Clin. Nutr. 89:1019–1024.
  • Maljaars, P. W. J., Symersky, T., Kee, B. C., Haddeman, E., Peters, H. P. F. and Masclee, A. A. M. (2008b). Effect of ileal fat perfusion on satiety and hormone release in healthy volunteers. Int. J. Obes. 32(11):1633–1639.
  • Mantovani, R. A., Cavallieri, A. L. F., Netto, F. M. and Cunha, R. L. (2013). Stability and in vitro digestibility of emulsions containing lecithin and whey proteins. Food Funct. 4(9):1322–1331.
  • Marciani, L., Gowland, P. a., Fillery-Travis, a., Manoj, P., Wright, J., Smith, a., Young, P., et al. (2001). Assessment of antral grinding of a model solid meal with echo-planar imaging. Am. J. Physiol. Gastrointest. Liver Physiol. 280(5):G844–G849.
  • Marze, S. (2013). Bioaccessibility of nutrients and micronutrients from dispersed food systems: Impact of the multiscale bulk and interfacial structures. Crit. Rev. Food Sci. Nutr. 53(1):76–108.
  • Marze, S., Algaba, H. and Marquis, M. (2014). A microfluidic device to study the digestion of trapped lipid droplets. Food Funct. 5(7):1481–1488.
  • Marze, S., Choimet, M. and Foucat, L. (2012). In vitro digestion of emulsions: Mechanistic and experimental models. Soft. Matter. 8(42):10982–10993.
  • Matalanis, A. and McClements, D. J. (2013). Hydrogel microspheres for encapsulation of lipophilic components: Optimization of fabrication & performance. Food Hydrocolloid. 31(1):15–25.
  • McClements, D. J. (2005). Food Emulsions: Principles, Practices, and Techniques. Second ed., CRC Press.
  • McClements, D. J. (2010). Design of nano-laminated coatings to control bioavailability of lipophilic food components. Journal of Food Science. 75(1):R30–42.
  • McClements, D. J., Decker, E. A. and Park, Y. (2009). Controlling lipid bioavailability through physicochemical and structural approaches. Crit. Rev. Food Sci. Nutr. 49(1):48–67.
  • McClements, D. J., Decker, E. a. and Weiss, J. (2007). Emulsion-based delivery systems for lipophilic bioactive components. J. Food Sci. 72(8):109–124.
  • McClements, D. J. and Li, Y. (2010a). Review of in vitro digestion models for rapid screening of emulsion-based systems. Food Funct. 1(1):32–59.
  • McClements, D. J. and Li, Y. (2010b). Structured emulsion-based delivery systems: Controlling the digestion and release of lipophilic food components. Adv. Colloid Interface Sci. 159(2):213–228.
  • McConnell, E. L., Fadda, H. M. and Basit, A. W. (2008). Gut instincts: Explorations in intestinal physiology and drug delivery. Int. J Pharm. 364(2):213–226.
  • Meshulam, D. and Lesmes, U. (2013). Responsiveness of emulsions stabilized by lactoferrin nano-particles to simulated intestinal conditions. Food Funct. 5(1):65–73.
  • Minekus, M. (2015). The TNO Gastro-Intestinal Model (TIM). In: Verhoeckx K, Cotter P, López-Expósito I et al (eds) The impact of food bioactives on health: in vitro and ex vivo models. Springer International Publishing, New York, pp. 37–46.
  • Minekus, M., Alminger, M., Alvito, P., Ballance, S., Bohn, T., Bourlieu, C., Carrière, F., et al. (2014). A standardised static in vitro digestion method suitable for food—An international consensus. Food Funct. 5:1113–1124.
  • Molly, K., van de Woestyne, M., de Smet, I. and Verstraete, W. (1994). Validation of the simulator of the human intestinal microbial ecosystems (SHIME) reaction using microorganism-associated activities. Microb. Ecol. Health Dis. 7:191–200.
  • Moreau, H., Sauniere, J. F., Gargouri, Y., Pieroni, G., Verger, R. and Sarles, H. (1988). Human gastric lipase: variations induced by gastrointestinal hormones and by pathology. Scand. J. Gastroenterol. 23(9):1044–1048.
  • Moriguchi, I., Hirono, S., Liu, Q., Nakagome, I. and Matsushita, Y. (1992). Simple method of calculating octanol/water partition coefficient. Chem. Pharm. Bull. 40(17):127–130.
  • Mun, S., Decker, E. A. and McClements, D. J. (2007). Influence of emulsifier type on in vitro digestibility of lipid droplets by pancreatic lipase. Food Research International. 40(6):770–781.
  • Mun, S., Decker, E. A., Park, Y., Weiss, J. and McClements, D. J. (2006). Influence of Interfacial Composition on in vitro Digestibility of Emulsified Lipids: Potential Mechanism for Chitosan's Ability to Inhibit Fat Digestion. Food Biophysics. 1(1):21–29.
  • Mun, S., Kim, Y.-R., Shin, M. and McClements, D. J. (2015). Control of lipid digestion and nutraceutical bioaccessibility using starch-based filled hydrogels: Influence of starch and surfactant type. Food Hydrocolloid. 44:380–389.
  • Neubauer, M. P., Poehlmann, M. and Fery, A. (2014). Microcapsule mechanics: From stability to function. Adv. Colloid Interface Sci. 207:65–80.
  • Marieb, E.N. (1999). Anatomie et physiologie humaines. Québec, Canada: De Boeck, pp. 1–1194.
  • Malaki Nik, A., Wright, A. J. and Corredig, M. (2011). Impact of interfacial composition on emulsion digestion and rate of lipid hydrolysis using different in vitro digestion models. Colloids and Surfaces B: Biointerfaces. 83(2):321–330.
  • Olsson, C. and Holmgren, S. (2001). The control of gut motility. Comp. Biochem. Physiol. Part A. 128(3):479–501.
  • Paques, J. P., van der Linden, E., van Rijn, C. J. M. and Sagis, L. M. C. (2014). Preparation methods of alginate nanoparticles. Adv. Colloid Interface Sci. 209:163–171.
  • Park, K. M., Sung, H., Choi, S. J., Choi, Y. J. and Chang, P.-S. (2014). Double-layered microparticles with enzyme-triggered release for the targeted delivery of water-soluble bioactive compounds to small intestine. Food Chem. 161:53–59.
  • Patel, A. R., Drost, E., Seijen ten Hoorn, J. and Velikov, K. P. (2013). Fabrication and characterization of emulsions with pH responsive switchable behavior. Soft. Matter. 9(29):6747–6751.
  • Pedersen-Bjergaard, U., Høt, U., Kelbæk, H., Schifter, S., Rehfeld, F. J., Faber, J. and Christensen, N. J. (1996). Influence of meal composition on postprandial peripheral plasma concentrations of vasoactive peptides in man. Scand. J. Clin. Lab. Invest. 56(6):497–503.
  • Pickering, S. U. (1907). Emulsions. J. Chem. Soc. 91:2001–2021.
  • Pilichiewicz, A. N., Chaikomin, R., Brennan, I. M., Wishart, J. M., Rayner, C. K., Jones, K. L., Smout, A. J. P. M., et al. (2007). Load-dependent effects of duodenal glucose on glycemia, gastrointestinal hormones, antropyloroduodenal motility, and energy intake in healthy men. Am. J. Phys. Endocrinol. Metabolism. 293:743–753.
  • Porter, C. J. and Charman, W. N. (2001). In vitro assessment of oral lipid based formulations. Adv. Drug Deliv. Rev. 50:S127–S147.
  • Rampon, V., Genot, C., Riaublanc, a., Anton, M., Axelos, M. a. V. and McClements, D. J. (2003). Front-face fluorescence spectroscopy study of globular proteins in emulsions: Displacement of BSA by a nonionic surfactant. J. Agric. Food Chem. 51(9):2482–2489.
  • Rampon, V., Lethuaut, L., Mouhous-Riou, N. and Genot, C. (2001). Interface characterization and aging of bovine serum albumin stabilized oil-in-water emulsions as revealed by front-surface fluorescence. J. Agric. Food Chem. 49(8):4046–4051.
  • Rayner, M., Timgren, A., Sjöö, M. and Dejmek, P. (2012). Quinoa starch granules: A candidate for stabilising food-grade Pickering emulsions. J. Sci. Food Agric. 92(9):1841–1847.
  • Raynes, J. K., Carver, J. a., Gras, S. L. and Gerrard, J. a. (2014). Protein nanostructures in food—Should we be worried? Trends Food Sci. Technol. 37(1):42–50.
  • Reis, P., Holmberg, K., Miller, R., Krägel, J., Grigoriev, D. O., Leser, M. E. and Watzke, H. J. (2008). Competition between lipases and monoglycerides at interfaces. Langmuir. 24(14):7400–7407.
  • Rossier-Miranda, F. J., Schroën, K. and Boom, R. (2010). Mechanical characterization and pH response of fibril-reinforced microcapsules prepared by layer-by-layer adsorption. Langmuir. 26(24):19106–19113.
  • Rossier-Miranda, F. J., Schroën, K. and Boom, R. (2012). Microcapsule production by an hybrid colloidosome-layer-by-layer technique. Food Hydrocolloid. 27(1):119–125.
  • Rousseau, D. (2013). Trends in structuring edible emulsions with Pickering fat crystals. Curr. Opin. Colloid Interface Sci. 18(4):283–291.
  • Ruiz-Rodriguez, P. E., Meshulam, D. and Lesmes, U. (2014). Characterization of Pickering O/W Emulsions Stabilized by Silica Nanoparticles and Their Responsiveness to In vitro Digestion Conditions. Food Biophysics. 4:406–415.
  • Russel, W. B., Saville, D. A. and Schowalter, W. R. (1989). Colloidal Dispersions. Cambridge University Press, Cambridge. pp. 1–525.
  • Ryan, A. T., Feinle-Bisset, C., Kallas, A., Wishart, J. M., Clifton, P. M., Horowitz, M. and Luscombe-Marsh, N. D. (2012). Intraduodenal protein modulates antropyloroduodenal motility, hormone release, glycemia, appetite, and energy intake in lean men. Am. J. Clin. Nutr. 96(7):474–482.
  • Sakr, O. S. and Borchard, G. (2013). Encapsulation of Enzymes in layer-by-layer (LbL) structures: latest advances and applications. Biomacromolecules. 14:2117–2135.
  • Salminen, H. and Weiss, J. (2014). Electrostatic adsorption and stability of whey protein–pectin complexes on emulsion interfaces. Food Hydrocolloid. 35:410–419.
  • Santivarangkna, C., Kulozik, U. and Foerst, P. (2007). Alternative drying processes for the industrial preservation of lactic acid starter cultures. Biotechnol. Prog. 23(2):302–315.
  • Sawalha, H., Fan, Y., Schroen, K. and Boom, R. (2008). Preparation of hollow polylactide microcapsules through premix membrane emulsification—Effects of nonsolvent properties. J. Membr. Sci. 325(2):665–671.
  • Sawalha, H., Schroën, K. and Boom, R. (2009). Hollow polylactide microcapsules with controlled morphology and thermal and mechanical properties. AIChE J. 55(11):2827–2834.
  • Sawalha, H., Schroën, K. and Boom, R. (2011). Biodegradable polymeric microcapsules: Preparation and properties. Chem. Eng. J. 169(1–3):1–10.
  • Schönhoff, M. (2003). Layered polyelectrolyte complexes: Physics of formation and molecular properties. J. Phys. Condens. Matter. 15:1781–1808.
  • Schroën, K., Bliznyuk, O., Muijlwijk, K., Sahin, S. and Berton-Carabin, C. C. (2015). Microfluidic emulsification devices: From micrometer insights to large-scale food emulsion production. Curr. Opin. Food Sci. 3:33–40.
  • Serfert, Y., Lamprecht, C., Tan, C.-P., Keppler, J. K., Appel, E., Rossier-Miranda, F. J., Schroen, K., et al. (2014). Characterisation and use of β-lactoglobulin fibrils for microencapsulation of lipophilic ingredients and oxidative stability thereof. J. Food Eng. 143:53–61.
  • Shahidan, N., Liu, R., Thaiboonrod, S., Alexander, C., Shakesheff, K. M. and Saunders, B. R. (2013). Hollow colloidosomes prepared using accelerated solvent evaporation. Langmuir. 29(45):13676–13685.
  • Simon, G. L. and Gorbach, S. L. (1986). The human intestinal microflora. Digest. Dis. Sci. 31(S9):147–162.
  • Simovic, S., Heard, P., Hui, H., Song, Y., Peddie, F., Davey, A. K., Lewis, A., et al. (2009). Dry Hybrid Lipid - Silica Microcapsules Engineered from Submicron Lipid Droplets and Nanoparticles as a Novel Delivery System for Poorly Soluble Drugs. Molecular pharmaceutics. 6(3):861–872.
  • Singh, H., Ye, A. and Horne, D. (2009). Structuring food emulsions in the gastrointestinal tract to modify lipid digestion. Prog. Lipid Res. 48(2):92–100.
  • Situ, W., Chen, L., Wang, X. and Li, X. (2014). Resistant starch film-coated microparticles for an oral colon-specific polypeptide delivery system and its release behaviors. J. Agric. Food Chem. 62(16):3599–3609.
  • Sjöö, M., Emek, S. C., Hall, T., Rayner, M. and Wahlgren, M. (2015). Barrier properties of heat treated starch Pickering emulsions. J. Colloid Interface Sci. 450:182–188.
  • Smit, H. J., Keenan, E., Kovacs, E. M. R., Wiseman, S. a., Peters, H. P. F., Mela, D. J. and Rogers, P. J. (2011). No efficacy of processed Fabuless (Olibra) in suppressing appetite or food intake. Eur. J. Clin. Nutr. 65(1):81–86.
  • Speranza, A., Corradini, M. G., Hartman, T. G., Ribnicky, D., Oren, A. and Rogers, M. A. (2013). Influence of emulsifier structure on lipid bioaccessibility in oil—water nanoemulsions. J. Agric. Food Chem. 61:6505–6515.
  • Strader, A. D., Vahl, T. P., Jandacek, R. J., Woods, S. C., Alessio, D. A. D., Seeley, R. J., April, D., et al. (2005). Weight loss through ileal transposition is accompanied by increased ileal hormone secretion and synthesis in rats. Am. J. Physiol. Endocrinol. Metabolism. 288:447–453.
  • Tan, C. S., Jejurikar, A., Rai, B., Bostrom, T., Lawrie, G. and Grøndahl, L. (2009). Encapsulation of a glycosaminoglycan in hydroxyapatite/alginate capsules. J. Biomed. Mater. Res. Part A. 91(3):866–877.
  • Tan, A., Colliat-dangus, P., Whitby, C. P. and Prestidge, C. A. (2014). Controlling the Enzymatic Digestion of Lipids Using Hybrid Nanostructured Materials. Applied Materials & Interfaces. 6:15363–15371.
  • Tikekar R. V. and Nitin, N. (2011). Effect of physical state (solid vs. liquid) of lipid core on the rate of transport of oxygen and free radicals in solid lipid nanoparticles and emulsion. Soft. Matter. 7(18):8149.
  • Timgren, A., Rayner, M., Sjöö, M. and Dejmek, P. (2011). Starch particles for food based Pickering emulsions. Procedia Food Sci. 1:95–103.
  • Tokle, T., Mao, Y. and McClements, D. J. (2013). Potential biological fate of emulsion-based delivery systems: lipid particles nanolaminated with lactoferrin and β-lactoglobulin coatings. Pharmaceutical research. 30(12):3200–3213.
  • Torcello-Gómez, A., Maldonado-Valderrama, J., Martín-Rodríguez, A. and McClements, D. J. (2011). Physicochemical properties and digestibility of emulsified lipids in simulated intestinal fluids: influence of interfacial characteristics. Soft Matter. 7(13):6167.
  • Torcello-Gómez, a., Jódar-Reyes, a. B., Maldonado-Valderrama, J. and Martín-Rodríguez, a. (2012). Effect of emulsifier type against the action of bile salts at oil–water interfaces. Food Res. Int. 48(1):140–147.
  • Turchiuli, C., Jimenez Munguia, M. T., Hernandez Sanchez, M., Cortes Ferre, H. and Dumoulin, E. (2014). Use of different supports for oil encapsulation in powder by spray drying. Powder Technol. 255:103–108.
  • Turton, M. D., O'shea, D., Gunn, I., Beak, S. A., Edwards, C. M., Meeran, K., Choi, S. J., et al. (1996). A role for glucagon-like peptide-1 in the central regulation of feeding. Nature. 379(4):69–72.
  • Tzoumaki, M. V., Moschakis, T., Scholten, E. and Biliaderis, C. G. (2013). In vitro lipid digestion of chitin nanocrystal stabilized o/w emulsions. Food Funct. 4(1):121–129.
  • Van Aken, G. A. (2010). Relating food emulsion structure and composition to the way it is processed in the gastrointestinal tract and physiological responses: What are the opportunities? Food Biophys. 5(4):258–283.
  • Van Aken, G. A., Vingerhoeds, M. H. and de Hoog, E. H. A. (2007). Food colloids under oral conditions. Curr. Opin. Colloid Interface Sci. 12(4–5):251–262.
  • Van Avesaat, M., Troost, F. J., Ripken, D., Hendriks, H. F. and Masclee, a. a. M. (2015). Ileal brake activation: Macronutrient specific effects on eating behavior? Int. J. Obes. 39(April):235–243.
  • Vaughan, R. W., Bauer, S. and Wise, L. (1973). Volume and pH of gastric juice in obese patients. Anesthesiology. 43(6):686–689.
  • Vingerhoeds, M. H., Blijdenstein, T. B. J., Zoet, F. D. and van Aken, G. A. (2005). Emulsion flocculation induced by saliva and mucin. Food Hydrocolloid. 19(5):915–922.
  • Vitaglione, P., Barone Lumaga, R., Ferracane, R., Radetsky, I., Mennella, I., Schettino, R., Koder, S., et al. (2012). Curcumin bioavailability from enriched bread: The effect of microencapsulated ingredients. J. Agric. Food Chem. 60(13):3357–3366.
  • Walstra, P. (2003). Phys. Chem. Foods. Marcel Dekker, New York, pp. 1–832.
  • Wang, R., Fu, Y. and Lai, L. (1997). A new atom-additive method for calculating partition coefficients. J. Chem. Inf. Comput. Sci. 37:615–621.
  • Waninge, R., Walstra, P., Bastiaans, J., Nieuwenhuijse, H., Nylander, T., Paulsson, M. and Bergenståhl, B. (2005). Competitive adsorption between beta-casein or beta-lactoglobulin and model milk membrane lipids at oil-water interfaces. J. Agric. Food Chem. 53(3):716–724.
  • WHO. (2014). Obesity and Overweight. World Health Organization Media centre, Fact sheet N311. Available from http://www.who.int/mediacentre/factsheets/fs311/en/
  • Wickham, M. J. S., Faulks, R. M., Mann, J. and Mandalari, G. (2012). The design, operation, and application of a dynamic gastric model. Dissolut. Technol. 19(3):15–22.
  • Wilcox, M. D., Brownlee I. a., Richardson, J. C., Dettmar, P. W. and Pearson, J. P. (2014). The modulation of pancreatic lipase activity by alginates. Food Chem. 146:479–484.
  • Wrenn, S. P., Dicker, S. M., Small, E. F., Dan, N. R., Mleczko, M., Schmitz, G. and Lewin, P. a. (2012). Bursting bubbles and bilayers. Theranostics. 2(12):1140–1159.
  • Wu, Z. M., Zhou, L., Guo, X. D., Jiang, W., Ling, L., Qian, Y., Luo, K. Q., et al. (2012). HP55-coated capsule containing PLGA/RS nanoparticles for oral delivery of insulin. Int. J. Pharm. 425(1–2):1–8.
  • Xiao, Z., Liu, W., Zhu, G., Zhou, R. and Niu, Y. (2014). A review of the preparation and application of flavour and essential oils microcapsules based on complex coacervation technology. J. Sci. Food Agric. 94(8):1482–1494.
  • Xu, D., Wang, X., Jiang, J., Yuan, F. and Gao, Y. (2012). Impact of whey protein—Beet pectin conjugation on the physicochemical stability of β-carotene emulsions. Food Hydrocolloid. 28(2):258–266.
  • Xu, D., Yuan, F., Gao, Y., Panya, A., McClements, D. J. and Decker, E. A. (2014). Influence of whey protein-beet pectin conjugate on the properties and digestibility of β-carotene emulsion during in vitro digestion. Food Chemistry. 156:374–379.
  • Yan, M., Liu, B., Jiao, X. and Qin, S. (2014). Preparation of phycocyanin microcapsules and its properties. Food Bioprod. Process. 92:89–97.
  • Yang, Z., Peng, Z., Li, J., Li, S., Kong, L., Li, P. and Wang, Q. (2014b). Development and evaluation of novel flavour microcapsules containing vanilla oil using complex coacervation approach. Food Chem. 145:272–277.
  • Yang, D., Wang, X.-Y., Ji, C.-M., Lee, K.-T., Shin, J.-A., Lee, E.-S. and Hong, S.-T. (2014a). Influence of Ginkgo biloba extracts and of their flavonoid glycosides fraction on the in vitro digestibility of emulsion systems. Food Hydrocolloid. 42:196–203.
  • Yuan, Q. and Williams, R. a. (2014). Precision emulsification for droplet and capsule production. Adv. Powder Technol. 25:122–135.
  • Yucel, U., Elias, R. J. and Coupland, J. N. (2013). Localization and reactivity of a hydrophobic solute in lecithin and caseinate stabilized solid lipid nanoparticles and nanoemulsions. J. Colloid Interface Sci. 394:20–25.
  • Zeeb, B., Lopez-Pena, C. L., Weiss, J. and McClements, D. J. (2015). Controlling lipid digestion using enzyme-induced crosslinking of biopolymer interfacial layers in multilayer emulsions. Food Hydrocolloid. 46:125–133.
  • Zeeb, B., Thongkaew, C. and Weiss, J. (2014). Theoretical and practical considerations in electrostatic depositioning of charged polymers. J. Appl. Polym. Sci. 131(7):1–11.
  • Zhang, Z., Zhang, R., Decker, E. A. and McClements, D. J. (2015). Development of food-grade filled hydrogels for oral delivery of lipophilic active ingredients: pH-triggered release. Food Hydrocolloid. 44:345–352.
  • Zuidam, N. J. and Shimoni, E. (2010). Overview of microencapsulates for use in food products or processes and methods to make them. In: Encapsulation Technologies for Active Food Ingredients and Food Processing, Springer Science+Business Media, Dordrecht, pp. 122–135.