2,788
Views
0
CrossRef citations to date
0
Altmetric
Systematic Review

Determination of glucosinolates and isothiocyanates in glucosinolate-rich vegetables and oilseeds using infrared spectroscopy: A systematic review

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon

References

  • Adeleke, B. S., and O. O. Babalola. 2020. Oilseed crop sunflower (Helianthus annuus) as a source of food: Nutritional and health benefits. Food Science & Nutrition 8 (9):4666–84. doi: 10.1002/fsn3.1783.
  • Aghajanzadeh, T. A., M. Reich, S. Kopriva, and L. J. De Kok. 2018. Impact of chloride (NaCl, KCl) and sulphate (Na2SO4, K2SO4) ­salinity on glucosinolate metabolism in Brassica rapa. Journal of Agronomy and Crop Science 204 (2):137–46. doi: 10.1111/jac.12243.
  • Aghajanzadeh, T. A., D. H. Prajapati, and M. Burow. 2020. Copper toxicity affects indolic glucosinolates and gene expression of key enzymes for their biosynthesis in Chinese cabbage. Archives of Agronomy and Soil Science 66 (9):1288–301. doi: 10.1080/03650340.2019.1666208.
  • Akbari, E., and M. Namazian. 2020. Sulforaphane: A natural product against reactive oxygen species. Computational and Theoretical Chemistry 1183:112850. doi: 10.1016/j.comptc.2020.112850.
  • Bahadoran, Z., M. Tohidi, P. Nazeri, M. Mehran, F. Azizi, and P. Mirmiran. 2012. Effect of broccoli sprouts on insulin resistance in type 2 diabetic patients: A randomized double-blind clinical trial. International Journal of Food Sciences and Nutrition 63 (7):767–71. doi: 10.3109/09637486.2012.665043.
  • Bahoosh, S. R., Y. Shokoohinia, and M. Eftekhari. 2022. Glucosinolates and their hydrolysis products as potential nutraceuticals to combat cytokine storm in SARS-COV-2. DARU Journal of Pharmaceutical Sciences 30 (1):245–52. doi: 10.1007/s40199-022-00435-x.
  • Barba, F. J., N. Nikmaram, S. Roohinejad, A. Khelfa, Z. Zhu, and M. Koubaa. 2016. Bioavailability of glucosinolates and their breakdown products: Impact of processing. Frontiers in Nutrition 3:24. doi: 10.3389/fnut.2016.00024.
  • Barthet, V. J., M. W. P. Petryk, and B. Siemens. 2020. Rapid nondestructive analysis of intact canola seeds using a handheld near‐­infrared spectrometer. Journal of the American Oil Chemists’ Society 97 (6):577–89. doi: 10.1002/aocs.12335.
  • Bec, K. B., J. Grabska, and C. W. Huck. 2022. In silico NIR ­spectroscopy - A review. Molecular fingerprint, interpretation of calibration ­models, understanding of matrix effects and instrumental difference. Spectrochimica Acta, Part A, Molecular and Biomolecular Spectroscopy 279:121438. doi: 10.1016/j.saa.2022.121438.
  • Bell, L., S. Lignou, and C. Wagstaff. 2020. High Glucosinolate content in rocket leaves (diplotaxis tenuifolia and eruca sativa) after multiple harvests is associated with increased bitterness, pungency, and reduced consumer liking. Foods 9 (12):1799. doi: 10.3390/foods9121799.
  • Blekkenhorst, L. C., J. M. Hodgson, J. R. Lewis, A. Devine, R. J. Woodman, W. H. Lim, G. Wong, K. Zhu, C. P. Bondonno, N. C. Ward, et al. 2017. Vegetable and fruit intake and fracture-related hospitalisations: A prospective study of older women. Nutrients 9 (5):511. doi: 10.3390/nu9050511.
  • Bocianowski, J., A. Liersch, and K. Nowosad. 2020. Genotype by environment interaction for alkenyl glucosinolates content in winter oilseed rape (Brassica napus L.) using additive main effects and multiplicative interaction model. Current Plant Biology 21:100137. doi: 10.1016/j.cpb.2020.100137.
  • Bro, R., and A. K. Smilde. 2014. Principal component analysis. Analytical Methods 6 (9):2812–31. doi: 10.1039/C3AY41907J.
  • Cabello-Hurtado, F., M. Gicquel, and M.-A. Esnault. 2012. Evaluation of the antioxidant potential of cauliflower (Brassica oleracea) from a glucosinolate content perspective. Food Chemistry 132 (2):1003–9. doi: 10.1016/j.foodchem.2011.11.086.
  • Campanella, B., V. Palleschi, and S. Legnaioli. 2021. Introduction to vibrational spectroscopies. ChemTexts 7 (1):787–798. doi: 10.1007/s40828-020-00129-4.
  • Campbell, N. L., C. J. Gillis, D. Klapstein, W. M. Nau, W. J. Balfour, and S. G. Fougère. 1995. Vibrational spectra and conformational behaviour of carbonyl isothiocyanates X-CO-NCS, X = F, Cl, Br, MeO, EtO, and acetyl isothiocyanate CH3-CO-NCS. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 51 (5):787–98. doi: 10.1016/0584-8539(94)00199-L.
  • Chartoumpekis, D. V., P. G. Ziros, J. G. Chen, J. D. Groopman, T. W. Kensler, and G. P. Sykiotis. 2019. Broccoli sprout beverage is safe for thyroid hormonal and autoimmune status: Results of a 12-week randomized trial. Food and Chemical Toxicology 126:1–6. doi: 10.1016/j.fct.2019.02.004.
  • Chen, G. C., W. P. Koh, J. M. Yuan, L. Q. Qin, and R. M. van Dam. 2018. Green leafy and cruciferous vegetable consumption and risk of type 2 diabetes: Results from the Singapore Chinese Health Study and meta-analysis. The British Journal of Nutrition 119 (9):1057–67. doi: 10.1017/S0007114518000119.
  • Chen, J., L. Li, S. Wang, X. Tao, Y. Wang, A. Sun, and H. He. 2014. Assessment of glucosinolates in Chinese kale by near-infrared spectroscopy. International Journal of Food Properties 17 (8):1668–79. doi: 10.1080/10942912.2012.678535.
  • Chen, R., X. J. Wang, Y. Y. Zhang, Y. Xing, L. Yang, H. Ni, and H. H. Li. 2019. Simultaneous extraction and separation of oil, proteins, and glucosinolates from Moringa oleifera seeds. Food Chemistry 300:125162. doi: 10.1016/j.foodchem.2019.125162.
  • Chenani Saleh, N., S. A. Hossein Goli, M. Haghighi, and J. Keramat. 2021. The effects of blanching, and freezing on quality properties of frozen cabbage (Brassica oleracea var. capitata). Journal of Plant Process and Fucntion 10 (43):35–42.
  • Chopra, R., N. Folstad, J. Lyons, T. Ulmasov, C. Gallaher, L. Sullivan, A. McGovern, R. Mitacek, K. Frels, K. Altendorf, et al. 2019. The adaptable use of Brassica NIRS calibration equations to identify pennycress variants to facilitate the rapid domestication of a new winter oilseed crop. Industrial Crops and Products 128:55–61. doi: 10.1016/j.indcrop.2018.10.079.
  • Chowdhury, M., S. Kiraga, M. N. Islam, M. Ali, M. N. Reza, W. H. Lee, and S. O. Chung. 2021. Effects of temperature, relative humidity, and carbon dioxide concentration on growth and glucosinolate content of kale grown in a plant factory. Foods 10 (7):1524. doi: 10.3390/foods10071524.
  • Chowdhury, M., V.-D. Ngo, M. N. Islam, M. Ali, S. Islam, K. Rasool, S.-U. Park, and S.-O. Chung. 2021. Estimation of glucosinolates and anthocyanins in kale leaves grown in a plant factory using spectral reflectance. Horticulturae 7 (3):56. doi: 10.3390/horticulturae7030056.
  • Clarke, D. B. 2010. Glucosinolates, structures and analysis in food. Analytical Methods 2 (4):310. doi: 10.1039/b9ay00280d.
  • Connolly, E. L., M. Sim, N. Travica, W. Marx, G. Beasy, G. S. Lynch, C. P. Bondonno, J. R. Lewis, J. M. Hodgson, and L. C. Blekkenhorst. 2021. Glucosinolates from cruciferous vegetables and their potential role in chronic disease: Investigating the preclinical and clinical evidence. Frontiers in Pharmacology 12:767975. doi: 10.3389/fphar.2021.767975.
  • Cozzolino, D. 2020. The sample, the spectra and the maths-the critical pillars in the development of robust and sound applications of vibrational spectroscopy. Molecules 25 (16):3674. doi: 10.3390/molecules25163674.
  • Cuellar-Núñez, M. L., G. Loarca-Piña, M. Berhow, and E. Gonzalez de Mejia. 2020. Glucosinolate-rich hydrolyzed extract from Moringa oleifera leaves decreased the production of TNF-α and IL-1β cytokines and induced ROS and apoptosis in human colon cancer cells. Journal of Functional Foods 75:104270. doi: 10.1016/j.jff.2020.104270.
  • Dayananda, B., and D. Cozzolino. 2022. Beyond the Black Box—practical considerations on the use of chemometrics combined with sensing technologies in food science applications. Chemosensors 10 (8):323. doi: 10.3390/chemosensors10080323.
  • De Nicola, G. R., P. Rollin, E. Mazzon, and R. Iori. 2014. Novel gram-scale production of enantiopure R-sulforaphane from Tuscan black kale seeds. Molecules (Basel, Switzerland) 19 (6):6975–86. doi: 10.3390/molecules19066975.
  • Dolatparast, B., G. Ahmadvand, B. Mehrshad, J. Hazemi, and M. Y. Hamedani. 2021. Effect of late sowing date on agronomic and quality traits of four winter oilseed rape (Brassica napus) cultivars in Hamedan, Iran. Agrotechniques in Industrial Crops 1 (4):160–9. doi: 10.22126/ATIC.2022.7202.1027.
  • Eghbalpour, F., M. Aghaei, M. Ebrahimi, M. R. Tahsili, M. Golalipour, S. Mohammadi, and Y. Yazdani. 2020. Effect of indole-3-carbinol on transcriptional profiling of wound-healing genes in macrophages of systemic lupus erythematosus patients: An RNA sequencing ­assay. Lupus 29 (8):954–63. doi: 10.1177/0961203320929746.
  • ElMasry, G., N. Mandour, S. Al-Rejaie, E. Belin, and D. Rousseau. 2019. Recent applications of multispectral imaging in seed phenotyping and quality monitoring - An overview. Sensors 19 (5):1090. doi: 10.3390/s19051090.
  • Ernst, I. M., K. Palani, T. Esatbeyoglu, K. Schwarz, and G. Rimbach. 2013. Synthesis and Nrf2-inducing activity of the isothiocyanates iberverin, iberin and cheirolin. Pharmacological Research 70 (1):155–62. doi: 10.1016/j.phrs.2013.01.011.
  • Esbensen, K. H., P. Geladi, and A. Larsen. 2014. The RPD myth…. NIR News 25 (5):24–8. doi: 10.1255/nirn.1462.
  • Esteve, M. 2020. Mechanisms underlying biological effects of cruciferous glucosinolate-derived isothiocyanates/indoles: A focus on metabolic syndrome. Frontiers in Nutrition 7:111. doi: 10.3389/fnut.2020.00111.
  • Fearn, T. 2014. The Overuse of R2. NIR News 25 (5):32. doi: 10.1255/nirn.1464.
  • Font, R., M. del Rio-Celestino, E. Cartea, and A. de Haro-Bailon. 2005. Quantification of glucosinolates in leaves of leaf rape (Brassica napus ssp. pabularia) by near-infrared spectroscopy. Phytochemistry 66 (2):175–85. doi: 10.1016/j.phytochem.2004.11.011.
  • Gohain, B., P. Kumar, B. Malhotra, R. Augustine, A. K. Pradhan, and N. C. Bisht. 2021. A comprehensive Vis-NIRS equation for rapid quantification of seed glucosinolate content and composition across diverse Brassica oilseed chemotypes. Food Chemistry 354:129527. doi: 10.1016/j.foodchem.2021.129527.
  • Golic, M., and K. B. Walsh. 2006. Robustness of calibration models based on near infrared spectroscopy for the in-line grading of stonefruit for total soluble solids content. Analytica Chimica Acta 555 (2):286–91. doi: 10.1016/j.aca.2005.09.014.
  • Haghi, R. K., E. Pérez-Fernández, and A. H. J. Robertson. 2021. Prediction of various soil properties for a national spatial dataset of Scottish soils based on four different chemometric approaches: A comparison of near infrared and mid-infrared spectroscopy. Geoderma 396:115071. doi: 10.1016/j.geoderma.2021.115071.
  • Hahn, C., A. Muller, N. Kuhnert, and D. Albach. 2016. Diversity of kale (Brassica oleracea var. sabellica): Glucosinolate content and phylogenetic relationships. Journal of Agricultural and Food Chemistry 64 (16):3215–25. doi: 10.1021/acs.jafc.6b01000.
  • Halkier, B. A., and J. Gershenzon. 2006. Biology and biochemistry of glucosinolates. Annual Review of Plant Biology 57:303–33. doi: 10.1146/annurev.arplant.57.032905.105228.
  • Hennig, K., R. Verkerk, M. Dekker, and G. Bonnema. 2013. Quantitative trait loci analysis of non-enzymatic glucosinolate degradation rates in Brassica oleracea during food processing. TAG. Theoretical and Applied Genetics. Theoretische Und Angewandte Genetik 126 (9):2323–34. doi: 10.1007/s00122-013-2138-1.
  • Hernández-Hierro, J. M., C. Esquerre, J. Valverde, S. Villacreces, K. Reilly, M. Gaffney, M. L. González-Miret, F. J. Heredia, C. P. O’Donnell, and G. Downey. 2014. Preliminary study on the use of near infrared hyperspectral imaging for quantitation and localisation of total glucosinolates in freeze-dried broccoli. Journal of Food Engineering 126:107–12. doi: 10.1016/j.jfoodeng.2013.11.005.
  • Hernández-Hierro, J. M., J. Valverde, S. Villacreces, K. Reilly, M. Gaffney, M. L. Gonzalez-Miret, F. J. Heredia, and G. Downey. 2012. Feasibility study on the use of visible-near-infrared spectroscopy for the screening of individual and total glucosinolate contents in broccoli. Journal of Agricultural and Food Chemistry 60 (30):7352–8. doi: 10.1021/jf3018113.
  • Hooshmand, K., and I. S. Fomsgaard. 2021. Analytical methods for quantification and identification of intact glucosinolates in arabidopsis roots using LC-QqQ(LIT)-MS/MS. Metabolites 11 (1):47. doi: 10.3390/metabo11010047.
  • Ilahy, R., I. Tlili, Z. Pek, A. Montefusco, M. W. Siddiqui, F. Homa, C. Hdider, T. R’Him, H. Lajos, and M. S. Lenucci. 2020. Pre- and post-harvest factors affecting glucosinolate content in broccoli. Frontiers in Nutrition 7:147. doi: 10.3389/fnut.2020.00147.
  • Jhingan, S., H. J. Harloff, A. Abbadi, C. Welsch, M. Blumel, D. Tasdemir, and C. Jung. 2023. Reduced glucosinolate content in oilseed rape (Brassica napus L.) by random mutagenesis of BnMYB28 and BnCYP79F1 genes. Scientific Reports 13 (1):2344. doi: 10.1038/s41598-023-28661-6.
  • Jones, R. B., J. D. Faragher, and S. Winkler. 2006. A review of the influence of postharvest treatments on quality and glucosinolate content in broccoli (Brassica oleracea var. italica) heads. Postharvest Biology and Technology 41 (1):1–8. doi: 10.1016/j.postharvbio.2006.03.003.
  • Karimabad, M. N., M. Mahmoodi, A. Jafarzadeh, A. Darekordi, M. R. Hajizadeh, and G. Hassanshahi. 2019. Molecular targets, anti-cancer properties and potency of synthetic indole-3-carbinol derivatives. Mini Reviews in Medicinal Chemistry 19 (7):540–54. doi: 10.2174/1389557518666181116120145.
  • Kiani, S., H. Akhavan-Niaki, S. Fattahi, S. Kavoosian, N. Babaian Jelodar, N. Bagheri, and H. Najafi Zarrini. 2018. Purified sulforaphane from broccoli (Brassica oleracea var. italica) leads to alterations of CDX1 and CDX2 expression and changes in miR-9 and miR-326 levels in human gastric cancer cells. Gene 678:115–23. doi: 10.1016/j.gene.2018.08.026.
  • Kniseley, R. N., R. P. Hirschmann, and V. A. Fassel. 1967. The infrared spectra of alkyl isothiocyanates. Spectrochimica Acta Part A: Molecular Spectroscopy 23 (1):109–27. doi: 10.1016/0584-8539(67)80212-5.
  • Lafarga, T., G. Bobo, I. Vinas, C. Collazo, and I. Aguilo-Aguayo. 2018. Effects of thermal and non-thermal processing of cruciferous vegetables on glucosinolates and its derived forms. Journal of Food Science and Technology 55 (6):1973–81. doi: 10.1007/s13197-018-3153-7.
  • Luo, S., R. An, H. Zhou, Y. Zhang, J. Ling, H. Hu, and P. Li. 2022. The glucosinolate profiles of Brassicaceae vegetables responded differently to quick-freezing and drying methods. Food Chemistry 383:132624. doi: 10.1016/j.foodchem.2022.132624.
  • Miao, H., W. Zeng, J. Wang, F. Zhang, B. Sun, and Q. Wang. 2021. Improvement of glucosinolates by metabolic engineering in Brassica crops. aBIOTECH 2 (3):314–29. doi: 10.1007/s42994-021-00057-y.
  • Mohammadi, S., A. Memarian, S. Sedighi, N. Behnampour, and Y. Yazdani. 2018. Immunoregulatory effects of indole-3-carbinol on monocyte-derived macrophages in systemic lupus erythematosus: A crucial role for aryl hydrocarbon receptor. Autoimmunity 51 (5):199–209. doi: 10.1080/08916934.2018.1494161.
  • Mohammadi, S., F. S. Seyedhosseini, N. Behnampour, and Y. Yazdani. 2017. Indole-3-carbinol induces G1 cell cycle arrest and apoptosis through aryl hydrocarbon receptor in THP-1 monocytic cell line. Journal of Receptor and Signal Transduction Research 37 (5):506–14. doi: 10.1080/10799893.2017.1360351.
  • Montaut, S., W. D. Zhang, J. M. Nuzillard, G. R. De Nicola, and P. Rollin. 2015. Glucosinolate diversity in bretschneidera sinensis of Chinese origin. Journal of Natural Products 78 (8):2001–6. doi: 10.1021/acs.jnatprod.5b00338.
  • Nambiar, D. M., J. Kumari, R. Augustine, P. Kumar, P. K. Bajpai, and N. C. Bisht. 2021. GTR1 and GTR2 transporters differentially regulate tissue-specific glucosinolate contents and defence responses in the oilseed crop Brassica juncea. Plant, Cell & Environment 44 (8):2729–43. doi: 10.1111/pce.14072.
  • Narbad, A., and J. T. Rossiter. 2018. Gut glucosinolate metabolism and isothiocyanate production. Molecular Nutrition & Food Research 62 (18):e1700991. doi: 10.1002/mnfr.201700991.
  • Ngo, V. D., D. K. Ryu, S. W. Kang, S. O. Chung, S. U. Park, S. J. Kim, and J. T. Park. 2014. Correlation between glucosinolate content and spectral reflectance of cabbage leaves using a spectrometer. ISHS. Acta Horticulturae 1037 (1037):285–92. doi: 10.17660/ActaHortic.2014.1037.33.
  • Oblath, E. A., T. A. Isbell, M. A. Berhow, B. Allen, D. Archer, J. Brown, R. W. Gesch, J. L. Hatfield, J. D. Jabro, J. R. Kiniry, et al. 2016. Development of near-infrared spectroscopy calibrations to measure quality characteristics in intact Brassicaceae germplasm. Industrial Crops and Products 89:52–8. doi: 10.1016/j.indcrop.2016.03.022.
  • Oerlemans, K., D. M. Barrett, C. Bosch Suades, R. Verkerk, and M. Dekker. 2006. Thermal degradation of glucosinolates in red cabbage. Food Chemistry 95 (1):19–29. doi: 10.1016/j.foodchem.2004.12.013.
  • Oliviero, T., R. Verkerk, and M. Dekker. 2018. Isothiocyanates from brassica vegetables-effects of processing, cooking, mastication, and digestion. Molecular Nutrition & Food Research 62 (18):e1701069. doi: 10.1002/mnfr.201701069.
  • Parrini, S., A. Acciaioli, O. Franci, C. Pugliese, and R. Bozzi. 2019. Near Infrared Spectroscopy technology for prediction of chemical composition of natural fresh pastures. Journal of Applied Animal Research 47 (1):514–20. doi: 10.1080/09712119.2019.1675669.
  • Pedrini, S., and K. W. Dixon. 2020. International principles and standards for native seeds in ecological restoration. Restoration Ecology 28 (S3):S286–S303. doi: 10.1111/rec.13155.
  • Possenti, M., S. Baima, A. Raffo, A. Durazzo, A. M. Giusti, and F. Natella. 2016. Glucosinolates in food. In Glucosinolates, eds. J. -M. Mérillon, and K. G. Ramawat, 1–46. Switzerland, Cham: Springer International Publishing.
  • Prado, N. J., D. Ramirez, L. Mazzei, M. Parra, M. Casarotto, J. P. Calvo, D. Cuello Carrión, A. Z. Ponce Zumino, E. R. Diez, A. Camargo, et al. 2022. Anti-inflammatory, antioxidant, antihypertensive, and antiarrhythmic effect of indole-3-carbinol, a phytochemical derived from cruciferous vegetables. Heliyon 8 (2):e08989. doi: 10.1016/j.heliyon.2022.e08989.
  • Rangkadilok, N., B. Tomkins, M. E. Nicolas, R. R. Premier, R. N. Bennett, D. R. Eagling, and P. W. J. Taylor. 2002. The effect of post-harvest and packaging treatments on glucoraphanin concentration in broccoli (Brassica oleracea var. italica). Journal of Agricultural and Food Chemistry 50 (25):7386–91. doi: 10.1021/jf0203592.
  • Renner, I. E., and V. A. Fritz. 2020. Using Near-infrared reflectance spectroscopy (NIRS) to predict glucobrassicin concentrations in cabbage and brussels sprout leaf tissue. Plant Methods 16:136. doi: 10.1186/s13007-020-00681-7.
  • Revelou, P. K., M. G. Kokotou, C. S. Pappas, and V. Constantinou-Kokotou. 2017. Direct determination of total isothiocyanate content in broccoli using attenuated total reflectance infrared Fourier transform spectroscopy. Journal of Food Composition and Analysis 61:47–51. doi: 10.1016/j.jfca.2017.01.020.
  • Rohman, A., A. Windarsih, M. A. M. Hossain, M. R. Johan, E. Ali, and N. A. Fadzilah. 2019. Application of near- and mid-infrared spectroscopy combined with chemometrics for discrimination and authentication of herbal products: A review. Journal of Applied Pharmaceutical Science 9 (3):137–47. doi: 10.7324/japs.2019.90319.
  • Ruiz-Alcaraz, A. J., M. A. Martinez-Sanchez, P. Garcia-Penarrubia, M. Martinez-Esparza, B. Ramos-Molina, and D. A. Moreno. 2022. Analysis of the anti-inflammatory potential of Brassica bioactive compounds in a human macrophage-like cell model derived from HL-60 cells. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie 149:112804. doi: 10.1016/j.biopha.2022.112804.
  • Safa, M., L. Jafari, F. Alikarami, R. Manafi Shabestari, and A. Kazemi. 2017. Indole-3-carbinol induces apoptosis of chronic myelogenous leukemia cells through suppression of STAT5 and Akt signaling pathways. Tumour Biology 39 (6):1010428317705768. doi: 10.1177/1010428317705768.
  • Sahamishirazi, S., S. Zikeli, M. Fleck, W. Claupein, and S. Graeff-Hoenninger. 2017. Development of a near-infrared ­spectroscopy method (NIRS) for fast analysis of total, indolic, ­aliphatic and individual glucosinolates in new bred open pollinating genotypes of broccoli (Brassica oleracea convar. botrytis var. italica). Food Chemistry 232:272–7. doi: 10.1016/j.foodchem.2017.04.025.
  • Samec, D., B. Urlic, and B. Salopek-Sondi. 2019. Kale (Brassica oleracea var. acephala) as a superfood: Review of the scientific evidence behind the statement. Critical Reviews in Food Science and Nutrition 59 (15):2411–22. doi: 10.1080/10408398.2018.1454400.
  • Sarvan, I., R. Verkerk, M. van Boekel, and M. Dekker. 2014. Comparison of the degradation and leaching kinetics of glucosinolates during processing of four Brassicaceae (broccoli, red cabbage, white cabbage, Brussels sprouts). Innovative Food Science & Emerging Technologies 25:58–66. doi: 10.1016/j.ifset.2014.01.007.
  • Segneanu, A. E., I. Gozescu, A. Dabici, P. Sfirloaga, and Z. Szabadai. 2012. Organic compounds FT-IR spectroscopy. In Macro To Nano Spectroscopy, edited by Jamal Uddin, 144. London: IntechOpen. doi: 10.5772/50183.
  • Sen, R., S. Sharma, G. Kaur, and S. S. Banga. 2018. Near-infrared reflectance spectroscopy calibrations for assessment of oil, phenols, glucosinolates and fatty acid content in the intact seeds of oilseed Brassica species. Journal of the Science of Food and Agriculture 98 (11):4050–7. doi: 10.1002/jsfa.8919.
  • Shahrajabian, M. H., W. Sun, and Q. Cheng. 2019. The most important pharmaceutical benefits of sulforaphane, a sulfur-rich compound in cruciferous. Research on Crop Ecophysiology 14 (2):66–75.
  • Signore, A., L. Bell, P. Santamaria, C. Wagstaff, and M. C. Van Labeke. 2020. Red light is effective in reducing nitrate concentration in rocket by increasing nitrate reductase activity, and contributes to increased total glucosinolates content. Frontiers in Plant Science 11:604. doi: 10.3389/fpls.2020.00604.
  • Song, L., and P. J. Thornalley. 2007. Effect of storage, processing and cooking on glucosinolate content of Brassica vegetables. Food and Chemical Toxicology 45 (2):216–24. doi: 10.1016/j.fct.2006.07.021.
  • Su, W. H., and D. W. Sun. 2018. Fourier transform infrared and raman and hyperspectral imaging techniques for quality determinations of powdery foods: A review. Comprehensive Reviews in Food Science and Food Safety 17 (1):104–22. doi: 10.1111/1541-4337.12314.
  • Tabart, J., J. Pincemail, C. Kevers, J.-O. Defraigne, and J. Dommes. 2018. Processing effects on antioxidant, glucosinolate, and sulforaphane contents in broccoli and red cabbage. European Food Research and Technology 244 (12):2085–94. doi: 10.1007/s00217-018-3126-0.
  • Tan, Z., Z. Xie, L. Dai, Y. Zhang, H. Zhao, S. Tang, L. Wan, X. Yao, L. Guo, and D. Hong. 2022. Genome- and transcriptome-wide ­association studies reveal the genetic basis and the breeding ­history of seed glucosinolate content in Brassica napus. Plant Biotechnology Journal 20 (1):211–25. doi: 10.1111/pbi.13707.
  • Theunis, M., T. Naessens, L. Peeters, M. Brits, K. Foubert, and L. Pieters. 2022. Optimization and validation of analytical RP-HPLC methods for the quantification of glucosinolates and isothiocyanates in Nasturtium officinale R. Br and Brassica oleracea. LWT 165:113668. doi: 10.1016/j.lwt.2022.113668.
  • Toledo-Martin, E. M., R. Font, S. Obregon-Cano, A. D. Haro-Bailon, M. Villatoro-Pulido, and M. Del Rio-Celestino. 2017. Rapid and cost-effective quantification of glucosinolates and total phenolic content in rocket leaves by visible/near-infrared spectroscopy. Molecules 22 (5):851. doi: 10.3390/molecules22050851.
  • Van Eylen, D., I. Oey, M. Hendrickx, and A. Van Loey. 2007. Kinetics of the stability of broccoli (Brassica oleracea Cv. Italica) myrosinase and isothiocyanates in broccoli juice during pressure/temperature treatments. Journal of Agricultural and Food Chemistry 55 (6):2163–70. doi: 10.1021/jf062630b.
  • Velasco, P., M. E. Cartea, C. González, M. Vilar, and A. Ordás. 2007. Factors affecting the glucosinolate content of kale (Brassica oleraceaacephala group). Journal of Agricultural and Food Chemistry 55 (3):955–62. doi: 10.1021/jf0624897.
  • Vo, Q. V., S. Rochfort, P. C. Nam, T. L. Nguyen, T. T. Nguyen, and A. Mechler. 2018. Synthesis of aromatic and indole alpha-glucosinolates. Carbohydrate Research 455:45–53. doi: 10.1016/j.carres.2017.11.004.
  • Vo, Q. V., C. Trenerry, S. Rochfort, and A. B. Hughes. 2013. A total synthesis of (R, S) S -glucoraphanin. Tetrahedron 69 (41):8731–7. doi: 10.1016/j.tet.2013.07.097.
  • Wang, J., H. Yu, Z. Zhao, X. Sheng, Y. Shen, and H. Gu. 2019. Natural variation of glucosinolates and their breakdown products in broccoli (Brassica oleracea var. italica) seeds. Journal of Agricultural and Food Chemistry 67 (45):12528–37. doi: 10.1021/acs.jafc.9b06533.
  • Williams, P. 2014. The RPD statistic: A tutorial note. NIR News 25 (1):22–6. doi: 10.1255/nirn.1419.
  • Williams, P., P. Dardenne, and P. Flinn. 2017. Tutorial: Items to be included in a report on a near infrared spectroscopy project. Journal of near Infrared Spectroscopy 25 (2):85–90. doi: 10.1177/0967033517702395.
  • Williams, P., and K. Norris. 2001. Near-infrared technology in the agricultural and food industries. 2nd ed. Saint Paul, Minnesota: Cereals & Grains Assn.
  • Wu, W., J. Chen, D. Yu, S. Chen, X. Ye, and Z. Zhang. 2021. Analysis of processing effects on glucosinolate profiles in red cabbage by LC-MS/MS in multiple reaction monitoring mode. Molecules 26 (17):5171. doi: 10.3390/molecules26175171.
  • Yang, J., J. Wang, Z. Li, X. Li, Z. He, L. Zhang, T. Sha, X. Lyu, S. Chen, Y. Gu, et al. 2021. Genomic signatures of vegetable and oilseed allopolyploid Brassica juncea and genetic loci controlling the accumulation of glucosinolates. Plant Biotechnology Journal 19 (12):2619–28. doi: 10.1111/pbi.13687.
  • Yasumoto, S., M. Matsuzaki, H. Hirokane, and K. Okada. 2010. Glucosinolate content in rapeseed in relation to suppression of subsequent crop. Plant Production Science 13 (2):150–5. doi: 10.1626/pps.13.150.
  • Yenagi, J., A. R. Nandurkar, and J. Tonannavar. 2012. 2-Methoxyphenyl isocyanate and 2-methoxyphenyl isothiocyanate: Conformers, vibration structure and multiplet fermi resonance. Spectrochimica Acta, Part A, Molecular and Biomolecular Spectroscopy 91:261–8. doi: 10.1016/j.saa.2012.01.024.
  • Zare, M., E. Zandi Esfahan, and A. Ghorbani. 2019. Forage quality of Salsola yazdiana and S. tomentosa in different growth stages in Saline Desert of Yazd Province, Iran. Journal of Rangeland Science 9 (2):104–13.
  • Zeng, W., H. Tao, Y. Li, J. Wang, C. Xia, S. Li, M. Wang, Q. Wang, and H. Miao. 2021. The flavor of Chinese kale sprouts is affected by genotypic variation of glucosinolates and their breakdown products. Food Chemistry 359:129824. doi: 10.1016/j.foodchem.2021.129824.
  • Zhang, C., H. Di, P. Lin, Y. Wang, Z. Li, Y. Lai, H. Li, B. Sun, and F. Zhang. 2022. Genotypic variation of glucosinolates and their breakdown products in mustard (Brassica juncea) seeds. Scientia Horticulturae 294:110765. doi: 10.1016/j.scienta.2021.110765.
  • Zhang, Y., C.-G. Cho, G. H. Posner, and P. Talalay. 1992. Spectroscopic quantitation of organic isothiocyanates by cyclocondensation with vicinal dithiols. Analytical Biochemistry 205 (1):100–7. doi: 10.1016/0003-2697(92)90585-u.
  • Zheng, C., G. A. Guirgis, H. Deeb, and J. R. Durig. 2007. On the structural parameters and vibrational spectra of CH3NCS, SiH3NCS and GeH3NCS. Journal of Molecular Structure 829 (1–3):88–110. doi: 10.1016/j.molstruc.2006.06.011.
  • Zhou, B., W. Huang, X. Feng, Q. Liu, S. A. Ibrahim, and Y. Liu. 2022. Identification and quantification of intact glucosinolates at different vegetative growth periods in Chinese cabbage cultivars by UHPLC-Q-TOF-MS. Food Chemistry 393:133414. doi: 10.1016/j.foodchem.2022.133414.