4,552
Views
23
CrossRef citations to date
0
Altmetric
Original Articles

Amaranth Sprouts: A Potential Health Promoting and Nutritive Natural Food

, &
Pages 2688-2698 | Received 05 Aug 2014, Accepted 03 Jan 2015, Published online: 31 Jul 2015

REFERENCES

  • Ballabio, C.; Uberti, F.; Di Lorenzo, C.; Brandolini, A.; Penas, E.; Restani, P. Biochemical and Immunological Characterization of Different Varieties of Amaranth (Amaranthus L. Ssp) as a Safe Ingredient for Gluten Free Products. Journal of Agricultural and Food Chemistry 2011, 50(24), 12969–12974.
  • Huerta-Ocampo, J.A.; Barba de la Rosa, A.P.; Amaranth: A Pseudocereal with Nutraceutical Properties. Current Nutrition and Food Science 2011, 7(1), 1–9.
  • Urbano, G.; Aranda, P.; Vílchez, A.; Aranda, C.; Cabrera, L.; Porres, J.M.; López-Jurado, M. Effects of Germination on the Composition and Nutritive Value of Proteins in Pisum Sativum L. Food Chemistry 2005, 93, 671–679.
  • Mora-Escobedo, R.; Robles-Ramírez, M.C.; Ramón-Gallegos, E.; Reza-Alemán, R. Effect of Protein Hydrolysates from Germinated Soybean on Cancerous Cells of Human Cervix: An In Vitro Study. Plant Foods for Human Nutrition 2009, 64, 271–278.
  • Colmenares de Ruiz, A.S.; Bressani, R. Effect of Germination on the Chemical Composition and Nutritive Value of Amaranth Grain. Cereal Chemistry 1990, 67(2), 519–522.
  • Paśko, P.; Bartoń, H.; Zagrodzki, P.; Gorinstein, S.; Folta, M.; Zachwieja, Z. Anthocyanins, Total Polyphenols, and Antioxidant Activity in Amaranth and Quinoa Seeds and Sprouts During Their Growth. Food Chemistry 2009, 115, 994–998.
  • Caselato-Sousa, V.; Amaya-Farfán, J. State of Knowledge on Amaranth Grain: A Comprehensive Review. Journal of Food Science 2012, 77, R93–R104.
  • Tovar-Pérez, E.G.; Guerrero-Legarreta, I.; Farrés-González, A.; Soriano-Santos, J. Angiotensin I Converting Enzyme-Inhibitory Peptide Fractions from Albumin 1 and Globulin as Obtained of Amaranth Grain. Food Chemistry 2009, 116, 437–444.
  • Vecchi, B.; Añón, M.C. ACE-Inhibitory Tetrapeptides from Amaranthus hypochondriacus 11S Globulin. Phytochemistry 2009, 70, 864–870.
  • Fritz, M.; Vecchi, B.; Rinaldi, G.; Añón, M.C. Amaranth Seed Protein Hydrolysates Have In Vivo and In Vitro Antihypertensive Activity. Food Chemistry 2011, 126, 878–884.
  • Aphalo, P.; Martínez, E.N.; Añón, M.C. Structural Modifications of Amaranth Proteins During Germination. Protein Journal 2009, 28, 131–138.
  • Martínez, E.N.; Añón, M.C. Composition and Structural Characterization of Amaranth Protein Isolates: An Electrophoretic and Calorimetric Study. Journal of Agricultural and Food Chemistry 1996, 44, 2523–2530.
  • Roesler, K.R.; Gururaj, R.A. Rapid Gastric Fluid Digestion and Biochemical Characterization of Engineered Proteins Enriched in Essential Amino Acids. Journal of Agricultural and Food Chemistry 2001, 49, 3443–3451.
  • Association of Official Analytical Chemists. Official Methods of Analysis (methods 954.01 and 991.43), 15th Ed; 3rd Supplement. AOAC International: Arlington, VA, 1992.
  • American Oil Chemists’ Society. Official Methods and Recommended Practices of the AOCS (Methods Ac 2-41 and Ba 5a-49), 6th Ed; 3rd printing. AOCS Press: Urbana, IL, 2009.
  • Schägger, H. Tricine-SDS-PAGE. Nature Protocols 2006, 1(1), 16–21.
  • Siddhuraju, P. The Antioxidant Activity and Free Radical-Scavenging Capacity of Phenolics of Raw and Dry Heated Moth Bean (Vigna aconitifolia; Jacq.) Marechal Seed Extracts. Food Chemistry 2006, 99, 149–157.
  • Lowry, O.; Rosebrough, N.; Farr, A.; Randall, R. Protein Measurement with the Folin Phenol Reagent. Journal of Biological Chemistry 1951, 193, 265–275.
  • Orsini Delgado, M.C.; Tironi, V.A.; Añón, M.C. Antioxidant Activity of Amaranth Protein or Their Hydrolysates under Simulated Gastrointestinal Digestion. LWT–Food Science and Technology 2011, 44, 1752–1760.
  • Hurst, P.L.; Lovell-Smith, C.J. Optimized Assay for Serum Angiotensin-Converting Enzyme Activity. Clinical Chemistry 1981, 27, 2048–2052.
  • Tiengo, A.; Faria, M.; Netto, F.M. Characterization and ACE-Inhibitory Activity of Amaranth Proteins. Journal of Food Science 2009, 74, H121–H126.
  • Koyama, M.; Hattori, S.; Amano, Y.; Watanabe, M.; Nakamura, K. Blood Pressure—Lowering Peptides from Neo-Fermented Buckwheat Sprouts: A New Approach to Estimating ACE-Inhibitory Activity. PLOS One 2014, 9(9), e105802.
  • Bamdad, F.; Dokhani, S.; Keramat, J.; Zaneie, R. The Impact of Germination and In Vitro Digestion on the Formation of Angiotensin Converting Enzyme (ACE) Inhibitory Peptides from Lentil Proteins Compared to Whey Proteins. World Academy Science Engineering and Technology 2009, 37, 36–46.
  • Jakubczyc, A.; Karaś, M.; Beraniak, M. Antyhipertensive and Antioxidative Activity of Peptides Derived from Pea Sprouts (Pisum sativum) Protein Hydrolysates. Annales Universitatis Mariae–Curie Skłodowska, Sectio DDD Pharmacia 2011, 24(3), 175–182.
  • Gu, X.; Hou, Y.; Li, D.; Wang, J.-Z.; Wang, F. Separation, Purification, and Identification of Angiotensin I-Converting Enzyme Inhibitory Peptides from Walnut (Junglans regia L.) Hydrolysate. International Journal of Food Properties 2015, 18(2), 266–276.
  • Torruco-Uco, J.; Chel-Guerrero, L.; Martínez-Ayala, A.; Dávila-Ortíz, G.; Betancur-Ancona, D. Angiotensin-I Converting Enzyme Inhibitory and Antioxidant Activities of Protein Hydrolysates from Phaseolus lunatus and Phaseolus vulgaris Seeds. LWT–Food Science and Technology 2009, 42, 1597–1604.
  • Jamdar, S.N.; Rajalakshmi, V.; Pednekar, M.D.; Juan, F.; Yardi, D.; Sharma, A. Influence of Degree of Hydrolysis on Functional Properties, Antioxidant Activity, and ACE-Inhibitory Activity of Peanut Protein Hydrolysate. Food Chemistry 2010, 121, 178–184.
  • Lo, W.M.Y.; Farnworth, E.R.; Li-Chan, E.C.Y. Angiotensin I-Converting Enzyme Inhibitory Activity of Soy Protein Digestion: A Dynamic Model System Simulating the Upper Gastrointestinal Tract. Journal of Food Science 2006, 71(3), S231–S237.
  • Pinchuk, I.; Shoval, H.; Dotan, Y.; Lichtenberg, D. Evaluation of Antioxidants: Scope, Limitations, and Relevance of Assays. Chemistry and Physics of Lipids 2012, 165, 638–647.
  • Samaranayaka, A.G.P.; Li-Chan, E.C.Y. Food-Derived Peptidic Antioxidants a Review of Their Production, Assessment, and Potential Applications. Journal of Functional Foods 2011, 3, 229–254.
  • Tounkara, F.; Bashari, M.; Wei Le, G.; Shi, Y.-H. Antioxidant Activities of Roselle (Hibiscus sabdariffa L.) Seed Protein Hydrolysates and Its Derived Peptide Fractions. International Journal of Food Properties 2014, 17(9), 1998–2011.
  • Repo-Carrasco-Valencia, R.; Hellstrom, J.K.; Pihlava, J.M.; Mattila, P.H. Flavonoids and Other Phenolic Compounds in Andean Indigenous Grains: Quinoa (Chenopodium quinoa), Kaniwa (Chenopodium pallidicaule), and Kiwicha (Amaranthus caudatus). Food Chemistry 2010, 120, 128–133.
  • Tironi, V.A.; Añón, M.C. Amaranth Proteins as a Source of Antioxidant Peptides: Effect of Proteolysis. Food Research International 2010, 43, 315–322.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.