3,011
Views
23
CrossRef citations to date
0
Altmetric
Articles

Bioactive peptides with ACE-I and antioxidant activity produced from milk proteolysis

, , &
Pages 3033-3042 | Received 23 Aug 2016, Accepted 07 Dec 2016, Published online: 27 Mar 2017

References

  • Fernández, A.; Riera, F. β –lactoglobulin Tryptic Digestion: A Model Approach for peptide release. Biochemical Engineering Journal 2013, 70, 88–96.
  • Tavano, O.L. Protein Hydrolysis using Proteases: An Important Tool For Food Biotechnology. Journal of Molecular Catalysis B: Enzymatic 2013, 90, 1–11.
  • Luo, Y.; Pan, K.; Zhong, Q. Physical, Chemical and Biochemical Properties of Casein Hydrolyzed by Three Proteases: Partial Characterizations. Food Chemistry 2014, 155, 146–155.
  • McSweeney, P.L.H.; O’Mahony, J.A. Advanced Dairy Chemistry; Springer Science+Business Media: New York, USA, 2016.
  • Korhonen, H. Milk-derived Bioactive Peptides: From Science to Applications. Journal of Functional Foods 2009, 1, 177–187.
  • Najafian, L.; Babji, A.S. Production of Bioactive Peptides using Enzymatic Hydrolysis and Identification Antioxidative Peptides from patin (Pangasius sutchi) Sarcoplasmic Protein Hydolysate. Journal Functional Foods 2014, 9, 280–289.
  • Daud, N.A.; Babji, A.S.; Yusop, S.M. Effects of Enzymatic Hydrolysis on the Antioxidative and Antihypertensive Activities from Red Tilapia fish protein. Journal of Nutrition and Food Sciences 2015, 5, 1–5.
  • Zambrowicz, A.; Polanowski, A.; Timmer, M.; Lubec, G.; Trziszka, T. Manufacturing of Peptides Exhibiting Biological Activity. Amino Acids 2013, 44, 315–320.
  • de Castro, R.J.S.; Sato, H.H. Comparison and Synergistic Effects of Intact Proteins and their Hydrolysates on the Functional Properties and Antioxidant Activities in a Simultaneous Process of enzymatic Hydrolysis. Food and Bioproducts Processing 2014, 92, 80–88.
  • Zhao, Q.; Selomulya, C.; Wang, S.; Xiong, H.; Chen, X.D.; Li, W.; Peng, H.; Xie, J.; Sun, W.; Zhou, Q. Enhancing the Oxidative Stability of Food Emulsions with Rice Dreg Protein Hydrolysate. Food Research International 2012, 48, 876–884.
  • Yao, J.; Lin, C.; Tao, T.; Lin, F. The Effect of Various Concentrations of Papain on the Properties and Hydrolytic Rates of β-casein Layers. Colloids and Surfaces B: Biointerfaces 2013, 101, 272–279.
  • Le Maux, S.; Nongonierma, A.B.; Barre, C.; FitzGerald, R.J. Enzymatic Generation of Whey Protein Hydrolysates under pH-controlled and non pH-controlled Conditions: Impact on Physicochemical and Bioactive Properties. Food Chemistry 2016, 199, 246–251.
  • Campos, M.R.S.; González, F.P.; Guerrero, L.C.; Ancona, D.B. Angiotensin I-converting enzyme inhibitory peptides of chia (Salvia hispanica) produced by Enzymatic Hydrolysis. International Journal of Food Sciences 2013, 1–8.
  • Nurfatin, M.H.; Syarmila, E.I.K.; Nur‘Aliah, D.; Zalifah, M.K.; Babji, A.S.; Ayob, M.K. Effect of Enzymatic Hydrolysis on Angiotensin Converting Enzyme (ACE) Inhibitory Activity in Swiftlet Saliva. International Food Research Journal 2016, 23, 141–146.
  • Luo, H.; Wang, B.; Li, Z.; Chi, C.; Zhang, Q.; He, G. Preparation and Evaluation of Antioxidant Peptide From Papain Hydrolysate of Sphyrna Lewini Muscle Protein. LWT-Food Science and Technology 2013, 51, 281–288.
  • Sarmadi, B.H.; Ismail, A. Antioxidative Peptides from Food Proteins: A Review. Peptides 2010, 31, 1949–1956.
  • Espejo-Carpio, F.J.; García-Moreno, P.J.; Perez-Galvez, R.; Morales-Medina, R.; Guadix, A.; Guadixalvez, E.M. Effect of Digestive Enzymes on the Bioactive Properties of Goat Milk Protein Hydrolysates. International Dairy Journal 2016, 54, 21–28.
  • Kawasaki, Y.; Isoda, H.; Tanimoto, M.; Dosako, S.; Idota, T.; Ahiko, K. Inhibition by Lactoferrin and κ-casein Glycomacropeptide of Binding of Cholera Toxin to its Receptor. Bioscience Biotechnology and Biochemistry 1992, 56, 195–198.
  • Teschemacher, H.; Koch, G.; Brantl, V. Milk Protein-Derived Opioid Receptor Ligands. Biopolymers 1997, 43, 99–117.
  • Lahov, E.; Regelson W. Antibacterial and Immunostimulating Casein-derived Substances from Milk: Casecidin, Isracidin Peptides. Food and Chemical Toxicology 1996, 34, 131–145.
  • Zucht, H.; Raida, M.; Adermann, K.; Mägert, H.; Forssmann W. Casocidin-I: a casein-αs2 Derived Peptide Exhibits Antibacterial Activity. FEBS Letters 1995, 372, 185–188.
  • Hernández-Ledesma, B.; Recio, I.; Ramos, M.; Amigo, L. Preparation of Ovine and Caprine β-lactoglobulin Hydrolysates with ACE-inhibitory Activity. Identification of Active Peptides from Caprine β-lactoglobulin Hydrolyzed with Thermolysin. International Dairy Journal 2002, 12, 805–812.
  • Pellegrini, A. Antimicrobial Peptides from Food Proteins. Current Pharmaceutical Design 2003, 9, 1225–1238.
  • Qian, L.; Kong, B.; Xiong, Y.L.; Xia, X. Antioxidant Activity and Functional Properties of Porcine Plasma Protein Hydrolysate as influenced by the Degree of Hydrolysis. Food Chemistry 2010, 118, 403–410.
  • García-Risco, M.R.; Ramos, M.; López-Fandiño, R. Modifications in Milk Proteins Induced by Heat Treatment and Homogenization and their Influence on Susceptibility to Proteolysis. International Dairy Journal 2002, 12, 679–688.
  • Li, Y.; Liu, T.; He, G. Antioxidant Activity of Peptides from Fermented Milk with Mix Culture of Lactic Acid Bacteria and Yeast. Advanced Journal of Food Science and Technology 2015, 7, 422–427.
  • A.O.A.C. Official Methods of Analysis; Association of Official Analytical Chemists USA: Washington, D.C., 2000.
  • Ghatak, P.K.; Bandyopadhyay, A.K. Practical Dairy Chemistry; Kalyani Publishers: New Delhi, 2007; 291 p.
  • Wróblewska, B.; Troszyñska, A. Enzymatic Hydrolysis of Cow’s Whey Milk Proteins in the Aspect of their Utilization for the Production of Hypoallergenic Formulas. Polish Journal of Food and Nutrition Sciences 2005, 14/55, 349–357.
  • Mstat-c. Users guide: A Microcomputer Program for the Design, Management and Analysis of Agronomic Research Experiments; Michigan University: East Lansing, MC, USA, 1989.
  • Snedecor, G.A.; Cochran, W.G. Statistical Method; Iowa State University Press: Ames, IA, USA, 1967.
  • Shanmugam, V.P.; Kapila, S.; Sonfack, T.K.; Kapila, R. Antioxidative Peptide Derived from Enzymatic Digestion of Buffalo Casein. International Dairy Journal 2015, 42, 1–5.
  • van der Ven, C.; Gruppen, H.; de Bont, D.B.A.; Voragen, A.G.J. Optimization of the Angiotensin Converting Enzyme Inhibition by Whey Protein Hydrolyzates using Response Surface Methodology. International Dairy Journal 2002, 12, 813–820.
  • Ming, Y.; Zhi-he, H. Separation and Purification of ACE Inhibitory Peptides from Casein Hydrolysate by Two Enzymes. Food Science 2012, 33, 50–53.
  • Ferreira, I.M.P.L.V.O.; Pinho, O.; Mota, M.V.; Tavares, P.; Pereira, A.; Goncalves, M.P.; Torres, D.; Rocha, C.; Teixeira, J.A. Preparation of Ingredients Containing an ACE Inhibitory Peptide by Tryptic Hydrolysis of whey Protein Concentrates. International Dairy Journal 2007, 17, 481–487.
  • Welderufael, F.T.; Gibson, T.; Jauregi, P. Production of Angiotensin-I Converting Enzyme Inhibitory Peptides from β-lactoglobulin- and Casein Derived Peptides: An integrative approach. Biotechnology Progress 2012, 28, 746–755.
  • Liu, Q.; Kong, B.; Xiong, Y.L.; Xi, X. Antioxidant Activity and Functional Properties of Porcine Plasma Protein Hydrolysateas influenced by the Degree of Hydrolysis. Food Chemistry 2010, 118, 403–410.
  • Kumar, S.; Teotia, U.V.S.; Sanghi, A. Antioxidative Property of Cow Milk Caseinates Hydrolyzed with different Proteases. International Journal of Pharmacy and Pharmaceutical Sciences 2013, 5, 418–422.
  • Huang, D.; Ou, D.; Hampsch-Woodi, M. Development and Validation of Oxygen Radical Absorbance Capacity Assay for Lipophilic Antioxidants using Randomly methylated β-cyclodextrin as the Solubility Enhancer. Journal of Agricultural and Food Chemistry 2002, 50, 1815–1821.
  • Wu, H.C.; Chen, H.M.; Shiau, C.Y. Free Amino Acids and peptides as related to Antioxidant Properties in Protein Hydrolysates of mackerel (Scomber austriasicus). Food Research International 2003, 36, 949–957.
  • Chen, L.; Daniela, R.M.; Coolbear, T. Detection and Impact of Protease and Lipase Activities in Milk and Milk Powders. International Dairy Journal 2003, 13, 255–275.
  • Aluko, R.E. Bioactive Peptides Functional Foods and Nutraceuticals; Food Science Text Series, Springer Science+Business Media, LLC: NewYork, USA, 2012.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.