2,107
Views
19
CrossRef citations to date
0
Altmetric
Original Articles

Non-destructive method to predict Barhi dates quality at different stages of maturity utilising near-infrared (NIR) spectroscopy

&
Pages S2950-S2959 | Received 27 Nov 2016, Accepted 30 Sep 2017, Published online: 10 Jan 2018

References

  • FAO. Dates Production. http://faostat3.fao.org/download/Q/QC/E 2016.
  • Saudi General Authority of Statistics. Dates Production. http://www.stats.gov.sa/en 2016.
  • Gross, K. C.; Chien, Y. W.; Mikal, S. The Commercial Storage of Fruits, Vegetables, and Florist and Nursery Stocks. Agriculture Handbook 66, U.S. Department of Agriculture: Washington, DC, 2016.
  • Kader, A. A.; Hussein, A. M. Harvesting and Postharvest Handling of Dates. ICARDA Aleppo. 2009, 1–15.
  • Al-Qurashi, A. D.; Awad, M. A. Quality Characteristics of Bisir ‘Barhee’dates during Cold Storage as Affected by Postharvest Dipping in Gibberellic Acid, Naphthaleneacetic Acid and Benzyladenine. Fruits. 2011, 66, 343–352.
  • Alhamdan, A. M.; Hassan, B. H.; Alkahtani, H. A.; Ismaiel, S. M. Engineering aspects of the utilization of controlled atmosphere (CA) technology in shelf life extension of fresh barhi dates at khalal stage of maturity at a semi-commercial level. A research project funded by King Abdulaziz City for Science and Technology (KACST); 2012.
  • Isaksson, T.; Swensen, L. P.; Taylor, R. G.; Fjæra, S. O.; Skjervold, P. O. Non‐Destructive Texture Analysis of Farmed Atlantic Salmon Using Visual/Near‐Infrared Reflectance Spectroscopy. J. Sci. Food Agric. 2002, 82, 53–60.
  • Kader, A. A.; editor. Postharvest Technology of Horticultural Crops; UCANR Publications, Technology & Engineering: California, USA. 2002; p. 535.
  • Walsh, K. B.; Guthrie, J. A.; Burney, J. W. Application of Commercially Available, Low-Cost, Miniaturised NIR Spectrometers to the Assessment of the Sugar Content of Intact Fruit. Funct. Plant Biol. 2000, 27, 1175–1186.
  • Costa, G.; Noferini, M.; Fiori, G.; Miserocchi, O.; Bregoli, A. NIRs Evaluation of Peach and Nectarine Fruit Quality in Pre-And Post-Harvest Conditions. Acta Hortic. 2002, 2, 593–600.
  • Jiang, J.; Qiao, X.; He, R. Use of Near-Infrared Hyperspectral Images to Identify Moldy Peanuts. J. Food Eng. 2016, 169, 284–290.
  • Bobelyn, E.; Serban, A.-S.; Nicu, M.; Lammertyn, J.; Nicolai, B. M.; Saeys, W. Postharvest Quality of Apple Predicted by NIR-spectroscopy: Study of the Effect of Biological Variability on Spectra and Model Performance. Postharvest Biol. Technol. 2010, 55, 133–143.
  • Liu, Y.; Ying, Y. Use of FT-NIR Spectrometry in Non-Invasive Measurements of Internal Quality of ‘Fuji Apples. Postharvest Biol. Technol. 2005, 37, 65–71.
  • Maniwara, P.; Nakano, K.; Boonyakiat, D.; Ohashi, S.; Hiroi, M.; Tohyama, T. The Use of Visible and Near-Infrared Spectroscopy for Evaluating Passion Fruit Postharvest Quality. J. Food Eng. 2014, 143, 33–43.
  • Nicolaï, B. M.; Lötze, E.; Peirs, A.; Scheerlinck, N.; Theron, K. I. Non-Destructive Measurement of Bitter Pit in Apple Fruit Using NIR Hyperspectral Imaging. Postharvest Biol. Technol. 2006, 40, 1–6.
  • Gomez, A. H.; He, Y.; Pereira, A. G. Non-Destructive Measurement of Acidity, Soluble Solids and Firmness of Satsuma Mandarin Using Vis/NIR-spectroscopy Techniques. J Food Eng. 2006, 77, 313–319.
  • Lu, R.; Guyer, D. E.; Beaudry, R. M. Determination of Firmness and Sugar Content of Apples Using Near‐Infrared Diffuse Reflectance. J. Texture Stud. 2000, 31, 615–630.
  • Peirs, A.; Schenk, A.; Nicolaı̈, B. M. Effect of Natural Variability among Apples on the Accuracy of VIS-NIR Calibration Models for Optimal Harvest Date Predictions. Postharvest Biol. Technol. 2005, 35, 1–13.
  • Carlini, P.; Massantini, R.; Mencarelli, F. Vis-NIR Measurement of Soluble Solids in Cherry and Apricot by PLS Regression and Wavelength Selection. J. Agric. Food Chem. 2000, 48, 5236–5242.
  • Schaare, P.; Fraser, D. Comparison of Reflectance, Interactance and Transmission Modes of Visible-Near Infrared Spectroscopy for Measuring Internal Properties of Kiwifruit (Actinidia Chinensis). Postharvest Biol. Technol. 2000, 20, 175–184.
  • Rivera, N. V.; Gómez-Sanchis, J.; Chanona-Pérez, J.; Carrasco, J. J.; Millán-Giraldo, M.; Lorente, D.; Cubero, S.; Blasco, J. Early Detection of Mechanical Damage in Mango Using NIR Hyperspectral Images and Machine Learning. Biosystems Eng. 2014, 122, 91–98.
  • Saranwong, S.; Sornsrivichai, J.; Kawano, S. Improvement of PLS Calibration for Brix Value and Dry Matter of Mango Using Information from MLR Calibration. J. Near Infrared Spectrosc. 2001, 9, 287–296.
  • Schmilovitch, Z. E.; Mizrach, A.; Hoffman, A.; Egozi, H.; Fuchs, Y. Determination of Mango Physiological Indices by Near-Infrared Spectrometry. Postharvest Biol. Technol. 2000, 19, 245–252.
  • Valente, M.; Leardi, R.; Self, G.; Luciano, G.; Pain, J. P. Multivariate Calibration of Mango Firmness Using vis/NIR Spectroscopy and Acoustic Impulse Method. J. Food Eng. 2009, 94, 7–13.
  • Ding, X.; Guo, Y.; Ni, Y.; Kokot, S. A Novel NIR Spectroscopic Method for Rapid Analyses of Lycopene, Total Acid, Sugar, Phenols and Antioxidant Activity in Dehydrated Tomato Samples. Vib. Spectrosc. 2016, 82, 1–9.
  • Nicolai, B.; Beullens, K.; Bobelyn, E.; Peirs, A.; Saeys, W.; Theron, K.; Lammertyn, J. Nondestructive Measurement of Fruit and Vegetable Quality by Means of NIR Spectroscopy: A Review. Postharvest Biol. Technol. 2007, 46, 99–118.
  • Zude, M.; Herold, B.; Roger, J.; Bellon-Maurel, V.; Landahl, S. Non-Destructive Tests on the Prediction of Apple Fruit Flesh Firmness and Soluble Solids Content on Tree and in Shelf Life. J. Food Eng. 2006, 77, 254–260.
  • Lu, R.;. Multispectral Imaging for Predicting Firmness and Soluble Solids Content of Apple Fruit. Postharvest Biol. Technol. 2004, 31, 147–157.
  • Dull, G. G.; Leffler, R. G.; Birth, G. S.; Zaltzman, A.; Schmilovitch, Z. E. The near Infrared Determination of Moisture in Whole Dates. HortScience. 1991, 26, 1303–1305.
  • Lee, D.-J.; Schoenberger, R.; Archibald, J.; McCollum, S. Development of a Machine Vision System for Automatic Date Grading Using Digital Reflective Near-Infrared Imaging. J. Food Eng. 2008, 86, 388–398.
  • Mireei, S.; Mohtasebi, S.; Massudi, R.; Rafiee, S.; Arabanian, A. Feasibility of near Infrared Spectroscopy for Analysis of Date Fruits. Int. Agrophys. 2010, 24, e356.
  • Darmon, N.; Darmon, M.; Maillot, M.; Drewnowski, A. A Nutrient Density Standard for Vegetables and Fruits: Nutrients per Calorie and Nutrients per Unit Cost. J. Am. Diet. Assoc. 2005, 105, 1881–1887.
  • AOAC. Association of Official Analytical Chemists – International [AOAC] Official Methods of Analysis, 18th ed.; AOAC: Gaithersburg, MD, USA, 2005.
  • Alhamdan, A.; Hassan, B.; Alkahtani, H.; Abdelkarim, D.; Younis, M. Freezing of Fresh Barhi Dates for Quality Preservation during Frozen Storage. Saudi J. Biol. Sci. 2016. (in press)
  • Alsaed, A.; Mehyar, G.; Arar, A. Eeffect of Harvesting Time and Storage Temperature on the Duration of Balah Stage of “Barhi” Dates. Italian J. Food Sci. 2013, 25, 345.
  • Salvador, M.; Aranda, F.; Fregapane, G. Influence of Fruit Ripening on ‘Cornicabra’virgin Olive Oil Quality a Study of Four Successive Crop Seasons. Food Chem. 2001, 73, 45–53.
  • Merzlyak, M. N.; Solovchenko, A. E.; Gitelson, A. A. Reflectance Spectral Features and Non-Destructive Estimation of Chlorophyll, Carotenoid and Anthocyanin Content in Apple Fruit. Postharvest Biol. Technol. 2003, 27, 197–211.
  • Clément, A.; Dorais, M.; Vernon, M. Nondestructive Measurement of Fresh Tomato Lycopene Content and Other Physicochemical Characteristics Using Visible−NIR Spectroscopy. J. Agric. Food Chem. 2008, 56, 9813–9818.
  • Partensky, F.; Garczarek, L. The Photosynthetic Apparatus of Chlorophyll B-And D-Containing Oxyphotobacteria, Photosynthesis in Algae. Springer: Netherlands. 2003, pp. 29–62.
  • Penuelas, J.; Filella, I.; Biel, C.; Serrano, L.; Save, R. The Reflectance at the 950–970 nm Region as an Indicator of Plant Water Status. Int. J. Remote Sens. 1993, 14, 1887–1905.
  • Rungpichayapichet, P.; Mahayothee, B.; Khuwijitjaru, P.; Nagle, M.; Müller, J. Non-Destructive Determination of β-carotene Content in Mango by Near-Infrared Spectroscopy Compared with Colorimetric Measurements. J. Food Composition Anal. 2015, 38, 32–41.
  • Giovanelli, G.; Sinelli, N.; Beghi, R.; Guidetti, R.; Casiraghi, E. NIR Spectroscopy for the Optimization of Postharvest Apple Management. Postharvest Biol. Technol. 2014, 87, 13–20.
  • Magwaza, L. S.; Opara, U. L.; Terry, L. A.; Landahl, S.; Cronje, P. J.; Nieuwoudt, H.; Mouazen, A. M.; Saeys, W.; Nicolaï, B. M. Prediction of ‘Nules Clementine’mandarin Susceptibility to Rind Breakdown Disorder Using Vis/NIR Spectroscopy. Postharvest Biol. Technol. 2012, 74, 1–10.
  • Valero, C.; Ruiz-Altisent, M.; Cubeddu, R.; Pifferi, A.; Taroni, P.; Torricelli, A.; Valentini, G.; Johnson, D.; Dover, C. Detection of Internal Quality in Kiwi with Time-Domain Diffuse Reflectance Spectroscopy. Appl. Eng. Agric. 2004, 20, 223.
  • Williams, P. C.; Norris, K. Near-Infrared Technology in the Agricultural and Food Industry. AACC Press: St. Paul, 2001.
  • Josse, J.; Husson, F. Selecting the Number of Components in Principal Component Analysis Using Cross-Validation Approximations. Comput. Stat. Data Anal. 2012, 56, 1869–1879.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.