2,550
Views
21
CrossRef citations to date
0
Altmetric
Original Article

Nutraceuticals and antioxidant properties of Lonicera japonica Thunb. as affected by heating time

, &
Pages 630-645 | Received 22 Sep 2018, Accepted 15 Mar 2019, Published online: 08 Apr 2019

References

  • Gao, W.; Wang, R.; Li, D.; Liu, K.; Chen, J.; Li, H. J.; Xu, X.; Li, P.; Yang, H. Comparison of Five Lonicera Flowers by Simultaneous Determination of Multi-Components with Single Reference Standard Method and Principal Component Analysis. J. Pharm. Biomed. Anal. 2016, 117, 345–351. DOI: 10.1016/j.jpba.2015.09.008.
  • Hsu, H. F.; Hsiao, P. C.; Kuo, T. C.; Chiang, S. T.; Chen, S. L.; Chiou, S. J.; Ling, X. H.; Liang, M. T.; Cheng, W. Y.; Houng, J. Y. Antioxidant and Anti-Inflammatory Activities of Lonicera Japonica Thunb. Var. Sempervillosa Hayata Flower Bud Extracts Prepared by Water, Ethanol and Supercritical Fluid Extraction Techniques. Ind. Crop. Prod. 2016, 89, 543–549. DOI: 10.1016/j.indcrop.2016.05.010.
  • Choi, C. W.; Jung, H. A.; Kang, S. S.; Choi, J. S. Antioxidant Constituents and a New Triterpenoid Glycoside from Flos Lonicerae. Arch. Pharm. Res. 2007, 30(1), 1. DOI: 10.1007/bf02977770.
  • Xu, Y.; Oliverson, B. G.; Simmons, D. L. Trifunctional Inhibition of COX-2 by Extracts of Lonicera Japonica: Direct Inhibition, Transcriptional and Post-Transcriptional down Regulation. J. Ethnopharmacol. 2007, 111(3), 667–670. DOI: 10.1016/j.jep.2007.01.017.
  • Shi, Z.; Liu, Z.; Liu, C.; Wu, M.; Su, H.; Ma, X.; Zang, Y.; Wang, J.; Zhao, Y.; Xiao, X. Spectrum-Effect Relationships between Chemical Fingerprints and Antibacterial Effects of Lonicerae Japonicae Flos and Lonicerae Flos Base on UPLC and Microcalorimetry. Front. Pharmacol. 2016, 7, 12. DOI: 10.3389/fphar.2016.00012.
  • Peng, X.; Duan, M. H.; Yao, X. H.; Zhang, Y. H.; Zhao, C. J.; Zu, Y. G.; Fu, Y. J. Green Extraction of Five Target Phenolic Acids from Lonicerae Japonicae Flos with Deep Eutectic Solvent. Sep. Purif. Technol. 2016, 157, 249–257. DOI: 10.1016/j.seppur.2015.10.065.
  • Yuan, Y.; Wang, Z.; Jiang, C.; Wang, X.; Huang, L. Exploiting Genes and Functional Diversity of Chlorogenic Acid and Luteolin Biosyntheses in Lonicera Japonica and Their Substitutes. Gene. 2014, 534(2), 408–416. DOI: 10.1016/j.gene.2012.09.051.
  • Bei, Q.; Liu, Y.; Wang, L.; Chen, G.; Wu, Z. Improving Free, Conjugated, and Bound Phenolic Fractions in Fermented Oats (Avena Sativa L.) With Monascus Anka and Their Antioxidant Activity. J. Funct. Food. 2017, 32, 185–194. DOI: 10.1016/j.jff.2017.02.028.
  • Acosta-Estrada, B. A.; Gutiérrez-Uribe, J. A.; Serna-Saldívar, S. O. Bound Phenolics in Foods, a Review. Food Chem. 2014, 152, 46–55. DOI: 10.1016/j.foodchem.2013.11.093.
  • Sharma, K.; Ko, E. Y.; Assefa, A. D.; Ha, S.; Nile, S. H.; Lee, E. T.; Park, S. W. Temperature-Dependent Studies on the Total Phenolics, Flavonoids, Antioxidant Activities, and Sugar Content in Six Onion Varieties. J. Food Drug Anal. 2015, 23(2), 243–252. DOI: 10.1016/j.jfda.2014.10.005.
  • Patras, A.; Brunton, N.; Da Pieve, S.; Butler, F.; Downey, G. Effect of Thermal and High Pressure Processing on Antioxidant Activity and Instrumental Colour of Tomato and Carrot Purées. Innov. Food Sci. Emerg. Technol. 2009, 10(1), 16–22. DOI: 10.1016/j.ifset.2008.09.008.
  • Kim, S. Y.; Jeong, S. M.; Park, W. P.; Nam, K. C.; Ahn, D. U.; Lee, S. C. Effect of Heating Conditions of Grape Seeds on the Antioxidant Activity of Grape Seed Extracts. Food Chem.. 2006, 97.3, 472–479. DOI: 10.1016/j.foodchem.2005.05.027.
  • Ross, C. F.; Hoye, J.; Fernandez-Plotka, C. V. C. Influence of Heating on the Polyphenolic Content and Antioxidant Activity of Grape Seed Flour. J. Food Sci. 2011, 76(6). DOI: 10.1111/j.1750-3841.2011.02280.x.
  • Leong, S. Y.; Oey, I. Effects of Processing on Anthocyanins, Carotenoids and Vitamin C in Summer Fruits and Vegetables. Food Chem. 2012, 133(4), 1577–1587. DOI: 10.1016/j.foodchem.2012.02.052.
  • Medina-Meza, I. G.; Barnaba, C.; Villani, F.; Barbosa-Cánovas, G. V. Effects of Thermal and High Pressure Treatments in Color and Chemical Attributes of an Oil-Based Spinach Sauce. LWT-Food Sci. Technol. 2015, 60(1), 86–94. DOI: 10.1016/j.lwt.2014.09.033.
  • Kähkönen, M. P.; Hopia, A. I.; Vuorela, H. J.; Rauha, J. P.; Pihlaja, K.; Kujala, T. S.; Heinonen, M. Antioxidant Activity of Plant Extracts Containing Phenolic Compounds. J. Agric. Food Chem. 1999, 47(10), 3954–3962. DOI: 10.1016/j.lwt.2014.09.033.
  • Zhu, H.; Wang, Y.; Liu, Y.; Xia, Y.; Tang, T. Analysis of Flavonoids in Portulaca Oleracea L. By UV–Vis Spectrophotometry with Comparative Study on Different Extraction Technologies. Food Anal. Meth. 2010, 3(2), 90–97. DOI: 10.1007/s12161-009-9091-2.
  • Blois, M. S.;. Antioxidant Determinations by the Use of a Stable Free Radical. Nature. 1958, 181(4617), 1199. DOI: 10.1038/1811199a0.
  • Shalaby, E. A.; Shanab, S. M. Comparison of DPPH and ABTS Assays for Determining Antioxidant Potential of Water and Methanol Extracts of Spirulina Platensis. Indian J. Geo-Mar. Sci. 2013, 42(5), 556–564. DOI: 10.4172/2324-8661.1000105.
  • Benzie, I. F.; Strain, J. J. The Ferric Reducing Ability of Plasma (FRAP) as a Measure of “Antioxidant Power”: The FRAP Assay. Anal. Biochem. 1996, 239(1), 70–76. DOI: 10.1006/abio.1996.0292.
  • Sanjukta, S.; Rai, A. K.; Muhammed, A.; Jeyaram, K.; Talukdar, N. C. Enhancement of Antioxidant Properties of Two Soybean Varieties of Sikkim Himalayan Region by Proteolytic Bacillus Subtilis Fermentation. J. Funct. Food. 2015, 14, 650–658. DOI: 10.1016/j.jff.2015.02.033.
  • Benlloch-Tinoco, M.; Kaulmann, A.; Corte-Real, J.; Rodrigo, D.; Martínez-Navarrete, N.; Bohn, T. Chlorophylls and Carotenoids of Kiwifruit Puree are Affected Similarly or Less by Microwave than by Conventional Heat Processing and Storage. Food Chem. 2015, 187, 254–262. DOI: 10.1016/j.foodchem.2015.04.052.
  • Finten, G.; Agüero, M. V.; Jagus, R. J.; Niranjan, K. High Hydrostatic Pressure Blanching of Baby Spinach (Spinacia Oleracea L.). LWT-Food Sci. Technol. 2016, 73, 74–79. DOI: 10.1016/j.lwt.2016.05.043.
  • Wibowo, S.; Vervoort, L.; Tomic, J.; Santiago, JS.; Lemmenus, L.; Panozzo, A.; Grauwet, T.; Hendrickx, M; Van Loey, A. Colour and Carotenoid Changes of Pasteurised Orange Juice during Storage. Food Chem. 2015, 171, 330–340. DOI: 10.1016/j.foodchem.2014.09.007.
  • Uslu, N.; Özcan, M. M. Effect of Microwave Heating on Phenolic Compounds and Fatty Acid Composition of Cashew (Anacardium Occidentale) Nut and Oil. J. Saudi Soc. Agric. Sci. Online 1. 2017. DOI: 10.1016/j.jssas.2017.10.001.
  • Papoutsis, K.; Pristijono, P.; Golding, J. B.; Stathopoulos, C. E.; Bowyer, M. C.; Scarlett, C. J.; Vuong, Q. V. Enhancement of the Total Phenolic Compounds and Antioxidant Activity of Aqueous Citrus Limon L. Pomace Extract Using Microwave Pretreatment on the Dry Powder. J. Food Process. Preserv. 2017, 41(5), e13152. DOI: 10.1111/jfpp.13152.
  • Henríquez, C.; Córdova, A.; Almonacid, S.; Saavedra, J. Kinetic Modeling of Phenolic Compound Degradation during Drum-Drying of Apple Peel By-Products. J. Food Eng. 2014, 143, 146–153. DOI: 10.1016/j.jfoodeng.2014.06.037.
  • Kang, M.; Jung, I.; Hur, J.; Kim, S. H.; Lee, J. H.; Kang, J. Y.; Jung, K. C.; Kim, K. S.; Yoo, M. C.; Park, D. S.;, et al. The Analgesic and Anti-Inflammatory Effect of WIN-34B, a New Herbal Formula for Osteoarthritis Composed of Lonicera Japonica Thunb and Anemarrhena Asphodeloides BUNGE in Vivo. J. Ethnopharmacol. 2010, 131(2), 485–496. DOI: 10.1016/j.jep.2010.07.025.
  • Sato, Y.; Itagaki, S.; Kurokawa, T.; Ogura, J.; Kobayashi, M.; Hirano, T.; Sugawara, M.; Iseki, K. In Vitro and in Vivo Antioxidant Properties of Chlorogenic Acid and Caffeic Acid. Int. J. Pharm. 2011, 403(1–2), 136–138. DOI: 10.1016/j.ijpharm.2010.09.035.
  • Ong, K. W.; Hsu, A.; Tan, B. K. H. Anti-Diabetic and Anti-Lipidemic Effects of Chlorogenic Acid are Mediated by Ampk Activation. Biochem. Pharmacol. 2013, 85(9), 1341–1351. DOI: 10.1016/j.bcp.2013.02.008.
  • Cho, A. S.; Jeon, S. M.; Kim, M. J.; Yeo, J.; Seo, K. I.; Choi, M. S.; Lee, M. K. Chlorogenic Acid Exhibits Anti-Obesity Property and Improves Lipid Metabolism in High-Fat Diet-Induced-Obese Mice. Food Chem. Toxicol. 2010, 48(3), 937–943. DOI: 10.1016/j.fct.2010.01.003.
  • Clifford, M. N.; Jaganath, I. B.; Ludwig, I. A.; Crozier, A. Chlorogenic Acids and the Acyl-Quinic Acids: Discovery, Biosynthesis, Bioavailability and Bioactivity. Nat. Prod. Rep. 2017, 34(12), 1391–1421. DOI: 10.1039/c7np00030h.
  • Jeon, J. S.; Kim, H. T.; Jeong, I. H.; Hong, S. R.; Oh, M. S.; Park, K. H.; Shim, J. H.; El-Aty, A. A. Determination of Chlorogenic Acids and Caffeine in Homemade Brewed Coffee Prepared under Various Conditions. J. Chromatogr. B. 2017, 1064, 115–123. DOI: 10.1016/j.jchromb.2017.08.041.
  • Liang, N.; Xue, W.; Kennepohl, P.; Kitts, D. D. Interactions between Major Chlorogenic Acid Isomers and Chemical Changes in Coffee Brew that Affect Antioxidant Activities. Food Chem. 2016, 213, 251–259. DOI: 10.1016/j.foodchem.2016.06.041.
  • Deshpande, S.; Jaiswal, R.; Matei, M. F.; Kuhnert, N. Investigation of Acyl Migration in Mono-And Dicaffeoylquinic Acids under Aqueous Basic, Aqueous Acidic, and Dry Roasting Conditions. J. Agric. Food Chem.. 2014, 62(37), 9160–9170. DOI: 10.1021/jf5017384.
  • Moreira, A. S.; Nunes, F. M.; Domingues, M. R.; Coimbra, M. A. Coffee Melanoidins: Structures, Mechanisms of Formation and Potential Health Impacts. Food Funct.. 2012, 3(9), 903–915. DOI: 10.1039/c2fo30048f.
  • Del Pino-García, R.; González-SanJosé, M. L.; Rivero-Pérez, M. D.; García-Lomillo, J.; Muñiz, P. The Effects of Heat Treatment on the Phenolic Composition and Antioxidant Capacity of Red Wine Pomace Seasonings. Food Chem. 2017, 221, 1723–1732. DOI: 10.1016/j.foodchem.2016.10.113.
  • Dawidowicz, A. L.; Typek, R. Transformation of Chlorogenic Acids during the Coffee Beans Roasting Process. Eur. Food Res. Technol. 2017, 243(3), 379–390. DOI: 10.1007/s00217-016-2751-8.
  • Li, Y. J.; Zhang, C. F.; Ding, G.; Huang, W. Z.; Wang, Z. Z.; Bi, Y. A.; Xiao, W. Investigating the Thermal Stability of Six Caffeoylquinic Acids Employing Rapid-Resolution Liquid Chromatography with Quadrupole Time-Of-Flight Tandem Mass Spectrometry. Eur. Food Res. Technol. 2015, 240(6), 1225–1234. DOI: 10.1007/s00217-015-2425-y.
  • Li, C. C.; Hsu, H. J.; Wang, Y. S.; Cassidy, J.; Sheen, S.; Liu, S. C. Effects of Heat Treatment on the Antioxidative and Anti-Inflammatory Properties of Orange By-Products. Food Funct. 2017, 8(7), 2548–2557. DOI: 10.1039/c7fo00188f.
  • Juániz, I.; Ludwig, I. A.; Huarte, E.; Pereira-Caro, G.; Moreno-Rojas, J. M.; Cid, C.; De Peña, M. P. Influence of Heat Treatment on Antioxidant Capacity and (Poly) Phenolic Compounds of Selected Vegetables. Food Chem. 2016, 197, 466–473. DOI: 10.1016/j.foodchem.2015.10.139.
  • Chaaban, H.; Ioannou, I.; Chebil, L.; Slimane, M.; Gerardin, C.; Paris, C.; Charbonnel, C.; Chekir, L.; Ghoul, M. Effect of Heat Processing on Thermal Stability and Antioxidant Activity of Six Flavonoids. J. Food Process. Preserv. 2017, 41(5). DOI: 10.1111/jfpp.13203.
  • Jaiswal, R.; Matei, M. F.; Subedi, P.; Kuhnert, N. Does Roasted Coffee Contain Chlorogenic Acid Lactones Or/And Cinnamoylshikimate Esters? Food Res. Int. 2014, 61, 214–227. DOI: 10.1016/j.foodres.2013.09.040.
  • Kao, F. J.; Chiu, Y. S.; Chiang, W. D. Effect of Water Cooking on Antioxidant Capacity of Carotenoid-Rich Vegetables in Taiwan. J. Food Drug Anal. 2014, 22(2), 202–209. DOI: 10.1016/j.jfda.2013.09.010.
  • De Santiago, E.; Domínguez-Fernández, M.; Cid, C.; De Peña, M. P. Impact of Cooking Process on Nutritional Composition and Antioxidants of Cactus Cladodes (Opuntia Ficus-Indica). Food Chem. 2018, 240, 1055–1062. DOI: 10.1016/j.foodchem.2017.08.039.
  • Oancea, A. M.; Turturică, M.; Bahrim, G.; Râpeanu, G.; Stănciuc, N. Phytochemicals and Antioxidant Activity Degradation Kinetics during Thermal Treatments of Sour Cherry Extract. LWT-Food Sci. Technol. 2017, 82, 139–146. DOI: 10.1016/j.lwt.2017.04.026.
  • Foo, S. C.; Yusoff, F. M.; Ismail, M.; Basri, M.; Yau, S. K.; Khong, N. M. H.; Chan, K. W.; Ebrahimi, M. Antioxidant Capacities of Fucoxanthin-Producing Algae as Influenced by Their Carotenoid and Phenolic Contents. J. Biotechnol. 2017, 241, 175–183. DOI: 10.1016/j.jbiotec.2016.11.026.
  • Lin, S.; Guo, H.; Gong, J. D. B.; Lu, M.; Lu, M. Y.; Wang, L.; Zhang, Q.; Qin, W.; Wu, D. T. Phenolic Profiles, β-glucan Contents, and Antioxidant Capacities of Colored Qingke (Tibetan Hulless Barley) Cultivars. J. Cereal Sci. 2018, 81, 69–75. DOI: 10.1016/j.jcs.2018.04.001.
  • Miao, J.; Li, X.; Zhao, C.; Gao, X.; Wang, Y.; Gao, W. Active Compounds, Antioxidant Activity and α-glucosidase Inhibitory Activity of Different Varieties of Chaenomeles Fruits. Food Chem. 2018, 248, 330–339. DOI: 10.1016/j.foodchem.2017.12.018.
  • Aires, A.; Carvalho, R.; Saavedra, M. J. Reuse Potential of Vegetable Wastes (Broccoli, Green Bean and Tomato) for the Recovery of Antioxidant Phenolic Acids and Flavonoids. Int. J. Food Sci. Technol. 2017, 52(1), 98–107. DOI: 10.1111/ijfs.13256.
  • Kono, Y.; Kashine, S.; Yoneyama, T.; Sakamato, Y.; Matsui, Y.; Shibata, H. Iron Chelation by Chlorogenic Acid as a Natural Antioxidant. Biosci. Biotechnol. Biochem. 1998, 62(1), 22–27. DOI: 10.1271/bbb.62.22.
  • Wu, L.;. Effect of Chlorogenic Acid on Antioxidant Activity of Flos Lonicerae Extracts. J. Zhejiang Univ.-SCI. B. 2007, 8(9), 673–679. DOI: 10.1631/jzus.2007.b0673.
  • Lee, L. S.; Choi, E. J.; Kim, C. H.; Sung, J. M.; Kim, Y. B.; Seo, D. H.; Choi, H. W.; Choi, Y. S.; Kum, J. S.; Park, J. D. Contribution of Flavonoids to the Antioxidant Properties of Common and Tartary Buckwheat. J. Cereal Sci. 2016, 68, 181–186. DOI: 10.1016/j.jcs.2015.07.005.
  • Firuzi, O.; Lacanna, A.; Petrucci, R.; Marrosu, G.; Saso, L. Evaluation of the Antioxidant Activity of Flavonoids by “Ferric Reducing Antioxidant Power” Assay and Cyclic Voltammetry. Biochim. Biophys. Acta-Gen. Subj. 2005, 1721(1–3), 174–184. DOI: 10.1016/j.bbagen.2004.11.001.