2,225
Views
11
CrossRef citations to date
0
Altmetric
Original Article

Japanese Quince Chaenomeles Japonica (Thunb.) Lindl. ex Spach Leaves a New Source of Antioxidants for Food

, , &
Pages 795-803 | Received 23 Jan 2019, Accepted 16 Apr 2019, Published online: 30 Apr 2019

References

  • Rumpunen, K.; (2002). Chaenomeles: Potential New Fruit Crop for Northern Europe. Trends in new crops and new uses. ASHA Press, Alexandria, VA, 385–392.
  • Ashrafi, H.; Ghabili, K.; Alihemmati, A.; Jouyban, A.; Shoja, M. M.; Aslanabadi, S.; … Hajhosseini, L. The Effect of Quince Leaf (Cydonia Oblonga Miller) Decoction on Testes in Hypercholesterolemic Rabbits: A Pilot Study. Afr. J. Traditional, Complementary Altern. Med. 2013, 10, 2. DOI: 10.4314/ajtcam.v10i2.12.
  • Khademi, F.; Danesh, B.; Mohammad Nejad, D.; Soleimani Rad, J. The Comparative Effects of Atorvastatin and Quince Leaf Extract on Atherosclerosis. Iran. Red Crescent Med. J. 2013, 15(8), 639–643. DOI: 10.5812/ircmj.4030.
  • Oliveira, A. P.; Costa, R. M.; Magalhães, A. S.; Pereira, J. A.; Carvalho, M.; Valentão, P.; Silva, B. M. Targeted Metabolites and Biological Activities of Cydonia Oblonga Miller Leaves. Food Res. Int. 2012, 46(2), 496–504. DOI: 10.1016/j.foodres.2010.10.021.
  • Osman, A. G. M.; Koutb, M.; Sayed, A. E.-D. H. Use of Hematological Parameters to Assess the Efficiency of Quince (Cydonia Oblonga Miller) Leaf Extract in Alleviation of the Effect of ultraviolet–A Radiation on African Catfish Clarias Gariepinus (Burchell, 1822). J. Photochem. Photobiol. B Biol. 2010, 99(1), 1–8. DOI: 10.1016/j.jphotobiol.2010.01.002.
  • Du, H.; Wu, J.; Li, H.; Zhong, P.-X.; Xu, Y.-J.; Li, C.-H.; Wang, L.-S. Polyphenols and Triterpenes from Chaenomeles Fruits: Chemical Analysis and Antioxidant Activities Assessment. Food Chem. 2013, 141(4), 4260–4268. DOI: 10.1016/j.foodchem.2013.06.109.
  • Thomas, M.; Crépeau, M. J.; Rumpunen, K.; Thibault, J. F. Dietary Fibre and Cell-Wall Polysaccharides in the Fruits of Japanese Quince (Chaenomeles Japonica). LWT - Food Sci. Technol. 2000, 33(2), 124–131. DOI: 10.1006/fstl.1999.0628.
  • Zhang, S. Y.; Han, L. Y.; Zhang, H.; Xin, H. L. Chaenomeles Speciosa: A Review of Chemistry and Pharmacology. Biomed. Rep. 2014, 2(1), 12–18. DOI: 10.3892/br.2013.193.
  • Amić, D.; Davidović-Amić, D.; Beslo, D.; Rastija, V.; Lucić, B.; Trinajstić, N. SAR and QSAR of the Antioxidant Activity of Flavonoids. Curr. Med. Chem. 2007, 14(7), 827–845. DOI: 10.2174/092986707780090954.
  • Apak, R.; Güçlü, K.; Demirata, B.; Özyürek, M.; Çelik, S.; Bektaşoğlu, B.; Özyurt, D. Comparative Evaluation of Various Total Antioxidant Capacity Assays Applied to Phenolic Compounds with the CUPRAC Assay. Molecules. 2007, 12(7), 1496–1547. DOI: 10.3390/12071496.
  • Procházková, D.; Boušová, I.; Wilhelmová, N. Antioxidant and Prooxidant Properties of Flavonoids. Fitoterapia. 2011, 82(4), 513–523. DOI: 10.1016/j.fitote.2011.01.018.
  • Chahar, M. K.; Sharma, N.; Dobhal, M. P.; Joshi, Y. C. Flavonoids: A Versatile Source of Anticancer Drugs. Pharmacogn. Rev. 2011, 5(9), 1–12. DOI: 10.4103/0973-7847.79093.
  • Boots, A. W.; Wilms, L. C.; Swennen, E. L. R.; Kleinjans, J. C. S.; Bast, A.; Haenen, G. R. M. M. In Vitro and Ex Vivo Anti-Inflammatory Activity of Quercetin in Healthy Volunteers. Nutrition. 2008, 24(7–8), 703–710. DOI: 10.1016/j.nut.2008.03.023.
  • Kovacsova, M.; Barta, A.; Parohova, J.; Vrankova, S.; Pechanova, O. Neuroprotective Mechanisms of Natural Polyphenolic Compounds. Act Nerv. Super Rediviva. 2010, 52(3), 181–186.
  • Ngamukote, S.; Mäkynen, K.; Thilawech, T.; Adisakwattana, S. Cholesterol-Lowering Activity of the Major Polyphenols in Grape Seed. Molecules. 2011, 16(6), 5054–5061. DOI: 10.3390/molecules16065054.
  • El-Toumy, S. A.; Salib, J. Y.; El-Kashak, W. A.; Marty, C.; Bedoux, G.; Bourgougnon, N. Antiviral Effect of Polyphenol Rich Plant Extracts on Herpes Simplex Virus Type 1. Food Sci. Hum. Wellness. 2018, 7(1), 91–101. DOI: 10.1016/j.fshw.2018.01.001.
  • Vita, J. A.;. Polyphenols and Cardiovascular Disease: Effects on Endothelial and Platelet Function. Am. J. Clin. Nutr. 2005, 81(1Suppl), 292S–297S. DOI: 10.1093/ajcn/81.1.292S.
  • Ali Asgar, M.;. Anti-Diabetic Potential of Phenolic Compounds: A Review. Int. J. Food Prop. 2013, 16(1), 91–103. DOI: 10.1080/10942912.2011.595864.
  • Li, J.; Guo, W.-J.; Yang, Q.-Y. Effects of Ursolic Acid and Oleanolic Acid on Human Colon Carcinoma Cell Line HCT15. World J. Gastroenterol. 2002, 8(3), 493–495. DOI: 10.3748/wjg.v8.i3.493.
  • Zuco, V.; Supino, R.; Righetti, S. C.; Cleris, L.; Marchesi, E.; Gambacorti-Passerini, C.; Formelli, F. Selective Cytotoxicity of Betulinic Acid on Tumor Cell Lines, but Not on Normal Cells. Cancer Lett. 2002, 175(1), 17–25. DOI: 10.1016/S0304-3835(01)00718-2.
  • de Brum, T. F.; Camponogara, C.; da Silva Jesus, R.; Belke, B. V.; Piana, M.; Boligon, A. A.; de Freitas Bauermann, L. Ethnopharmacological Study and Topical Anti-Inflammatory Activity of Crude Extract from Poikilacanthus Glandulosus (Nees) Ariza Leaves. J. Ethnopharmacol. 2016, 193, 60–67. DOI: 10.1016/j.jep.2016.07.075.
  • Aiken, C.; Chen, C. H. Betulinic Acid Derivatives as HIV-1 Antivirals. Trends Mol. Med. 2005, 11(1), 31–36. DOI: 10.1016/j.molmed.2004.11.001.
  • Zhou, J.; Chen, C. H.; Aiken, C. Human Immunodeficiency Virus Type 1 Resistance to the Small Molecule Maturation Inhibitor 3-O-(3ʹ,3‘-Dimethylsuccinyl)-Betulinic Acid Is Conferred by a Variety of Single Amino Acid Substitutions at the CA-SP1 Cleavage Site in Gag. J. Virol. 2006, 80(24), 12095–12101. DOI: 10.1128/JVI.01626-06.
  • Pavlova, N. I.; Savinova, O. V.; Nikolaeva, S. N.; Boreko, E. I.; Flekhter, O. B. Antiviral Activity of Betulin, Betulinic and Betulonic Acids against Some Enveloped and Non-Enveloped Viruses. Fitoterapia. 2003, 74(5), 489–492. DOI: 10.1016/S0367-326X(03)00123-0.
  • Bagchi, D.; Bagchi, M.; Stohs, S. J.; Das, D. K.; Ray, S. D.; Kuszynski, C. A.; Pruess, H. G. Free Radicals and Grape Seed Proanthocyanidin Extract: Importance in Human Health and Disease Prevention. Toxicology. 2000, 148(2–3), 187–197. DOI: 10.1016/S0300-483X(00)00210-9.
  • Teleszko, M.; Wojdyło, A. Comparison of Phenolic Compounds and Antioxidant Potential between Selected Edible Fruits and Their Leaves. J. Funct. Foods. 2015, 14, 736–746. DOI: 10.1016/j.jff.2015.02.041.
  • Liaudanskas, M.; Viškelis, P.; Raudonis, R.; Kviklys, D.; Uselis, N.; Janulis, V. Phenolic Composition and Antioxidant Activity of Malus Domestica Leaves. Thescientificworldjournal. 2014, 2014, 306217. DOI: 10.1155/2014/306217.
  • Brand-Williams, W.; Cuvelier, M. E.; Berset, C. Use of a Free Radical Method to Evaluate Antioxidant Activity. LWT - Food Sci. Technol. 1995, 28(1), 25–30. DOI: 10.1016/S0023-6438(95)80008-5.
  • Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant Activity Applying an Improved ABTS Radical Cation Decolorization Assay. Free Radical Biol. Med. 1999, 26(9–10), 1231–1237. DOI: 10.1016/S0891-5849(98)00315-3.
  • Asghar, M. N.; Khan, I. U. Measurement of Antioxidant Activity with Trifluoperazine Dihydrochloride Radical Cation. Braz. J. Med. Biol. Res. 2008, 41(6), 455–461. DOI: 10.1590/S0100-879X2008000600003.
  • Benzie, I. F.; Strain, J. J. The Ferric Reducing Ability of Plasma (FRAP) as a Measure of “Antioxidant Power”: The FRAP Assay. Anal. Biochem. 1996, 239(1), 70–76. DOI: 10.1006/abio.1996.0292.
  • Apak, R.; Güçlü, K.; Ozyürek, M.; Karademir, S. E. Novel Total Antioxidant Capacity Index for Dietary Polyphenols and Vitamins C and E, Using Their Cupric Ion Reducing Capability in the Presence of Neocuproine: CUPRAC Method. J. Agric. Food Chem. 2004, 52(26), 7970–7981. DOI: 10.1021/jf048741x.
  • Heil, M.; Baumann, B.; Andary, C.; Linsenmair, K. E.; McKey, D. Extraction and Quantification of “Condensed Tannins” as a Measure of Plant Anti-Herbivore Defence? Revisiting an Old Problem. Die Naturwissenschaften. 2002, 89(11), 519–524. DOI: 10.1007/s00114-002-0366-3.
  • Butkevičiūtė, A.; Liaudanskas, M.; Kviklys, D.; Zymonė, K.; Raudonis, R.; Viškelis, J.; Janulis, V. Detection and Analysis of Triterpenic Compounds in Apple Extracts. Int. J. Food Prop. 2018, 21(1), 1716–1727. DOI: 10.1080/10942912.2018.1506478.
  • Prior, R. L.; Wu, X.; Schaich, K. Standardized Methods for the Determination of Antioxidant Capacity and Phenolics in Foods and Dietary Supplements. J. Agric. Food Chem. 2005, 53(10), 4290–4302. DOI: 10.1021/jf0502698.
  • Ashraf, M. U.; Muhammad, G.; Hussain, M. A.; Bukhari, S. N. A. Cydonia Oblonga M., A Medicinal Plant Rich in Phytonutrients for Pharmaceuticals. Front. Pharmacol. 2016, 7, 163. DOI: 10.3389/fphar.2016.00163.
  • Zhu, W.; Yin, Z.; Zhang, Q.; Guo, S.; Shen, Y.; Liu, T.; Peng, D. Proanthocyanidins Inhibit Osteoclast Formation and Function by Inhibiting the NF-κB and JNK Signaling Pathways during Osteoporosis Treatment. Biochem. Biophys. Res. Commun. 2018. DOI: 10.1016/j.bbrc.2018.12.125.
  • Margetis, D.; Roux, D.; Gaudry, S.; Messika, J.; Bouvet, O.; Branger, C.; Ricard, J.-D. Effects of Proanthocyanidins on Adhesion, Growth, and Virulence of Highly Virulent Extraintestinal Pathogenic Escherichia Coli Argue for Its Use to Treat Oropharyngeal Colonization and Prevent Ventilator-Associated Pneumonia. Crit. Care Med. 2015, 43(6), e170–8. DOI: 10.1097/CCM.0000000000000972.
  • Ravindranathan, P.; Pasham, D.; Goel, A. Oligomeric Proanthocyanidins (Opcs) from Grape Seed Extract Suppress the Activity of ABC Transporters in Overcoming Chemoresistance in Colorectal Cancer Cells. Carcinogenesis. 2018. DOI: 10.1093/carcin/bgy184.
  • Rodriguez de Sotillo, D. V.; Hadley, M. Chlorogenic Acid Modifies Plasma and Liver Concentrations Of: Cholesterol, Triacylglycerol, and Minerals in (Fa/Fa) Zucker Rats. J. Nutr. Biochem. 2002, 13(12), 717–726. DOI: 10.1016/S0955-2863(02)00231-0.
  • Bassoli, B. K.; Cassolla, P.; Borba-Murad, G. R.; Constantin, J.; Salgueiro-Pagadigorria, C. L.; Bazotte, R. B.; de Souza, H. M. Chlorogenic Acid Reduces the Plasma Glucose Peak in the Oral Glucose Tolerance Test: Effects on Hepatic Glucose Release and Glycaemia. Cell Biochem. Funct. 2008, 26(3), 320–328. DOI: 10.1002/cbf.1444.
  • dos Santos, M. D.; Almeida, M. C.; Lopes, N. P.; de Souza, G. E. P. Evaluation of the Anti-Inflammatory, Analgesic and Antipyretic Activities of the Natural Polyphenol Chlorogenic Acid. Biol. Pharm. Bull. 2006, 29(11), 2236–2240. DOI: 10.1248/bpb.29.2236.
  • Kasai, H.; Fukada, S.; Yamaizumi, Z.; Sugie, S.; Mori, H. Action of Chlorogenic Acid in Vegetables and Fruits as an Inhibitor of 8-Hydroxydeoxyguanosine Formation in Vitro and in a Rat Carcinogenesis Model. Food Chem. Toxicol. 2000, 38(5), 467–471. DOI: 10.1016/S0278-6915(00)00014-4.
  • Liobikas, J.; Majiene, D.; Trumbeckaite, S.; Kursvietiene, L.; Masteikova, R.; Kopustinskiene, D. M.; Bernatoniene, J. Uncoupling and Antioxidant Effects of Ursolic Acid in Isolated Rat Heart Mitochondria. J. Nat. Prod. 2011, 74(7), 1640–1644. DOI: 10.1021/np200060p.
  • Mawa, S.; Jantan, I.; Husain, K. Isolation of Terpenoids from the Stem of Ficus Aurantiaca Griff and Their Effects on Reactive Oxygen Species Production and Chemotactic Activity of Neutrophils. Molecules. 2016, 21(1), 9. DOI: 10.3390/molecules21010009.
  • Garg, A.; Aggarwal, B. B. Nuclear Transcription factor-kappaB as a Target for Cancer Drug Development. Leukemia. 2002, 16(6), 1053–1068. DOI: 10.1038/sj.leu.2402482.
  • Cha, D. S.; Shin, T. Y.; Eun, J. S.; Kim, D. K.; Jeon, H. Anti-Metastatic Properties of the Leaves of Eriobotrya Japonica. Arch. Pharmacal Res. 2011, 34(3), 425–436. DOI: 10.1007/s12272-011-0310-1.
  • Kaplan, S. A.;. Re: Ursolic Acid Reduces Prostate Size and Dihydrotestosterone Level in a Rat Model of Benign Prostatic Hyperplasia. J. Urol. 2013, 189(1), 388. DOI: 10.1016/j.juro.2012.09.143.
  • Wang, Z.; Hsu, C.; Huang, C.; Yin, M. Anti-Glycative Effects of Oleanolic Acid and Ursolic Acid in Kidney of Diabetic Mice. Eur. J. Pharmacol. 2010, 628(1–3), 255–260. DOI: 10.1016/j.ejphar.2009.11.019.