2,157
Views
5
CrossRef citations to date
0
Altmetric
Original Article

Valorization of chicken slaughterhouse by-products: Production and properties of chicken trachea hydrolysates using commercial proteases

, ORCID Icon & ORCID Icon
Pages 1642-1657 | Received 17 May 2021, Accepted 23 Sep 2021, Published online: 15 Oct 2021

References

  • Chuasuwan, C. Frozen and Processed Chicken Industry of Thailand. Krungsri Res. 2020, 1–6.
  • Lasekan, A.; Abu Bakar, F.; Hashim, D. Potential of Chicken by-products as Sources of Useful Biological Resources. Waste Manag. 2013, 33(3), 552–565. DOI: https://doi.org/10.1016/j.wasman.2012.08.001.
  • Brandelli, A.; Sala, L.; Kalil, S. J. Microbial Enzymes for Bioconversion of Poultry Waste into Added-Value Products. Food Res. Int. 2015, 73, 3/12. DOI: https://doi.org/10.1016/j.foodres.2015.01.015.
  • Jaroenviriyapap, T.; Vittayanont, M. Type and Content of Chondroitin Sulphate and Collagen in Poultry Tracheas. Asian J. Food Agro. Indus. 2009, 2(4), 974–980.
  • Cleland, T. P.; Vashishth, D. Bone Protein Extraction without Demineralization Using Principles from Hydroxyapatite Chromatography. Anal. Biochem. 2015, 472, 62–66. DOI: https://doi.org/10.1016/j.ab.2014.12.006.
  • Ahmadifard, N. Comparison the Effect of Three Commercial Enzymes for Enzymatic Hydrolysis of Two Substrates (Rice Bran Protein Concentrate and Soybean Protein) with SDS-PAGE. J. Food Sci. Technol. 2016, 53(2), 1279–1284.
  • Dey, S. S.; Dora, K. C. Optimization of the Production of Shrimp Waste Protein Hydrolysate Using Microbial Proteases Adopting Response Surface Methodology. J. Food Sci. Technol. 2014, 51(1), 16–24. DOI: https://doi.org/10.1007/s13197-011-0455-4.
  • Aluko, R. E. Food Protein-Derived Peptides: Production, Isolation, and Purification. In Proteins in Food Processing. Rickey Y. Yada, University of Guelph, Canada, Woodhead Publishing, UK. 2018, 389-412.
  • Yan, Q. J. Isolation, Identification and Synthesis of Four Novel Antioxidant Peptides from Rice Residue Protein Hydrolyzed by Multiple Proteases. Food Chem. 2015, 179, 290–295. DOI: https://doi.org/10.1016/j.foodchem.2015.01.137.
  • Banerjee, P.; Shanthi, C. Isolation of Novel Bioactive Regions from Bovine Achilles Tendon Collagen Having Angiotensin I-converting Enzyme-inhibitory Properties. Process Biochem. 2012, 47(12), 2335–2346. DOI: https://doi.org/10.1016/j.procbio.2012.09.012.
  • Mora, L.; Reig, M.; Toldrá, F. Bioactive Peptides Generated from Meat Industry By-products. Food Res. Int. 2014, 65, 344–349. DOI: https://doi.org/10.1016/j.foodres.2014.09.014.
  • Muguruma, M.; Ahhmed, A.; Katayama, K.; Kawahara, S.; Maruyama, M.; Nakamura, T. Identification of Pro-drug Type ACE Inhibitory Peptide Sourced from Porcine Myosin B: Evaluation of Its Antihypertensive Effects in Vivo. Food Chem. 2009, 114(2), 516–522.
  • Terashima, M.; Baba, T.; Ikemoto, N.; Katayama, M.; Morimoto, T.; Matsumura, S. Novel Angiotensin-converting Enzyme (ACE) Inhibitory Peptides Derived from Boneless Chicken Leg Meat. J. Agric. Food Chem. 2010, 58(12), 7432–7436.
  • A.O.A.C. Association of Official Analytical Chemists, 18 ed.; AOAC International: Maryland, USA, 2005.
  • Jain, S.; Anal, A. K. Optimization of Extraction of Functional Protein Hydrolysates from Chicken Egg Shell Membrane (ESM) by Ultrasonic Assisted Extraction (UAE) and Enzymatic Hydrolysis. LWT - Food Sci. Technol. 2016, 69, 295–302. DOI: https://doi.org/10.1016/j.lwt.2016.01.057.
  • Noman, A.; Xu, Y.; AL-Bukhaiti, W. Q.; Abed, S. M.; Ali, A. H.; Ramadhan, A. H.; Xia, W. Influence Of Enzymatic Hydrolysis Conditions On The Degree Of Hydrolysis And Functional Properties Of Protein Hydrolysate Obtained From Chinese Sturgeon (Acipenser sinensis) by using papain enzyme. Process Biochem. 2018, 67, 19–28. DOI: https://doi.org/10.1016/j.procbio.2018.01.009.
  • Nielsen, P. M.; Petersen, D.; Dambmann, C. Improved Method for Determining Food Protein Degree of Hydrolysis. J. Food Sci. 2001, 66(5), 642–646. DOI: https://doi.org/10.1111/j.1365-2621.2001.tb04614.x.
  • Abeyrathne, E. D.; Lee, H. Y.; Jo, C.; Suh, J. W.; Ahn, D. U. Enzymatic Hydrolysis of Ovomucin and the Functional and Structural Characteristics of Peptides in the Hydrolysates. Food Chem. 2016, 192, 107–113. DOI: https://doi.org/10.1016/j.foodchem.2015.06.055.
  • Lovrien, R.; Matulis, D. Assays for Total Protein. In Commonly Used Techniques; John Wiley & Sons, Inc, 2005, 0(1), A.3A.1-A.3A.14.
  • Chakka, A. K. In-vitro Antioxidant and Antibacterial Properties of Fermentatively and Enzymatically Prepared Chicken Liver Protein Hydrolysates. J. Food Sci. Technol. 2015, 52(12), 8059–8067.
  • Binsan, W.; Benjakul, S.; Visessanguan, W.; Roytrakul, S.; Tanaka, M.; Kishimura, H. Antioxidative Activity of Mungoong, an Extract Paste, from the Cephalothorax of White Shrimp (Litopenaeus Vannamei). Food Chem. 2008, 106(1), 185–193.
  • Giménez, B.; Alemán, A.; Montero, P.; Gómez-Guillén, M. C. Antioxidant and Functional Properties of Gelatin Hydrolysates Obtained from Skin of Sole and Squid. Food Chem. 2009, 114(3), 976–983.
  • Cheng, F.-Y.; Wan, T.-C.; LIU, Y.-T.; Chen, C.-M.; Lin, L.-C.; SAKATA, R. Determination of angiotensin-I Converting Enzyme Inhibitory Peptides in Chicken Leg Bone Protein Hydrolysate with Alcalase. Anim. Sci. J. 2009, 80(1), 91–97.
  • Bosch, L.; Alegría, A.; Farré, R. Application of the 6-aminoquinolyl-N-hydroxysccinimidyl Carbamate (AQC) Reagent to the RP-HPLC Determination of Amino Acids in Infant Foods. J. Chromatogr. B. 2006, 831(1–2), 176–183. DOI: https://doi.org/10.1016/j.jchromb.2005.12.002.
  • Vittayanont, M.; Jaroenviriyapap, T. Production of Crude Chondroitin Sulfate from Duck Trachea. Int. Food Res. J. 2014, 21(2), 791.
  • Khiari, Z.; Pietrasik, Z.; Gaudette, N. J.; Betti, M. Poultry Protein Isolate Prepared Using an Acid Solubilization/precipitation Extraction Influences the Microstructure, the Functionality and the Consumer Acceptability of a Processed Meat Product. Food Struct. 2014, 2(1–2), 49–60.
  • Sukkhown, P.; Jangchud, K.; Lorjaroenphon, Y.; Pirak, T. Flavored-functional Protein Hydrolysates from Enzymatic Hydrolysis of Dried Squid By-products: Effect of Drying Method. Food Hydrocolloids. 2018, 76, 103–112. DOI: https://doi.org/10.1016/j.foodhyd.2017.01.026.
  • Nchienzia, H. A.; Morawicki, R. O.; Gadang, V. P. Enzymatic Hydrolysis of Poultry Meal with Endo- and Exopeptidases. Poult. Sci. 2010, 89(10), 2273–2280. DOI: https://doi.org/10.3382/ps.2008-00558.
  • Shu, G. Effect of Five Proteases Including Alcalase, Flavourzyme, Papain, Proteinase K and Trypsin on Antioxidative Activities of Casein Hydrolysate from Goat Milk. Acta Univ. Cibiniensis Ser. E Food Tech. 2015, 19(2), 66–74.
  • Wouters, A. G. B.; Rombouts, I.; Fierens, E.; Brijs, K.; Delcour, J. A. Relevance of the Functional Properties of Enzymatic Plant Protein Hydrolysates in Food Systems. Compr. Rev. Food Sci. Food Saf. 2016, 15(4), 786–800.
  • Leon-Lopez, A.; Fuentes-Jiménez, L.; Hernández-Fuentes, A. D.; Campos-Montiel, R. G.; Aguirre-Álvarez, G. Hydrolysed Collagen from Sheepskins as a Source of Functional Peptides with Antioxidant Activity. Int. J. Mol. Sci. 2019, 20(16), 3931.
  • Pokorná, J.; Venskutonis, P. R.; Kraujalyte, V.; Kraujalis, P.; Dvořák, P.; Tremlová, B.; Kopřiva, V.; Ošťádalová, M. Comparison of Different Methods of Antioxidant Activity Evaluation of Green and roast C. Arabica and C. Robusta Coffee Beans. Acta Aliment. 2015, 44(3), 454–460.
  • Matsui, R.; Honda, R.; Kanome, M.; Hagiwara, A.; Matsuda, Y.; Togitani, T.; Ikemoto, N.; Terashima, M. Designing Antioxidant Peptides Based on the Antioxidant Properties of the Amino Acid Side-chains. Food Chem. 2018, 245, 750–755. DOI: https://doi.org/10.1016/j.foodchem.2017.11.119.
  • Aluko, R. E. Amino Acids, Peptides, and Proteins as Antioxidants for Food Preservation. In Handbook of Antioxidants for Food Preservation, 2015; pp 105–140.
  • Lafarga, T.; O’Connor, P.; Hayes, M. Identification of Novel Dipeptidyl peptidase-IV and angiotensin-I-converting Enzyme Inhibitory Peptides from Meat Proteins Using in Silico Analysis. Peptides. 2014, 59, 53–62. DOI: https://doi.org/10.1016/j.peptides.2014.07.005.
  • O’Sullivan, S. M. Bioactivity of Bovine Lung Hydrolysates Prepared Using Papain, Pepsin, and Alcalase. J. Food Biochem. 2017, 41(6): e12406.
  • Nakade, K.; KAMISHIMA, R.; INOUE, Y.; AHHMED, A.; KAWAHARA, S.; NAKAYAMA, T.; MARUYAMA, M.; NUMATA, M.; OHTA, K.; Aoki, T.;; et al. Identification of an Antihypertensive Peptide Derived from Chicken Bone Extract. Anim. Sci. J. 2008, 79(6), 710–715.
  • Je, J.-Y.; Lee, K.-H.; Lee, M. H.; Ahn, C.-B. Antioxidant and Antihypertensive Protein Hydrolysates Produced from Tuna Liver by Enzymatic Hydrolysis. Food Res. Int. 2009, 42(9), 1266–1272.
  • Chiang, J. H.; Loveday, S. M.; Hardacre, A. K.; Parker, M. E. Effects of Enzymatic Hydrolysis Treatments on the Physicochemical Properties of Beef Bone Extract Using Endo- and Exoproteases. Int. J. Food Sci. Technol. 2019, 54(1), 111–120.
  • Nguyen, H. T. M.; Sylla, K. S. B.; Randriamahatody, Z. Enzymatic Hydrolysis of Yellowfin Tuna (Thunnus Albacares) By-Products Using Protamex Protease. Food Technol. Biotechnol. 2011, 49(1), 48–55.
  • Onuh, J. O.; Girgih, A. T.; Aluko, R. E.; Aliani, M. In Vitro Antioxidant Properties of Chicken Skin Enzymatic Protein Hydrolysates and Membrane Fractions. Food Chem. 2014, 150, 366–373. DOI: https://doi.org/10.1016/j.foodchem.2013.10.107.
  • Kurozawa, L. E.; Park, K. J.; Hubinger, M. D. Optimization of the Enzymatic Hydrolysis of Chicken Meat Using Response Surface Methodology. J. Food Sci. 2008, 73(5), C405–12. DOI: https://doi.org/10.1111/j.1750-3841.2008.00765.x.