802
Views
4
CrossRef citations to date
0
Altmetric
Original Article

Viscoelasticity and friction of solid foods measurement by simulating meal-assisting robot

ORCID Icon, , , &
Pages 2301-2319 | Received 25 Jul 2022, Accepted 01 Oct 2022, Published online: 11 Oct 2022

References

  • Mokhtari, M.; Feki, M. A.; Abdulrazak, B.; Grandjean, B. 3 toward a Human-Friendly User Interface to Control an Assistive Robot in the Context of Smart Homes. Lect. Notes Control Inf. Sci. 2004, 306, 47–56.
  • Topping, M. J.; Smith, J. K. The Development of Handy 1. A Robotic System to Assist the Severely Disabled. Technol. Disability. 1999, 10, 95–105.
  • Topping, M. Flexibot–a Multi‐functional general-purpose Service Robot. Ind. Rob. 2001, 28(5), 395–401. DOI: 10.1108/01439910110401466.
  • Ishii, S. Food-assistance Robot “My Spoon.” Int. J. Soc. Rob. 2003, 21(4), 378–381. DOI: 10.7210/jrsj.21.378.
  • Zhang, X.; Wang, X.; Wang, B.; Sugi, T.; Nakamura, M. Automatic Adaptive Onset Detection Using an Electromyogram with Individual Difference for Control of a Food Assistance Robot. J. Med. Eng. Technol. 2009, 33(4), 322–327. DOI: 10.1080/03091900902744031.
  • Daehyung, P.; Yuuna, H.; Charles, C. K. A Multimodal Anomaly Detector for Robot-Assisted Feeding Using an LSTM-Based Variational Autoencoder. IEEE Robot. Autom. Lett. 2018, 3(3), 1544–1551. DOI: 10.1109/LRA.2018.2801475.
  • Jihyeon, H.; Sangin, P.; Chang-Hwan, I. Laehyun, K.A Hybrid Brain–Computer Interface for Real-Life Food-Assist Robot Control. Sensors. 2021 21 4578. doi:10.3390/s21134578
  • Nabil, E.; Aman, B. A Learning from Demonstration Framework for Implementation of A Feeding Task. Ency. Semant. Comput. Robot. Intell. 2018, 2(1), 1850001. DOI: 10.1142/S2529737618500016.
  • Tejas, K. S.; Maria, K. G.; Gräser, A. Application of Reinforcement Learning to a Robotic Drinking Assistant. Robotics. 2019, 9(1), 1–15. DOI: 10.3390/robotics9010001.
  • Yantao, L.; Lixun, Z.; Lan, W. 1811-1815. Mechanism Design and Dynamics Study of Food-assistance Robot. Mechatron. Autom. 2009.
  • Fei, L.; Hongliu, Y.; Wentao, W.; Changcheng, Q. I-feed: A Robotic Platform of an Assistive Feeding Robot for the Disabled Elderly Population. Technol. Health Care 2020, 2, 1–5.
  • Fei, L.; Peng, X.; Hongliu, Y. Robot-assisted Feeding: A Technical Application that Combines Learning from Demonstration and Visual Interaction. Technol. Health Care 2020, 1, 1–6.
  • Hamazawa, M. Robot Applications in the Japanese Food Industry. Ind. Rob. 1999, 26(4), 274–277. DOI: 10.1108/01439919910277530.
  • Congcong, X.; Liping, W.; Liyu, S.; Chi, Y.; Huaning, Y.; Yunfei, L. Effect of freezing/thawing Temperature on the Viscoelastic and Nutritional Qualities of Carrots. Int. J. Food Prop. 2016, 19(6), 1413–1424. DOI: 10.1080/10942912.2015.1079788.
  • Singh, P.; Lakes, R. S.; Gunasekaran, S. Viscoelastic Characterization of Selected Foods over an Extended Frequency Range. Rheol. Acta. 2006, 46(1), 131–142. DOI: 10.1007/s00397-006-0107-1.
  • Sritham, E.; Sundaram, G.; Roderic, S. L. Broadband Viscoelastic Spectroscopy: A New Technique for Characterizing Rheological Behavior of Solid Foods. Int. J. Food Prop. 2009, 12(1), 102–113. DOI: 10.1080/10942910802223388.
  • Boisly, M.; Schuldt, S.; Kastner, M.; Schneider, Y.; Rohm, H. Experimental Characterisation and Numerical Modelling of Cutting Processes in Viscoelastic Solids. J. Food Eng. 2016, 191, 1–9. DOI: 10.1016/j.jfoodeng.2016.06.019.
  • Krokida, M. K.; Maroulis, Z. B.; Marinos-Kouris, D. Viscoelastic Behavior of Dehydrated Carrot and Potato. Drying Technol. 1998, 16(3–5), 687–703. DOI: 10.1080/07373939808917430.
  • Fakhreddin, S.; Mahdi, K. Texture Profile Analysis and Stress Relaxation Characteristics of Quince Sponge Cake. J. Food Meas. Charact. 2018, 12(2), 1203–1210. DOI: 10.1007/s11694-018-9734-3.
  • Fuhrmann, P. L.; Aguayo-Mendoza, M.; Jansen, B.; Stieger, M.; Scholten, E. Characterisation of Friction Behaviour of Intact Soft Solid Foods and Food Boli. Food Hydrocolloids. 2020, 100, 105441. DOI: 10.1016/j.foodhyd.2019.105441.
  • Joyner, H. S.; Pernell, C. W.; Daubert, C. R. Impact of Formulation and Saliva on Acid Milk Gel Friction Behavior. J. Food Sci. 2014, 79(5), 867–880. DOI: 10.1111/1750-3841.12439.
  • Prinz, J. F.; Wijk, R. A.; Huntjens, L. Load Dependency of the Coefficient of Friction of Oral Mucosa. Food Hydrocolloids. 2007, 21(3), 402–408. DOI: 10.1016/j.foodhyd.2006.05.005.
  • Wragge-Morley, R.; Yon, J.; Lock, R.; Alexander, B.; Burgess, S. A Novel Pendulum Test for Measuring Roller Chain Efficiency. Meas. Sci. Technol. 2018, 29(7), 075008. DOI: 10.1088/1361-6501/aaa239.
  • Kokorian, J.; Spengen, W. M. V. Improved Analysis and Visualization of Friction Loop Data: Unraveling the Energy Dissipation of meso-scale stick–slip Motion. Meas. Sci. Technol. 2017, 28(11), 115011. DOI: 10.1088/1361-6501/aa870a.
  • Pettersson, T.; Ohlsson, S.; Davis, J. O.; Dodd, T. J.; Dodd, T. J. A Hygienically Designed Force Gripper for Flexible Handling of Variable and Easily Damaged Natural Food Products. Innovative Food Sci. Emerging Technol. 2011, 12(3), 344–351. DOI: 10.1016/j.ifset.2011.03.002.
  • Xu, Z.; Chen, W. A fractional-order Model on New Experiments of Linear Viscoelastic Creep of Hami Melon. Comput. Math. with Appl. 2013, 66(5), 677–681. DOI: 10.1016/j.camwa.2013.01.033.
  • Jinghu, Y.; Santos, P. H. S.; Campanlla, O. H. A Study to Characterize the Mechanical Behavior of Semisolid Viscoelastic Systems under Compression chewing-case Study of Agar Gel. J. Texture Stud. 2012, 43(6), 459–467. DOI: 10.1111/j.1745-4603.2012.00356.x.
  • Mahiuddin, M.; Godhani, D.; Feng, L.; Liu, F.; Langrish, T.; Karim, M. A. Application of Caputo Fractional Rheological Model to Determine the Viscoelastic and Mechanical Properties of Fruit and Vegetables. Postharvest. Biol. Technol. 2020, 163, 111147. DOI: 10.1016/j.postharvbio.2020.111147.
  • Gyeong-Won, K.; Gab-Soo, D.; Yeonghwan, B.; Yasuyuki, S. Determination of the Viscoelastic Properties of Agar/Agar-Gelatin Gels Based on Finite Element Method Optimization. Food Sci. Technol. Res. 2008, 14(6), 525–532. DOI: 10.3136/fstr.14.525.
  • Michal, P.; Ondrej, N.; David, H.; Satya, S. Finite Element Method Model of the Mechanical Behaviour of Jatropha Curcas L. seed under compression loading. Bio. Eng. 2012, 111, 412–421.
  • Hui, L.; Dejun, M.; Jiasen, W.; Jinghu, Y. Research on Mechanical Behavior of Viscoelastic Food Material in the Mode of Compressed Chewing. Math. Probl. Eng. 2015, 4, 1–6.
  • Sakamoto, N.; Higashimori, M.; Tsuji, T.; Kaneko, M. An Optimum Design of Robotic Hand for Handling a visco-elastic Object Based on Maxwell Model. 2007 IEEE International Conference on Robotics and Automation. 10-14 April 2007 Roma, Italy. 2007, 1219–1225. doi:10.1109/ROBOT.2007.363151.
  • Sakamoto, N.; Higashimori, M.; Tsuji, T.; Kaneko, M. An Optimum Design of Robotic Food Handling by Using Burger Model. Intell Service Robot. 2009, 2(1), 53–60. DOI: 10.1007/s11370-008-0032-5.
  • Zhongkui, W.; Syogo, I.; Yasutaka, H.; Sadao, K. Measuring Viscoelasticity and Friction of Tempuras for Robotic Handling. J. Food Eng. 2021, 310, 110707. DOI: 10.1016/j.jfoodeng.2021.110707.
  • Mahiuddin, M.; Khan, M. I. H.; Kumar, C.; Rahman, M. M.; Karim, M. A. Shrinkage of Food Materials during Drying: Current Status and Challenges. Compr. Rev. Food Sci. Food Saf. 2018, 17(5), 1113–1126. DOI: 10.1111/1541-4337.12375.
  • Mahiuddin, M.; Khan, M. I. H.; Duc Pham, N.; Karim, M. A. Development of Fractional Viscoelastic Model for Characterizing Viscoelastic Properties of Food Material during Drying. Food Biosci. 2018, 23, 45–53. DOI: 10.1016/j.fbio.2018.03.002.
  • Llave, Y.; Takemori, K.; Fukuoka, M.; Takemori, T.; Tomita, H.; Sakai, N. Mathematical Modeling of Shrinkage Deformation in Eggplant Undergoing Simultaneous Heat and Mass Transfer during convection-oven Roasting. J. Food Eng. 2016, 178, 124–136. DOI: 10.1016/j.jfoodeng.2016.01.013.
  • Williams, S. H.; Wright, B. W.; Truong, V. D.; Daubert, C. R.; Vinyard, C. J. Mechanical Properties of Foods Used in Experimental Studies of Primate Masticatory Function. Am. J. Primatol. 2005, 67(3), 329–346. DOI: 10.1002/ajp.20189.
  • Ogawa, Y.; Matsuura, M.; Yamamoto, N. Young’s Modulus and Poisson’s Ratio Changes in Japanese Radish and Carrot Root Tissues during Boiling. Int. J. Food Prop. 2015, 18(5), 1006–1013. DOI: 10.1080/10942912.2013.879388.
  • Zhongkui, W.; Shinichi, H. Modeling and Parameter Estimation of Rheological Objects for Simultaneous Reproduction of Force and Deformation. ICABB. October 14-16, 2010 Venice, Italy. 2010, 14–16. https://www.researchgate.net/publication/228708234_Modeling_and_parameter_estimation_of_rheological_objects_for_simultaneous_reproduction_of_force_and_deformation
  • Zhongkui, W.; Shinichi, H. Finite Element Modeling and Physical Property Estimation of Rheological Food Objects. J. Food Res. 2012, 1(1), 48–67. DOI: 10.5539/jfr.v1n1p48.
  • Che-Yu, L. Alternative Form of Standard Linear Solid Model for Characterizing Stress Relaxation and Creep: Including a Novel Parameter for Quantifying the Ratio of Fluids to Solids of a Viscoelastic Solid. Front. Mater. 2020, 7, 1–11.
  • Otsuki, M.; Matsukawa, H. Systematic Breakdown of Amontons’ Law of Friction for an Elastic Object Locally Obeying Amontons’ Law. Sci. Rep. 2013, 3(1), 1586–1592. DOI: 10.1038/srep01586.
  • Katano, Y.; Nakano, K.; Otsuki, M.; Matsukawa, H. Novel Friction Law for the Static Friction Force Based on Local Precursor Slipping. Sci. Rep. 2014, 4(1), 3630–6324. DOI: 10.1038/srep06324.