1,740
Views
0
CrossRef citations to date
0
Altmetric
Original Article

Microbiological quality of ready to eat coleslaw marketed in Ibadan, Oyo-State, Nigeria

, , , , , , , , , , & show all
Pages 666-682 | Received 15 Jun 2022, Accepted 29 Dec 2022, Published online: 16 Feb 2023

References

  • Machado-Moreira, B.; Richards, K.; Brennan, F.; Abram, F.; Burgess, C. M. Microbial Contamination of Fresh Produce: What, Where, and How? Compr. Rev. Food Sci. Food Saf. 2019, 18, 1727–1750. DOI: 10.1111/1541-4337.12487.
  • Seow, J.; Ágoston, R.; Phua, L.; Yuk, H.-G. Microbiological Quality of Fresh Vegetables and Fruits Sold in Singapore. Food Control. 2012, 25, 39–44. DOI: 10.1016/j.foodcont.2011.10.017.
  • Alegbeleye, O. O.; Singleton, I.; Sant’Ana, A. S. Sources and Contamination Routes of Microbial Pathogens to Fresh Produce during Field Cultivation: A Review. Food Microbiol. 2018, 73, 177–208. DOI: 10.1016/j.fm.2018.01.003.
  • Alegbeleye, O.; Odeyemi, O. A.; Strateva, M.; Stratev, D. Microbial Spoilage of Vegetables, Fruits and Cereals. Appl. Food Res. 2022, 2, 100122. DOI: 10.1016/j.afres.2022.100122.
  • Korir, R. C.; Parveen, S.; Hashem, F.; Bowers, J. Microbiological Quality of Fresh Produce Obtained from Retail Stores on the Eastern Shore of Maryland, United States of America. Food Microbiol. 2016, 56, 29–34. DOI: 10.1016/j.fm.2015.12.003.
  • Erickson, M. C.;. Microbial Risks Associated with Cabbage, Carrots, Celery, Onions, and Deli Salads Made with These Produce Items. Compr. Rev. Food Sci. Food Saf. 2010, 9, 602–619. DOI: 10.1111/j.1541-4337.2010.00129.x.
  • Koukkidis, G.; Haigh, R.; Allcock, N.; Jordan, S.; Freestone, P. Salad Leaf Juices Enhance Salmonella Growth, Colonization of Fresh Produce, and Virulence. Appl. Environ. Microbiol. 2017, 83, e02416. DOI: 10.1128/AEM.02416-16.
  • Abadias, M.; Usall, J.; Anguera, M.; Solsona, C.; Microbiological, V. I. Quality of Fresh, Minimally-Processed Fruit and Vegetables, and Sprouts from Retail Establishments. Int. J. Food Microbiol. 2008, 123, 121–129. DOI: 10.1016/j.ijfoodmicro.2007.12.013.
  • Caponigro, V.; Ventura, M.; Chiancone, I.; Amato, L.; Parente, E.; Piro, F. Variation of Microbial Load and Visual Quality of Ready-to-Eat Salads by Vegetable Type, Season, Processor and Retailer. Food Microbiol. 2010, 27, 1071–1077. DOI: 10.1016/j.fm.2010.07.011.
  • Cardamone, C.; Aleo, A.; Mammina, C.; Oliveri, G.; Di Noto, A. M. Assessment of the Microbiological Quality of Fresh Produce on Sale in Sicily, Italy: Preliminary Results. J. Biol. Res. 2015, 22, 3. DOI: 10.1186/s40709-015-0026-3.
  • Esteban-Cuesta, I.; Drees, N.; Ulrich, S.; Stauch, P.; Sperner, B.; Schwaiger, K.; Gareis, M.; Gottschalk, C. Endogenous Microbial Contamination of Melons (Cucumis Melo) from International Trade: An Underestimated Risk for the Consumer? J. Sci. Food Agric. 2018, 98, 5074–5081. DOI: 10.1002/jsfa.9045.
  • Fröder, H.; Martins, C. G.; de Souza, K. L. O.; Landgraf, M.; Franco, B. D. G. M.; Destro, M. T. Minimally Processed Vegetable Salads: Microbial Quality Evaluation. J. Food Prot. 2007, 70, 1277–1280. DOI: 10.4315/0362-028X-70.5.1277.
  • Jeddi, M. Z.; Yunesian, M.; Gorji, M. E.; Noori, N.; Pourmand, M. R.; Khaniki, G. R. J. Microbial Evaluation of Fresh, Minimally-Processed Vegetables and Bagged Sprouts from Chain Supermarkets. J. Health Popul. Nutr. 2014, 32, 391–399.
  • Johannessen, G. S.; Loncarevic, S.; Kruse, H. Bacteriological Analysis of Fresh Produce in Norway. Int. J. Food Microbiol. 2002, 77, 199–204. DOI: 10.1016/S0168-1605(02)00051-X.
  • Łepecka, A.; Zielińska, D.; Szymański, P.; Buras, I.; Kołożyn-Krajewska, D. Assessment of the Microbiological Quality of Ready-to-Eat Salads—Are There Any Reasons for Concern about Public Health? Int. J. Environ. Res. Public. Health. 2022, 19, 1582. DOI: 10.3390/ijerph19031582.
  • Maffei, D. F.; Silveira de, N. F. A.; Catanozi da, M. P. L. M. Microbiological Quality of Organic and Conventional Vegetables Sold in Brazil. Food Control. 2013, 29, 226–230. DOI: 10.1016/j.foodcont.2012.06.013.
  • Oliveira, M.; Usall, J.; Viñas, I.; Anguera, M.; Gatius, F.; Abadias, M. Microbiological Quality of Fresh Lettuce from Organic and Conventional Production. Food Microbiol. 2010, 27, 679–684. DOI: 10.1016/j.fm.2010.03.008.
  • Xylia, P.; Botsaris, G.; Chrysargyris, A.; Skandamis, P.; Tzortzakis, N. Variation of Microbial Load and Biochemical Activity of Ready-to-Eat Salads in Cyprus as Affected by Vegetable Type, Season, and Producer. Food Microbiol. 2019, 83, 200–210. DOI: 10.1016/j.fm.2019.05.013.
  • Zhang, H.; Yamamoto, E.; Murphy, J.; Locas, A. Microbiological Safety of Ready-to-Eat Fresh-Cut Fruits and Vegetables Sold on the Canadian Retail Market. Int. J. Food Microbiol. 2020, 335, 108855. DOI: 10.1016/j.ijfoodmicro.2020.108855.
  • Pothakos, V.; Snauwaert, C.; De Vos, P.; Huys, G.; Devlieghere, F. Monitoring Psychrotrophic Lactic Acid Bacteria Contamination in a Ready-to-Eat Vegetable Salad Production Environment. Int. J. Food Microbiol. 2014, 185, 7–16. DOI: 10.1016/j.ijfoodmicro.2014.05.009.
  • International Organization for Standardisation, ISO 6579-1:2017. Microbiology of the Food Chain- Horizontal Method for the detection, enumeration and serotyping of Salmonella- Part 1 detection of Salmonella spp., 2017. https://www.iso.org/cms/render/live/en/sites/isoorg/contents/data/standard/05/67/56712.html
  • Alegbeleye, O. O.; Sant’Ana, A. S. Manure-Borne Pathogens as an Important Source of Water Contamination: An Update on the Dynamics of Pathogen Survival/Transport as Well as Practical Risk Mitigation Strategies. Int. J. Hyg. Environ. Health. 2020, 227, 113524. DOI: 10.1016/j.ijheh.2020.113524.
  • Beuchat, L. R.;. Listeria Monocytogenes: Incidence on Vegetables. Food Control. 1996, 7, 223–228. DOI: 10.1016/S0956-7135(96)00039-4.
  • Hernández, A.; Pérez-Nevado, F.; Ruiz-Moyano, S.; Serradilla, M. J.; Villalobos, M. C.; Martín, A.; Córdoba, M. G. Spoilage Yeasts: What are the Sources of Contamination of Foods and Beverages? Int. J. Food Microbiol. 2018, 286, 98–110. DOI: 10.1016/j.ijfoodmicro.2018.07.031.
  • Leff, J. W.; Fierer, N.; Berg, G. Bacterial Communities Associated with the Surfaces of Fresh Fruits and Vegetables. PLoS ONE. 2013, 8, e59310. DOI: 10.1371/journal.pone.0059310.
  • Ailes, E. C.; Leon, J. S.; Jaykus, L.-A.; Johnston, L. M.; Clayton, H. A.; Blanding, S.; Kleinbaum, D. G.; Backer, L. C.; Moe, C. L. Microbial Concentrations on Fresh Produce are Affected by Postharvest Processing, Importation, and Season. J. Food Prot. 2008, 71, 2389–2397. DOI: 10.4315/0362-028x-71.12.2389.
  • Nousiainen, -L.-L.; Joutsen, S.; Lunden, J.; Hänninen, M.-L.; Bacterial Quality, F.-A. M. Safety of Packaged Fresh Leafy Vegetables at the Retail Level in Finland. Int. J. Food Microbiol. 2016, 232, 73–79. DOI: 10.1016/j.ijfoodmicro.2016.05.020.
  • Soriano, J. M.; Rico, H.; Moltó, J. C.; Mañes, J. Assessment of the Microbiological Quality and Wash Treatments of Lettuce Served in University Restaurants. Int. J. Food Microbiol. 2000, 58, 123–128. DOI: 10.1016/s0168-1605(00)00288-9.
  • Valero, A.; Carrasco, E.; Pérez-Rodríguez, F.; García-Gimeno, R.; Blanco, C.; Zurera, G. Monitoring the Sensorial and Microbiological Quality of Pasteurized White Asparagus at Different Storage Temperatures. J. Sci. Food Agric. 2006, 86, 1281–1288. DOI: 10.1002/jsfa.2489.
  • Ziegler, M.; Kent, D.; Stephan, R.; Guldimann, C. Growth Potential of Listeria Monocytogenes in Twelve Different Types of RTE Salads: Impact of Food Matrix, Storage Temperature and Storage Time. Int. J. Food Microbiol. 2019, 296, 83–92. DOI: 10.1016/j.ijfoodmicro.2019.01.016.
  • Oliveira, M.; Usall, J.; Solsona, C.; Alegre, I.; Viñas, I.; Abadias, M. Effects of Packaging Type and Storage Temperature on the Growth of Foodborne Pathogens on Shredded ‘Romaine’ Lettuce. Food Microbiol. 2010, 27, 375–380. DOI: 10.1016/j.fm.2009.11.014.
  • Tucci, P.; Centorotola, G.; Salini, R.; Iannetti, L.; Sperandii, A. F.; D’Alterio, N.; Migliorati, G.; Pomilio, F. Challenge Test Studies on Listeria Monocytogenes in Ready-to-Eat Iceberg Lettuce. Food Sci. Nutr. 2019, 7, 3845–3852. DOI: 10.1002/fsn3.1167.
  • Österblad, M.; Pensala, O.; Peterzéns, M.; Heleniusc, H.; Huovinen, P. Antimicrobial Susceptibility of Enterobacteriaceae Isolated from Vegetables. J. Antimicrob. Chemother. 1999, 43, 503–509. DOI: 10.1093/jac/43.4.503.
  • Wood, J. L.; Chen, J. C.; Friesen, E.; Delaquis, P.; Allen, K. J. Microbiological Survey of Locally Grown Lettuce Sold at Farmers’ Markets in Vancouver, British Columbia. J. Food Prot. 2015, 78, 203–208. DOI: 10.4315/0362-028X.JFP-14-199.
  • Little, C.; Roberts, D.; Youngs, E.; de Louvois, J. Microbiological Quality of Retail Imported Unprepared Whole Lettuces: A PHLS Food Working Group Study. J. Food Prot. 1999, 62, 325–328. DOI: 10.4315/0362-028X-62.4.325.
  • Nguyen‐the, C.; Carlin, F. The Microbiology of Minimally Processed Fresh Fruits and Vegetables. Crit. Rev. Food Sci. Nutr. 1994, 34, 371–401. DOI: 10.1080/10408399409527668.
  • Ragaert, P.; Devlieghere, F.; Debevere, J. Role of Microbiological and Physiological Spoilage Mechanisms during Storage of Minimally Processed Vegetables. Postharvest Biol. Technol. 2007, 44, 185–194. DOI: 10.1016/j.postharvbio.2007.01.001.
  • Ben Said, L.; Jouini, A.; Klibi, N.; Dziri, R.; Alonso, C. A.; Boudabous, A.; Ben Slama, K.; Torres, C. Detection of Extended-Spectrum Beta-Lactamase (Esbl)-producing Enterobacteriaceae in Vegetables, Soil and Water of the Farm Environment in Tunisia. Int. J. Food Microbiol. 2015, 203, 86–92. DOI: 10.1016/j.ijfoodmicro.2015.02.023.
  • Sant’Ana, A. S.; Barbosa, M. S.; Destro, M. T.; Landgraf, M.; Franco, B. D. G. M. Growth Potential of Salmonella Spp. and Listeria Monocytogenes in Nine Types of Ready-to-Eat Vegetables Stored at Variable Temperature Conditions during Shelf-Life. Int. J. Food Microbiol. 2012, 157, 52–58. DOI: 10.1016/j.ijfoodmicro.2012.04.011.
  • Ponce, A. G.; Moreira, M. R.; Del Valle, C. E.; Roura, S. I. Preliminary Characterization of Bacteriocin-like Substances from Lactic Acid Bacteria Isolated from Organic Leafy Vegetables. LWT - Food Sci. Technol. 2008, 41, 432–441. DOI: 10.1016/j.lwt.2007.03.021.
  • Trias, R.; Bañeras, L.; Badosa, E.; Montesinos, E. Bioprotection of Golden Delicious Apples and Iceberg Lettuce against Foodborne Bacterial Pathogens by Lactic Acid Bacteria. Int. J. Food Microbiol. 2008, 123, 50–60. DOI: 10.1016/j.ijfoodmicro.2007.11.065.
  • Barth, M.; Hankinson, T. R.; Zhuang, H.; Breidt, F. Microbiological Spoilage of Fruits and Vegetables. In Compendium of the Microbiological Spoilage of Foods and Beverages; Sperber, W. H., Doyle, M. P., Eds.; Food Microbiology and Food Safety; Springer: New York, NY, 2009; pp 135–183.
  • Lampert, Y.; Dror, B.; Sela, N.; Teper-Bamnolker, P.; Daus, A.; Sela (Saldinger), S.; Eshel, D. Emergence of Leuconostoc Mesenteroides as a Causative Agent of Oozing in Carrots Stored under Non-Ventilated Conditions. Microb. Biotechnol. 2017, 10, 1677–1689. DOI: 10.1111/1751-7915.12753.
  • Carlin, F.; Nguyen-The, C.; Cudennec, P.; Reich, M. Microbiological Spoilage of Fresh, Ready-to-Use Grated Carrots [Principal Component Analysis]. Sci. Aliments Fr. 1989, 9, 371–386.
  • Lyhs, U.; Koort, J. M. K.; Lundström, H.-S.; Björkroth, K. J.; Gelidum, L. Leuconostoc Gasicomitatum Strains Dominated the Lactic Acid Bacterium Population Associated with Strong Slime Formation in an Acetic-Acid Herring Preserve. Int. J. Food Microbiol. 2004, 90, 207–218. DOI: 10.1016/s0168-1605(03)00303-9.
  • Säde, E. Leuconostoc Spoilage of Refrigerated. Pack. Food. 2011, 57.
  • Susiluoto, T.; Korkeala, H.; Björkroth, K. J. Leuconostoc Gasicomitatum Is the Dominating Lactic Acid Bacterium in Retail Modified-Atmosphere-Packaged Marinated Broiler Meat Strips on Sell-by-Day. Int. J. Food Microbiol. 2003, 80, 89–97. DOI: 10.1016/S0168-1605(02)00123-X.
  • Björkroth, K. J.; Geisen, R.; Schillinger, U.; Weiss, N.; De Vos, P.; Holzapfel, W. H.; Korkeala, H. J.; Vandamme, P. Characterization of Leuconostoc Gasicomitatum Sp. Nov., Associated with Spoiled Raw Tomato-Marinated Broiler Meat Strips Packaged under Modified-Atmosphere Conditions. Appl. Environ. Microbiol. 2000, 66, 3764–3772. DOI: 10.1128/AEM.66.9.3764-3772.2000.
  • Kato, Y.; Sakala, R. M.; Hayashidani, H.; Kiuchi, A.; Kaneuchi, C.; Ogawa, M. Lactobacillus Algidus Sp. Nov., a Psychrophilic Lactic Acid Bacterium Isolated from Vacuum-Packaged Refrigerated Beef. Int. J. Syst. Evol. Microbiol. 2000, 50(Pt 3), 1143–1149. DOI: 10.1099/00207713-50-3-1143.
  • Sakala, R. M.; Hayashidani, H.; Kato, Y.; Kaneuchi, C.; Isolation, O. M. Characterization of Lactococcus Piscium Strains from Vacuum-Packaged Refrigerated Beef. J. Appl. Microbiol. 2002, 92, 173–179. DOI: 10.1046/j.1365-2672.2002.01513.x.
  • Vihavainen, E. J.; Björkroth, K. J. Spoilage of Value-Added, High-Oxygen Modified-Atmosphere Packaged Raw Beef Steaks by Leuconostoc Gasicomitatum and Leuconostoc Gelidum. Int. J. Food Microbiol. 2007, 119, 340–345. DOI: 10.1016/j.ijfoodmicro.2007.08.029.
  • Björkroth, K. J.; Vandamme, P.; Korkeala, H. J. Identification and Characterization of Leuconostoc Carnosum, Associated with Production and Spoilage of Vacuum-Packaged, Sliced, Cooked Ham. Appl. Environ. Microbiol. 1998, 64(9), 3313–3319. DOI: 10.1128/AEM.64.9.3313-3319.1998.
  • García-Gimeno, R. M.; Zurera-Cosano, G. Determination of Ready-to-Eat Vegetable Salad Shelf-Life. Int. J. Food Microbiol. 1997, 36, 31–38. DOI: 10.1016/s0168-1605(96)01238-x.
  • Qadri, O. S.; Yousuf, B.; Srivastava, A. K.; Fruits, F.-C.; Yildiz, F. Vegetables: Critical Factors Influencing Microbiology and Novel Approaches to Prevent Microbial Risks—A Review. Cogent Food Agric. 2015, 1, 1121606. DOI: 10.1080/23311932.2015.1121606.
  • Kurtzman, C. P.;. Chapter 47 - Meyerozyma Kurtzman & M. Suzuki (2010). In The Yeasts, (Fifth ed.; Kurtzman, C. P., Fell, J. W., Boekhout, T., Eds.; Elsevier: London, 2011; pp 621–624.
  • Garijo, P.; González-Arenzana, L.; López-Alfaro, I.; Garde-Cerdán, T.; López, R.; Santamaría, P.; Gutiérrez, A. R. Analysis of Grapes and the First Stages of the Vinification Process in Wine Contamination with Brettanomyces Bruxellensis. Eur. Food Res. Technol. 2015, 240, 525–532. DOI: 10.1007/s00217-014-2351-4.
  • Sharma, R.; Garg, P.; Kumar, P.; Bhatia, S. K.; Microbial Fermentation, K. S. Its Role in Quality Improvement of Fermented Foods. Fermentation. 2020, 6, 106. DOI: 10.3390/fermentation6040106.
  • Hardin, B. D.; Kelman, B. J.; Saxon, A. Adverse Human Health Effects Associated with Molds in the Indoor Environment. J. Occup. Environ. Med. 2003, 45, 470–478. DOI: 10.1097/00043764-200305000-00006.
  • Mendell, M. J.; Mirer, A. G.; Cheung, K.; Tong, M.; Respiratory, D. J. Allergic Health Effects of Dampness, Mold, and Dampness-Related Agents: A Review of the Epidemiologic Evidence. Environ. Health Perspect. 2011, 119, 748–756. DOI: 10.1289/ehp.1002410.
  • Ratnaseelan, A. M.; Tsilioni, I.; Theoharides, T. C. Effects of Mycotoxins on Neuropsychiatric Symptoms and Immune Processes. Clin. Ther. 2018, 40, 903–917. DOI: 10.1016/j.clinthera.2018.05.004.
  • Cabral, J. P. S.; Microbiology, W. Bacterial Pathogens and Water. Int. J. Environ. Res. Public. Health. 2010, 7, 3657–3703. DOI: 10.3390/ijerph7103657.
  • Prevost, S.; Cayol, J.-L.; Zuber, F.; Tholozan, J.-L.; Remize, F. Characterization of Clostridial Species and Sulfite-Reducing Anaerobes Isolated from Foie Gras with respect to Microbial Quality and Safety. Food Control. 2013, 32, 222–227. DOI: 10.1016/j.foodcont.2012.11.030.
  • Dharmasena, M.; Jiang, X.; Dudley, E. G. Isolation of Toxigenic Clostridium Difficile from Animal Manure and Composts Being Used as Biological Soil Amendments. Appl. Environ. Microbiol. 2018, 84, e00738–18. DOI: 10.1128/AEM.00738-18.
  • Humbert, S.; Tarnawski, S.; Fromin, N.; Mallet, M.-P.; Aragno, M.; Zopfi, J. Molecular Detection of Anammox Bacteria in Terrestrial Ecosystems: Distribution and Diversity. ISME J. 2010, 4, 450–454. DOI: 10.1038/ismej.2009.125.
  • Jung, Y.; Jang, H.; Matthews, K. R. Effect of the Food Production Chain from Farm Practices to Vegetable Processing on Outbreak Incidence. Microb. Biotechnol. 2014, 7, 517–527. DOI: 10.1111/1751-7915.12178.
  • Schmid, M. C.; Risgaard-Petersen, N.; Van De Vossenberg, J.; Kuypers, M. M. M.; Lavik, G.; Petersen, J.; Hulth, S.; Thamdrup, B.; Canfield, D.; Dalsgaard, T., et al. Anaerobic Ammonium-Oxidizing Bacteria in Marine Environments: Widespread Occurrence but Low Diversity. Environ. Microbiol. 2007, 9, 1476–1484. DOI: 10.1111/j.1462-2920.2007.01266.x.
  • Lindström, M.; Heikinheimo, A.; Lahti, P.; Korkeala, H. Novel Insights into the Epidemiology of Clostridium Perfringens Type A Food Poisoning. Food Microbiol. 2011, 28, 192–198. DOI: 10.1016/j.fm.2010.03.020.
  • Garner, D.; Fresh Produce-Associated, K. S. Listeriosis Outbreaks, Sources of Concern, Teachable Moments, and Insights. J. Food Prot. 2016, 79, 337–344. DOI: 10.4315/0362-028X.JFP-15-387.
  • Buchanan, R. L.; Gorris, L. G. M.; Hayman, M. M.; Jackson, T. C.; Whiting, R. C. A Review of Listeria Monocytogenes: An Update on Outbreaks, Virulence, Dose-Response, Ecology, and Risk Assessments. Food Control. 2017, 75, 1–13. DOI: 10.1016/j.foodcont.2016.12.016.
  • Clark, C. G.; Farber, J.; Pagotto, F.; Ciampa, N.; Doré, K.; Nadon, C.; Bernard, K.; Ng, L.-K. Surveillance for Listeria Monocytogenes and Listeriosis, 1995–2004. Epidemiol. Infect. 2010, 138, 559–572. DOI: 10.1017/S0950268809990914.
  • Schlech, W. F.;. New Perspectives on the Gastrointestinal Mode of Transmission in Invasive Listeria Monocytogenes Infection. Clin. Investig. Med. Med. Clin. Exp. 1984, 7, 321–324.
  • Schlech, W. F., III; Acheson, D. Foodborne Listeriosis. Clin. Infect. Dis. 2000, 31, 770–775. DOI: 10.1086/314008.
  • Ieren, I.; Bello, I.; Kwaga, M.; Occurrence, J. K. P. Antibiotic Resistance Profile of Listeria Monocytogenes in Salad Vegetables and Vegetable Salads Sold in Zaria, Nigeria. Afr. J. Food Sci. 2013, 7, 334–338. DOI: 10.5897/AJFS2013.1036.
  • George, A. E.; Levett, P. N. Effect of Temperature and PH on Survival of Listeria Monocytogenes in Coleslaw. Int. J. Food Microbiol. 1990, 11, 345–349. DOI: 10.1016/0168-1605(90)90028-4.
  • Rakic Martinez, M.; Ferguson, M.; Datta, A. R.; Palusinska-Szysz, M. Virulence Assessment of Listeria Monocytogenes Grown in Different Foods Using a Galleria Mellonella Model. PLoS ONE. 2020, 15, e0232485. DOI: 10.1371/journal.pone.0232485.
  • Meldrum, R. J.; Little, C. L.; Sagoo, S.; Mithani, V.; McLauchlin, J.; de Pinna, E. Assessment of the Microbiological Safety of Salad Vegetables and Sauces from Kebab Take-Away Restaurants in the United Kingdom. Food Microbiol. 2009, 26, 573–577. DOI: 10.1016/j.fm.2009.03.013.
  • García, S.; Heredia, N., Microbiological Safety of Fruit and Vegetables in the Field, During Harvest, and Packaging: A Global Issue, In Global Food Security and Wellness; Barbosa-Cánovas, G. V., María Pastore, G., Candoğan, K., Medina Meza, I. G., Caetano da Silva Lannes, S., Buckle, K., Yada, R. Y., Rosenthal, A. Eds.; Springer: New York, NY. 2017; 27–48.
  • Alegbeleye, O. O.; Sant’Ana, A. S. Risks Associated with the Consumption of Irrigation Water Contaminated Produce: On the Role of Quantitative Microbial Risk Assessment. Curr. Opin. Food Sci. 2021, 41, 88–98. DOI: 10.1016/j.cofs.2021.03.013.
  • Schierstaedt, J.; Jechalke, S.; Nesme, J.; Neuhaus, K.; Sørensen, S. J.; Grosch, R.; Smalla, K.; Schikora, A. Salmonella Persistence in Soil Depends on Reciprocal Interactions with Indigenous Microorganisms. Environ. Microbiol. 2020, 22, 2639–2652. DOI: 10.1111/1462-2920.14972.
  • Smittle, R. B.;. Microbiology of Mayonnaise and Salad Dressing: A Review. J. Food Prot. 1977, 40, 415–422. DOI: 10.4315/0362-028X-40.6.415.
  • Brocklehurst, T. F.; White, C. A.; Dennis, C. The Microflora of Stored Coleslaw and Factors Affecting the Growth of Spoilage Yeasts in Coleslaw. J. Appl. Bacteriol. 1983, 55, 57–63. DOI: 10.1111/j.1365-2672.1983.tb02647.x.