5,365
Views
6
CrossRef citations to date
0
Altmetric
Review

Role of mycoprotein as a non-meat protein in food security and sustainability: a review

ORCID Icon, ORCID Icon, , , , ORCID Icon, , , ORCID Icon & ORCID Icon show all
Pages 683-695 | Received 02 Nov 2022, Accepted 05 Feb 2023, Published online: 16 Feb 2023

References

  • Upcraft, T.; Tu, W.-C.; Johnson, R.; Finnigan, T.; Van Hung, N.; Hallett, J.; Guo, M. Protein from Renewable Resources: Mycoprotein Production from Agricultural Residues. Green Chem. 2021, 23(14), 5150–5165. DOI: 10.1039/D1GC01021B.
  • FAO, I. UNICEF. WFP, WHO, the State of Food Security and Nutrition in the World; FAO: Rome, 2019.
  • Li, J.; Xia, E.; Wang, L.; Yan, K.; Zhu, L.; Huang, J. Knowledge Domain and Emerging Trends of climate-smart Agriculture: A Bibliometric Study. Environ. Sci. Pollut. Res. 2022, 29(46), 70360–70379.
  • Webb, L.; Fleming, A.; Ma, L.; Lu, X. Uses of Cellular Agriculture in plant-based Meat Analogues for Improved Palatability. ACS Food. Sci. & Tech. 2021, 1(10), 1740–1747. DOI: 10.1021/acsfoodscitech.1c00248.
  • Mittermeier-Kleßinger, V. K.; Hofmann, T.; Dawid, C. Mitigating off-flavors of plant-based Proteins. J. Agric. Food Chem. 2021, 69(32), 9202–9207. DOI: 10.1021/acs.jafc.1c03398.
  • Derbyshire, E. J.; Delange, J. Fungal protein–what Is It and What Is the Health Evidence? A Systematic Review Focusing on Mycoprotein. Front. Sust. Food Syst. 2021, 5, 581682.
  • Zhang, C.; Guan, X.; Yu, S.; Zhou, J.; Chen, J. Production of Meat Alternatives Using Live Cells, Cultures and Plant Proteins. Curr. Opin. Food Sci. 2022, 43, 43–52. DOI: 10.1016/j.cofs.2021.11.002.
  • Fungal-Derived Mycoprotein, D. E. Health across the Lifespan: A Narrative Review. J. Fungi 2022, 8(7), 653.
  • Whittaker, J. A.; Johnson, R. I.; Finnigan, T. J.; Avery, S. V.; Dyer, P. S. The Biotechnology of Quorn Mycoprotein: Past, Present and Future Challenges. Grand challenges fungal biotechnol. Springer. 2020, 59–79.
  • Ahmad, M. I.; Farooq, S.; Alhamoud, Y.; Li, C.; Zhang, H. A Review on Mycoprotein: History, Nutritional Composition, Production Methods, and Health Benefits. Trends Food Sci. Technol. 2022, 121, 14–29. DOI: 10.1016/j.tifs.2022.01.027.
  • Derbyshire, E. Protein guidance—Is It Time for an Update. Dietetics Today 2020, 22–23.
  • Denny, A.; Aisbitt, B.; Lunn, J. Mycoprotein and Health. Nutr. Bull. 2008, 33(4), 298–310. DOI: 10.1111/j.1467-3010.2008.00730.x.
  • Asgar, M.; Fazilah, A.; Huda, N.; Bhat, R.; Karim, A. Nonmeat Protein Alternatives as Meat Extenders and Meat Analogs. Compr. Rev. Food Sci. Food Saf. 2010, 9(5), 513–529. DOI: 10.1111/j.1541-4337.2010.00124.x.
  • Finnigan, T.; Needham, L.; Abbott, C. Mycoprotein: A Healthy New Protein with a Low Environmental Impact. Sustain. protein sources, Elsevier. 2017, 305–325.
  • Souza Filho, P. F.; Andersson, D.; Ferreira, J. A.; Taherzadeh, M. J. Mycoprotein: Environmental Impact and Health Aspects. World J. Microbiol. Biotechnol. 2019, 35(10), 1–8. DOI: 10.1007/s11274-019-2723-9.
  • Dunlop, M. V.; Kilroe, S. P.; Bowtell, J. L.; Finnigan, T. J.; Salmon, D. L.; Wall, B. T. Mycoprotein Represents a Bioavailable and Insulinotropic non-animal-derived Dietary Protein Source: A dose–response Study. Br. J. Nutr. 2017, 118(9), 673–685. DOI: 10.1017/S0007114517002409.
  • Coelho, M. O.; Monteyne, A. J.; Dunlop, M. V.; Harris, H. C.; Morrison, D. J.; Stephens, F. B.; Wall, B. T. Mycoprotein as a Possible Alternative Source of Dietary Protein to Support Muscle and Metabolic Health. Nutr. Rev. 2020, 78(6), 486–497. DOI: 10.1093/nutrit/nuz077.
  • Edwards, D.; Cummings, J. The Protein Quality of Mycoprotein. Proc. Nutr. Soc. 2010, 69(OCE4). DOI: 10.1017/S0029665110001400.
  • Derbyshire, E.; Ayoob, K.-T. Mycoprotein: Nutritional and Health Properties. Nutr. today. 2019, 54(1), 7–15. DOI: 10.1097/NT.0000000000000316.
  • Burley, V.; Paul, A.; Blundell, J. Influence of a high-fibre Food (myco-protein^*) on Appetite: Effects on Satiation (Within Meals) and Satiety (Following Meals). Eur. J. Clin. Nutr. 1993, 47, 709.
  • Turnbull, W. H.; Walton, J.; Leeds, A. R. Acute Effects of Mycoprotein on Subsequent Energy Intake and Appetite Variables. Am. J. Clin. Nutr. 1993, 58(4), 507–512. DOI: 10.1093/ajcn/58.4.507.
  • Bottin, J. H.; Swann, J. R.; Cropp, E.; Chambers, E. S.; Ford, H. E.; Ghatei, M. A.; Frost, G. S. Mycoprotein Reduces Energy Intake and Postprandial Insulin Release without Altering glucagon-like Peptide-1 and Peptide tyrosine-tyrosine Concentrations in Healthy Overweight and Obese Adults: A randomised-controlled Trial. Br. J. Nutr. 2016, 116(2), 360–374. DOI: 10.1017/S0007114516001872.
  • Williamson, D. A.; Geiselman, P. J.; Lovejoy, J.; Greenway, F.; Volaufova, J.; Martin, C. K.; Arnett, C.; Ortego, L. Effects of Consuming Mycoprotein, Tofu or Chicken upon Subsequent Eating Behaviour, Hunger and Safety. Appetite. 2006, 46(1), 41–48. DOI: 10.1016/j.appet.2005.10.007.
  • Turnbull, W. H.; Ward, T. Mycoprotein Reduces Glycemia and Insulinemia When Taken with an oral-glucose-tolerance Test. Am. J. Clin. Nutr. 1995, 61(1), 135–140. DOI: 10.1093/ajcn/61.1.135.
  • Ruxton, C. H.; McMillan, B. The Impact of Mycoprotein on Blood Cholesterol Levels: A Pilot Study. Br. Food J. 2010, 112(10), 1092–1101. DOI: 10.1108/00070701011080221.
  • Bottin, J.; Cropp, E.; Ford, H.; Bétrémieux, L.; Finnigan, T.; Frost, G. Mycoprotein Reduces Insulinemia and Improves Insulin Sensitivity. Proc. Nutr. Soc. 2011, 70(OCE6). DOI: 10.1017/S0029665111004575.
  • Colosimo, R.; Warren, F. J.; Edwards, C. H.; Finnigan, T. J.; Wilde, P. J. The Interaction of α-amylase with Mycoprotein: Diffusion through the Fungal Cell Wall, Enzyme Entrapment, and Potential Physiological Implications. Food Hydrocolloids. 2020, 108, 106018. DOI: 10.1016/j.foodhyd.2020.106018.
  • Monteyne, A. J.; Coelho, M. O.; Porter, C.; Abdelrahman, D. R.; Jameson, T. S.; Jackman, S. R.; Blackwell, J. R.; Finnigan, T. J.; Stephens, F. B.; Dirks, M. L. Mycoprotein Ingestion Stimulates Protein Synthesis Rates to a Greater Extent than Milk Protein in Rested and Exercised Skeletal Muscle of Healthy Young Men: A Randomised Controlled Trial. Am. J. Clin. Nutr. 2020, 112(2), 318–333. DOI: 10.1093/ajcn/nqaa092.
  • Coelho, M. O.; Monteyne, A. J.; Kamalanathan, I. D.; Najdanovic-Visak, V.; Finnigan, T. J.; Stephens, F. B.; Wall, B. T. Short-communication: Ingestion of a nucleotide-rich Mixed Meal Increases Serum Uric Acid Concentrations but Does Not Affect Postprandial Blood Glucose or Serum Insulin Responses in Young Adults. Nutrients. 2020, 12(4), 1115. DOI: 10.3390/nu12041115.
  • Turnbull, W. H.; Leeds, A. R.; Edwards, G. D. Effect of Mycoprotein on Blood Lipids. Am. J. Clin. Nutr. 1990, 52(4), 646–650. DOI: 10.1093/ajcn/52.4.646.
  • Turnbull, W. H.; Leeds, A. R.; Edwards, D. G. Mycoprotein Reduces Blood Lipids in free-living Subjects. Am. J. Clin. Nutr. 1992, 55(2), 415–419. DOI: 10.1093/ajcn/55.2.415.
  • Coelho, M. O.; Monteyne, A. J.; Dirks, M. L.; Finnigan, T. J.; Stephens, F. B.; Wall, B. T. Daily Mycoprotein Consumption for 1 Week Does Not Affect Insulin Sensitivity or Glycaemic Control but Modulates the Plasma Lipidome in Healthy Adults: A Randomised Controlled Trial. Br. J. Nutr. 2021, 125(2), 147–160. DOI: 10.1017/S0007114520002524.
  • Wall, B. T.; Hamer, H. M.; de Lange, A.; Kiskini, A.; Groen, B. B.; Senden, J. M.; Gijsen, A. P.; Verdijk, L. B.; van Loon, L. J. Leucine co-ingestion Improves post-prandial Muscle Protein Accretion in Elderly Men. Clin. Nutr. 2013, 32(3), 412–419. DOI: 10.1016/j.clnu.2012.09.002.
  • Murphy, C.; Oikawa, S.; Phillips, S. Dietary Protein to Maintain Muscle Mass in Aging: A Case for per-meal Protein Recommendations. J Frailty Aging. 2016, 5(1), 49–58. DOI: 10.14283/jfa.2016.80.
  • Tang, J. E.; Moore, D. R.; Kujbida, G. W.; Tarnopolsky, M. A.; Phillips, S. M. Ingestion of Whey Hydrolysate, Casein, or Soy Protein Isolate: Effects on Mixed Muscle Protein Synthesis at Rest and following Resistance Exercise in Young Men. J. Appl. Physiol. 2009, 107(3), 987–992. DOI: 10.1152/japplphysiol.00076.2009.
  • Pennings, B.; Boirie, Y.; Senden, J. M.; Gijsen, A. P.; Kuipers, H.; van Loon, L. J. Whey Protein Stimulates Postprandial Muscle Protein Accretion More Effectively than Do Casein and Casein Hydrolysate in Older Men. Am. J. Clin. Nutr. 2011, 93(5), 997–1005. DOI: 10.3945/ajcn.110.008102.
  • Gorissen, S. H.; Horstman, A. M.; Franssen, R.; Crombag, J. J.; Langer, H.; Bierau, J.; Respondek, F.; Van Loon, L. J. Ingestion of Wheat Protein Increases in Vivo Muscle Protein Synthesis Rates in Healthy Older Men in a Randomised Trial. J. Nutr. 2016, 146(9), 1651–1659. DOI: 10.3945/jn.116.231340.
  • van Vliet, S.; Burd, N. A.; van Loon, L. J. The Skeletal Muscle Anabolic Response to plant-versus animal-based Protein Consumption. J. Nutr. 2015, 145(9), 1981–1991. DOI: 10.3945/jn.114.204305.
  • Mitchell, C. J.; McGregor, R. A.; D’Souza, R. F.; Thorstensen, E. B.; Markworth, J. F.; Fanning, A. C.; Poppitt, S. D.; Cameron-Smith, D. Consumption of Milk Protein or Whey Protein Results in a Similar Increase in Muscle Protein Synthesis in Middle Aged Men. Nutrients. 2015, 7(10), 8685–8699. DOI: 10.3390/nu7105420.
  • Hartmann, C.; Siegrist, M. Consumer Perception and Behaviour regarding Sustainable Protein Consumption: A Systematic Review. Trends Food Sci. Technol. 2017, 61, 11–25. DOI: 10.1016/j.tifs.2016.12.006.
  • West, D. W.; Burd, N. A.; Coffey, V. G.; Baker, S. K.; Burke, L. M.; Hawley, J. A.; Moore, D. R.; Stellingwerff, T.; Phillips, S. M. Rapid Aminoacidemia Enhances Myofibrillar Protein Synthesis and Anabolic Intramuscular Signaling Responses after Resistance Exercise–. Am. J. Clin. Nutr. 2011, 94(3), 795–803. DOI: 10.3945/ajcn.111.013722.
  • Siegrist, M.; Hartmann, C. Impact of Sustainability Perception on Consumption of Organic Meat and Meat Substitutes. Appetite. 2019, 132, 196–202. DOI: 10.1016/j.appet.2018.09.016.
  • Finnigan, T.; Lemon, M.; Allan, B; Mycoprotein, P. I. Life Cycle Analysis and the Food 2030 Challenge. Asp. Appl. Biol. 2010, 102, 81–90
  • Smetana, S.; Aganovic, K.; Irmscher, S.; Heinz, V. Agri-food Waste Streams Utilisation for Development of More Sustainable Food Substitutes. In Designing Sustainable Technologies, Products and Policies, Springer, Cham, 2018; pp 145–155.
  • Sonesson, U.; Davis, J.; Flysjö, A.; Gustavsson, J.; Witthöft, C. Protein Quality as Functional unit–A Methodological Framework for Inclusion in Life Cycle Assessment of Food. J. Cleaner Prod. 2017, 140, 470–478. DOI: 10.1016/j.jclepro.2016.06.115.
  • Jungbluth, N.; Eggenberger, S.; Nowack, K.; Keller, R. Life Cycle Assessment of Meals Based on Vegetarian Protein Sources. In proceedings from: the 10th international conference on life cycle assessment of food (LCA Food 2016), 2016.
  • Satari, B.; Karimi, K. Mucoralean Fungi for Sustainable Production of Bioethanol and Biologically Active Molecules. Appl. Microbiol. Biotechnol. 2018, 102(3), 1097–1117. DOI: 10.1007/s00253-017-8691-9.
  • Batini, N. Transforming agri-food Sectors to Mitigate Climate Change: The Role of Green Finance. Vierteljahrshefte zur Wirtschaftsforschung. 2019, 88(3), 7–42. DOI: 10.3790/vjh.88.3.7.
  • Warner, R. Analysis of the Process and Drivers for Cellular Meat Production. Animal. 2019, 13(12), 3041–3058. DOI: 10.1017/S1751731119001897.
  • Stipanuk, M. H.; Caudill, M. A. Biochemical, Physiological, and Molecular Aspects of Human nutrition-E-book; Elsevier health sciences, 2018.
  • Osowski, C. P.; Sydner, Y. M. Traditional or Cultural Relativist School Meals?: The Construction of Religiously Sanctioned School Meals on Social Media. In What Is Food?; England, UK: Routledge, 2019; pp 72–87.
  • Tong, T. Y.; Appleby, P. N.; Bradbury, K. E.; Perez-Cornago, A.; Travis, R. C.; Clarke, R.; Key, T. J. Risks of Ischaemic Heart Disease and Stroke in Meat Eaters, Fish Eaters, and Vegetarians over 18 Years of follow-up: Results from the Prospective EPIC-Oxford Study. bmj. 2019, 366.
  • Van Loo, E. J.; Caputo, V.; Lusk, J. L. Consumer Preferences for farm-raised Meat, lab-grown Meat, and plant-based Meat Alternatives: Does Information or Brand Matter? Food Policy. 2020, 95, 101931.
  • Grasso, A. C.; Hung, Y.; Olthof, M. R.; Verbeke, W.; Brouwer, I. A. Older Consumers’ Readiness to Accept Alternative, More Sustainable Protein Sources in the European Union. Nutrients. 2019, 11(8), 1904.
  • Lonnie, M.; Johnstone, A. The Public Health Rationale for Promoting Plant Protein as an Important Part of a Sustainable and Healthy Diet. Nutr. Bull. 2020, 45(3), 281–293.
  • Hobbs, J. E. The Covid-19 Pandemic and Meat Supply Chains. Meat Sci. 2021, 181, 108459.
  • Meyer, V.; Basenko, E. Y.; Benz, J. P.; Braus, G. H.; Caddick, M. X.; Csukai, M.; De Vries, R. P.; Endy, D.; Frisvad, J. C.; Gunde-Cimerman, N. Growing a Circular Economy with Fungal Biotechnology: A White Paper. Fungal biol. biotechnol. 2020, 7(1), 1–23.
  • Antonelli, A.; Smith, R.; Fry, C.; Simmonds, M. S.; Kersey, P. J.; Pritchard, H.; Abbo, M.; Acedo, C.; Adams, J.; Ainsworth, A. State of the World’s Plants and Fungi. Royal Botanic Gardens (Kew); Sfumato Foundation, 2020. White, C. Why Regenerative Agriculture? Am. J. Econ. Sociol. 2020, 79(3), 799–812.
  • Rowan, N. J.; Galanakis, C. M. Unlocking Challenges and Opportunities Presented by COVID-19 Pandemic for cross-cutting Disruption in agri-food and Green Deal Innovations: Quo Vadis? Sci. Total Environ. 2020, 748, 141362.
  • Schweiggert-Weisz, U.; Eisner, P.; Bader-Mittermaier, S.; Osen, R. Food Proteins from Plants and Fungi. Curr. Opin. Food Sci. 2020, 32, 156–162.
  • Cherta-Murillo, A.; Frost, G. S. The Association of mycoprotein-based Food Consumption with Diet Quality, Energy Intake and non-communicable Diseases’ Risk in the UK Adult Population Using the National Diet and Nutrition Survey (NDNS) Years 2008/2009–2016/2017: A cross-sectional Study. Br. J. Nutr. 2022, 127(11), 1685–1694.