1,108
Views
2
CrossRef citations to date
0
Altmetric
Original Article

Physicochemical properties of grass carp surimi as affected by pH and NaCl concentration during washing

, , &
Pages 952-962 | Received 12 Dec 2022, Accepted 26 Mar 2023, Published online: 30 Mar 2023

References

  • Wang, Y.; Zhuang, Y.; Yan, H.; Lu, Y.; Deng, X.; Hu, Y.; Xiong, S.; Yang, H. The Influence of pH and Monovalent/Divalent Cations on the Structural and Physicochemical Properties of Myofibrillar Protein from Silver Carp. Food Chem. 2023, 404, 134519. DOI: 10.1016/j.foodchem.2022.134519.
  • Zhang, L.; Li, Q.; Shi, J.; Zhu, B.; Luo, Y. Changes in Chemical Interactions and Gel Properties of Heat-Induced Surimi Gels from Silver Carp (Hypophthalmichthys molitrix) Fillets During Setting and Heating: Effects of Different Washing Solutions. Food Hydrocolloids. 2018, 75, 116–124. DOI: 10.1016/j.foodhyd.2017.09.007.
  • Zhou, Y.; Yang, H. Effects of Calcium Ion on Gel Properties and Gelation of Tilapia (Oreochromis niloticus) Protein Isolates Processed with pH Shift Method. Food Chem. 2019, 277, 327–335. DOI: 10.1016/j.foodchem.2018.10.110.
  • Sun, X.; Holley, R. A. Factors Influencing Gel Formation by Myofibrillar Proteins in Muscle Foods. Compr. Rev. Food Sci. Food Saf. 2011, 10(1), 33–51. DOI: 10.1111/j.1541-4337.2010.00137.x.
  • Wang, G.; Liu, M.; Cao, L.; Yongsawatdigul, J.; Xiong, S.; Liu, R. Effects of Different NaCl Concentrations on Self-Assembly of Silver Carp Myosin. Food Biosci. 2018, 24, 1–8. DOI: 10.1016/j.fbio.2018.05.002.
  • Basso, A. S.; Miguez, F. E.; Laird, D. A.; Horton, R.; Westgate, M. Assessing Potential of Biochar for Increasing Water-Holding Capacity of Sandy Soils. GCB Bioenergy. 2013, 5(2), 132–143. DOI: 10.1111/gcbb.12026.
  • Wu, L.; Wu, T.; Wu, J.; Chang, R.; Lan, X.; Wei, K.; Jia, X. Effects of Cations on the “Salt in” of Myofibrillar Proteins. Food Hydrocolloids. 2016, 58, 179–183. DOI: 10.1016/j.foodhyd.2016.02.028.
  • Matak, K. E.; Tahergorabi, R.; Jaczynski, J. A Review: Protein Isolates Recovered by Isoelectric Solubilization/Precipitation Processing from Muscle Food By-Products as a Component of Nutraceutical Foods. Food Res. Int. 2015, 77, 697–703. DOI: 10.1016/j.foodres.2015.05.048.
  • Tao, L.; Tian, L.; Zhang, X.; Huang, X.; Long, H.; Chang, F.; Li, T.; Li, S. Effects of γ-Polyglutamic Acid on the Physicochemical Properties and Microstructure of Grass Carp (Ctenopharyngodon idellus) Surimi During Frozen Storage. LWT - Food Sci. Technol. 2020, 134, 109960. DOI: 10.1016/j.lwt.2020.109960.
  • Liu, R.; Zhao, S. -M.; Yang, H.; D-D, L.; Xiong, S. -B.; Xie, B. -J. Comparative Study on the Stability of Fish Actomyosin and Pork Actomyosin. Meat Sci. 2011, 88(2), 234–240. DOI: 10.1016/j.meatsci.2010.12.026.
  • Lin, T. M.; Park, J. W. Effective Washing Conditions Reduce Water Usage for Surimi Processing. J. Aquat. Food Prod. Technol. 1997, 6(2), 65–79. DOI: 10.1300/J030v06n02_06.
  • Lowry, O.; Rosebrough, N.; Farr, A. L.; Randall, R. Protein Measurement with the Folin Phenol Reagent. J. Biol. Chem. 1951, 193(1), 265–275. DOI: 10.1016/S0021-9258(19)52451-6.
  • Lian, P. Z.; Lee, C. M.; Hufnagel, L. Physicochemical Properties of Frozen Red Hake (Urophycis chuss) Mince as Affected by Cryoprotective Ingredients. J. Food Sci. 2000, 65(7), 1117–1123. DOI: 10.1111/j.1365-2621.2000.tb10249.x.
  • Yin, T.; He, Y.; Liu, L.; Shi, L.; Xiong, S.; You, J.; Hu, Y.; Huang, Q. Structural and Biochemical Properties of Silver Carp Surimi as Affected by Comminution Method. Food Chem. 2019, 287, 85–92. DOI: 10.1016/j.foodchem.2019.02.066.
  • Marmon, S. K.; Krona, A.; Langton, M.; Undeland, I. Changes in Salt Solubility and Microstructure of Proteins from Herring (Clupea harengus) After PH-Shift Processing. J. Agric. Food Chem. 2012, 60(32), 7965–7972. DOI: 10.1021/jf301352s.
  • Ooizumi, T.; Kawase, M.; Akahane, Y. Permeation of Sodium Chloride into Fish Meat and Its Effect on Moisture Content as a Function of the Osmotic Pressure of the Soaking Solution. Fish. Sci. 2003, 69(4), 830–835. DOI: 10.1046/j.1444-2906.2003.00694.x.
  • Wang, K.; Li, Y.; Zhang, Y.; Luo, X.; Sun, J. Improving Myofibrillar Proteins Solubility and Thermostability in Low-Ionic Strength Solution: A Review. Meat Sci. 2022, 189, 108822. DOI: 10.1016/j.meatsci.2022.108822.
  • Liu, H.; Zhang, H.; Liu, Q.; Chen, Q.; Kong, B. Filamentous Myosin in Low-Ionic Strength Meat Protein Processing Media: Assembly Mechanism, Impact on Protein Functionality, and Inhibition Strategies. Trends Food Sci. Technol. 2021, 112, 25–35. DOI: 10.1016/j.tifs.2021.03.039.
  • Sun, L. -C.; Lin, Y. -C.; Liu, W. -F.; Qiu, X. -J.; Cao, K. -Y.; Liu, G. -M.; Cao, M. -J. Effect of pH Shifting on Conformation and Gelation Properties of Myosin from Skeletal Muscle of Blue Round scads(Decapterus maruadsi). Food Hydrocolloids. 2019, 93, 137–145. DOI: 10.1016/j.foodhyd.2019.02.026.
  • Panpipat, W.; Chaijan, M. Biochemical and Physicochemical Characteristics of Protein Isolates from Bigeye Snapper (Priacanthus Tayenus) Head By-Product Using pH Shift Method. Turk. J. Fish. Aquat. Sci. 2016, 16(1), 41–50. DOI: 10.4194/1303-2712-v16_1_05.
  • Tadpitchayangkoon, P.; Park, J. W.; Yongsawatdigul, J. Conformational Changes and Dynamic Rheological Properties of Fish Sarcoplasmic Proteins Treated at Various pHs. Food Chem. 2010, 121(4), 1046–1052. DOI: 10.1016/j.foodchem.2010.01.046.
  • Kramer, R. M.; Shende, V. R.; Motl, N.; Pace, C. N.; Scholtz, J. M. Toward a Molecular Understanding of Protein Solubility: Increased Negative Surface Charge Correlates with Increased Solubility. Biophys. J. 2012, 102(8), 1907–1915. DOI: 10.1016/j.bpj.2012.01.060.
  • Thawornchinsombut, S.; Park, J. W. Role of Ionic Strength in Biochemical Properties of Soluble Fish Proteins Isolated from Cryoprotected Pacific Whiting Mince. J. Food Biochem. 2005, 29(2), 132–151. DOI: 10.1111/j.1745-4514.2005.00005.x.
  • Kim, Y. S.; Yongsawatdigul, J.; Park, J. W.; Thawornchinsombut, S. Characteristics of Sarcoplasmic Proteins and Their Interaction with Myofibrillar Proteins. J. Food Biochem. 2005, 29(5), 517–532. DOI: 10.1111/j.1745-4514.2005.00023.x.
  • Feng, D.; Xue, Y.; Li, Z.; Wang, Y.; Yang, W.; Xue, C. Dielectric Properties of Myofibrillar Protein Dispersions from Alaska Pollock (Theragra chalcogramma) as a Function of Concentration, Temperature, and NaCl Concentration. J. Food Eng. 2015, 166, 342–348. DOI: 10.1016/j.jfoodeng.2015.06.038.
  • Marchetti, M. D.; Gomez, P. L.; Yeannes, M. I.; Loredo, A. B. G. Structure of Fish Proteins as Modified by Salting Procedures: A Rheological and Ultrastructural Analysis of Hake (Merluccius hubbsi) Fillets. J. Food Sci. 2022, 87(3), 1134–1147. DOI: 10.1111/1750-3841.16056.
  • Thawornchinsombut, S.; Park, J. W. Role of pH in Solubility and Conformational Changes of Pacific Whiting Muscle Proteins. J. Food Biochem. 2004, 28(2), 135–154. DOI: 10.1111/j.1745-4514.2004.tb00061.x.
  • Xia, M.; Chen, Y.; Guo, J.; Huang, H.; Wang, L.; Wu, W.; Xiong, G.; Sun, W. Water Distribution and Textural Properties of Heat-Induced Pork Myofibrillar Protein Gel as Affected by Sarcoplasmic Protein. LWT - Food Sci. Technol. 2019, 103, 308–315. DOI: 10.1016/j.lwt.2019.01.009.
  • Núñez-Flores, R.; Cando, D.; Borderías, A. J.; Moreno, H. M. Importance of Salt and Temperature in Myosin Polymerization During Surimi Gelation. Food Chem. 2018, 239, 1226–1234. DOI: 10.1016/j.foodchem.2017.07.028.
  • Guo, H.; Yang, Y.; Qiao, Y.; He, J.; Yao, W.; Zheng, W. Heat Stress Affects Fetal Brain and Intestinal Function Associated with the Alterations of Placental Barrier in Late Pregnant Mouse. Ecotoxicol. Environ. Saf. 2021, 227, 112916. DOI: 10.1016/j.ecoenv.2021.112916.
  • Li, L.; Bai, Y.; Cai, R.; Wu, C.; Wang, P.; Xu, X.; Sun, J. Alkaline pH-Dependent Thermal Aggregation of Chicken Breast Myosin: Formation of Soluble Aggregates. CyTA - J. Food. 2018, 16(1), 765–775. DOI: 10.1080/19476337.2018.1470576.
  • Zhu, C. Z.; Jin, H. Q.; Yin, F.; Cui, W. M.; Zhang, Q. H.; Zhao, G. M. Emulsion-Forming Properties of Heat-Induced Pork Myofibrillar Protein Affected by NaCl. International Journal of Food Science & Technology. 2021, 56(6), 3016–3025. DOI: 10.1111/ijfs.14945.
  • Odahara, T.; Odahara, K. Various Salts Employed as Precipitant in Combination with Polyethylene Glycol in Protein/Detergent Particle Association. Heliyon. 2018, 4(12), e01073. DOI: 10.1016/j.heliyon.2018.e01073.
  • Ren, Z.; Cui, Y.; Wang, Y.; Shi, L.; Yang, S.; Hao, G.; Qiu, X.; Wu, Y.; Zhao, Y.; Weng, W. Effect of Ionic Strength on the Structural Properties and Emulsion Characteristics of Myofibrillar Proteins from Hairtail (Trichiurus haumela). Food Res. Int. 2022, 157, 111248. DOI: 10.1016/j.foodres.2022.111248.
  • Li, J.; Wu, M.; Wang, Y.; Li, K.; Du, J.; Bai, Y. Effect of pH-Shifting Treatment on Structural and Heat Induced Gel Properties of Peanut Protein Isolate. Food Chem. 2020, 325, 126921. DOI: 10.1016/j.foodchem.2020.126921.
  • Satoh, Y.; Nakaya, M.; Ochiai, Y.; Watabe, S. Characterization of Fast Skeletal Myosin from White Croaker in Comparison with That from Walleye Pollack. Fish. Sci. 2006, 72(3), 646–655. DOI: 10.1111/j.1444-2906.2006.01195.x.
  • Liu, R.; Zhao, S. -M.; Liu, Y. -M.; Yang, H.; Xiong, S. -B.; Xie, B. -J.; Qin, L. -H. Effect of pH on the Gel Properties and Secondary Structure of Fish Myosin. Food Chem. 2010, 121(1), 196–202. DOI: 10.1016/j.foodchem.2009.12.030.
  • Haug, I. J.; Draget, K. I.; Smidsrød, O. Physical and Rheological Properties of Fish Gelatin Compared to Mammalian Gelatin. Food Hydrocolloids. 2004, 18(2), 203–213. DOI: 10.1016/S0268-005X(03)00065-1.
  • Pace, C. N.; Grimsley, G. R.; Scholtz, J. M. Protein Ionizable Groups: pK Values and Their Contribution to Protein Stability and Solubility*. J. Biol. Chem. 2009, 284(20), 13285–13289. DOI: 10.1074/jbc.R800080200.
  • Lanier, T.; Yongsawatdigul, J.; Carvajal-Rondanelli, P. Surimi Gelation Chemistry. In Surimi and Seafood; Boca Raton, Florida: CRC Press, 2013; 101–140. doi:10.1201/b16009-6.
  • Li, H.; Zhang, X.; Zhao, C.; Zhang, H.; Chi, Y.; Wang, L.; Zhang, H.; Bai, S.; Zhang, X. Entrapment of Curcumin in Soy Protein Isolate Using the pH-Driven Method: Nanoencapsulation and Formation Mechanism. LWT - Food Sci. Technol. 2022, 153, 112480. DOI: 10.1016/j.lwt.2021.112480.